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MARTINGALE PROPERTY OF EMPIRICAL PROCESSES

SERGIO ALBEVERIO, YENENG SUN, AND JIANG-LUN WU

Abstract. It is shown that for a large collection of independent martingales,
the martingale property is preserved on the empirical processes. Under the as-
sumptions of independence and identical finite-dimensional distributions, it is
proved that a large collection of stochastic processes are martingales essentially
if and only if the empirical processes are also martingales. These two results
have implications on the testability of the martingale property in scientific
modeling. Extensions to submartingales and supermartingales are given.

1. Introduction

A martingale is a fundamental concept in probability theory. The theory of
martingales has important applications not only in many areas in mathematics,
such as in harmonic analysis, potential theory and partial differential equations ([3],
[6], [7] and [10]), but also in finance and other fields. For example, the so-called
martingale measures play a key role in the pricing of various financial instruments
([11] and [14]).

This paper considers a process consisting of a large collection of independent
martingales. We study martingale property of the empirical process for a given
random realization, where the empirical process is a stochastic process whose sample
space is the space indexing the collection of independent martingales. Since the
empirical process is observable after a random realization, its properties will have
implications on the testability of assumptions on the underlying stochastic processes
in scientific modeling.

However, there is a technical mathematical problem with a large collection of in-
dependent martingales indexed by a non-atomic probability measure space. Propo-
sition 1.1 of [25] shows that independence and joint measurability with respect to
the usual measure-theoretic product are never compatible with each other except
for some trivial cases. Earlier observations of such a measurability problem can be
traced back to the work of Doob in [8] and [9, p. 67]. This means that a richer prod-
uct measure-theoretic framework that extends the usual measure-theoretic product
is needed for the study of processes with independent random variables or inde-
pendent stochastic processes. As demonstrated in [24] and [25], the Loeb product
probability spaces ([19] and [21]) do provide such a rich framework for working
with processes with independent random variables. Here we show that the Loeb
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518 SERGIO ALBEVERIO, YENENG SUN, AND JIANG-LUN WU

product framework also works well for processes consisting of a large collection of
independent martingales.

Theorem 3.2 below shows that for a continuum of (discrete or continuous time)
martingales that are essentially independent of each other, the empirical processes
are essentially martingales. In addition, for a continuum of stochastic processes
that are essentially independent of each other and have essentially the same finite-
dimensional distributions, Theorem 3.4 shows that the stochastic processes are
essentially martingales if and only if the empirical processes are also essentially
martingales. These two results have implications on the testability of the martingale
property in scientific modeling. Propositions 5.1 and 5.2 extend these results to the
case of submartingales and supermartingales.

The rest of the paper is organized as follows. Section 2 introduces some basic
notations and definitions as well as a statement of Keisler’s Fubini theorem ([16]).
The statement of the main results are given in Section 3, and their proofs in Section
4. Some simple extensions to submartingales and supermartingales are presented
in Section 5. The Appendix includes the precise statements of the exact law of
large numbers and a duality result in [24], which play a crucial role in the proofs
of the main results in Section 4.

Before moving to the next section, we provide two remarks. First, in order
to express the martingale property of empirical processes in general, one cannot
consider a countable collection of stochastic processes. Second, a meta-theorem in
mathematical logic (such as the transfer principle in [21]) guarantees that exact
properties on Loeb spaces correspond to approximate properties on a sequence
of finite probability spaces. In particular, by applying the routine (but tedious)
procedure of lifting, pushing-down and transfer as in Section 9 of [24], one can claim
martingale property in some approximate sense for a large but finite collection of
independent martingales.

2. Preliminaries

As noted in the Introduction, the Loeb product probability spaces provide a
suitable framework for the study of processes with independent random variables.
We shall use this framework to study a large collection of stochastic processes as in
Section 8 in [24]. The reader is referred to [1] and [21] for details on Loeb spaces.
However, one can read this paper simply by assuming that the Loeb product space
is a rich extension of the usual product retaining the Fubini-type property. We
also note that Loeb space techniques have been applied fruitfully to mathematical
physics (Chapters 5–7 in [1]), probability theory (for example, [2], [17], [22] and
[23]), and other fields.

Let (I, I, λ) and (Ω,F , P ) be two atomless Loeb probability spaces. Their usual
measure-theoretic product is denoted by (I × Ω, I ⊗ F , λ ⊗ P ). The completion of
this usual product is also denoted by the same notation. What makes the Loeb
spaces crucial in our context is that they have another kind of product, called the
Loeb product, denoted by (I × Ω, I � F , λ � P ). Note that the Loeb product is
indeed uniquely determined by its factor Loeb spaces as shown in [18]. As noted
in [2], the Loeb product extends the usual product.

Since (I, I, λ) and (Ω,F , P ) are assumed to be atomless, Theorem 6.2 in [24]
shows that the Loeb product space (I × Ω, I � F , λ � P ) is very rich in the sense
that it can be endowed with independent processes that are not measurable with
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MARTINGALE PROPERTY OF EMPIRICAL PROCESSES 519

respect to the usual product σ-algebra I ⊗F but have almost independent random
variables with any variety of distributions. Thus, (I × Ω, I � F , λ � P ) is always
a proper extension of (I × Ω, I ⊗ F , λ ⊗ P ) (see Proposition 6.6 of [24]). Many
examples of Loeb product measurable sets that are not measurable in I ⊗ F can
be found in [4].

The following Fubini-type property of the Loeb product space is crucial (see [16],
[20] and [21]).

Proposition 2.1 (Keisler’s Fubini theorem). Let f be a real-valued integrable func-
tion on (I × Ω, I � F , λ � P ). Then (1) for λ-almost all i ∈ I, f(i, ·) is an inte-
grable function on (Ω,F , P ); (2) the function

∫
Ω

f(i, ω)dP (ω) on I is integrable on
(I, I, λ); and (3)

∫
I

∫
Ω

f(i, ω)dP (ω)dλ(i) =
∫

I×Ω

f(i, ω)dλ � P (i, ω).

Similar properties hold for the functions f(·, ω) on I and the function
∫

I
f(i, ω)dλ(i)

on Ω.

Let T be a set of time parameters, which is assumed to be the set of Z+ of
positive integers or an interval (starting from 0) in the set R+ of non-negative real
numbers. Let B(T ) be the power set of T when T is the countable set Z+, and the
Borel σ-algebra on T when T is an interval. Let X be a real-valued measurable
function on the mixed product measurable space ((I × Ω) × T, (I � F) ⊗ B(T )).
A Fubini-type result can also be obtained for real-valued functions on the mixed
product ((I × Ω) × T, (I � F) ⊗ B(T )) ([23], p. 164). Throughout the paper, we
assume that for each t ∈ T , X(·, ·, t) is integrable on the Loeb product space
(I × Ω, I � F , λ � P ), i.e.,

∫
I×Ω

|X(i, ω, t)|dλ � P (i, ω) < ∞.

For any i ∈ I, let Xi(·, ·) := X(i, ·, ·) be the corresponding function on Ω×T , and
for any ω ∈ Ω, let Xω(·, ·) := X(·, ω, ·) be the corresponding function on I×T . The
Fubini-type property for the mixed product space implies that Xi is a measurable
process on (Ω×T,F⊗B(T )) for λ-almost all i ∈ I, and Xω is a measurable process
on (I × T, I ⊗B(T )) for P -almost all ω ∈ Ω. Thus, X can be viewed as a family of
stochastic processes, Xi, i ∈ I, with a sample space (Ω,F , P ) and a time parameter
space T . For ω ∈ Ω, Xω is called an empirical process with the index space (I, I, λ)
as the sample space.

Note that we can take I to be a hyperfinite set in an ultrapower construction on
the set of natural numbers ([1] and [21]), where I is simply an equivalence class of
a sequence of finite sets. The cardinality of the set I in the usual sense is indeed
the cardinality of the continuum. This means that Xi, i ∈ I, is indeed a continuum
collection of stochastic processes.

For i ∈ I, let {F i
t}t∈T be a filtration on (Ω,F , P ). That is, it is a non-decreasing

family of sub-σ-algebras of F , and each of them contains all the P -null sets in F .
The stochastic process Xi is said to be {F i

t}t∈T -adapted if the random variable
Xi

t := X(i, ·, t) is F i
t -measurable for all t ∈ T . The Xi is said to be an {F i

t}t∈T -
martingale if it is {F i

t}t∈T -adapted and

E
(
Xi

t |F i
s

)
= Xi

s, s, t ∈ T, s ≤ t.

For more details on martingales, the reader is referred to [7] and [9].
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Let {F̃ i
t}t∈T be the natural filtration generated by the stochastic process Xi as

follows:
F̃ i

t := σ({Xi
s : s ∈ T, s ≤ t}), t ∈ T,

where σ({X(i, ·, s) : s ∈ T, s ≤ t}) is the smallest σ-algebra containing all the P -
null sets and with respect to F in which the random variables {Xi

s : s ∈ T, s ≤ t}
are measurable.

Now, for ω ∈ Ω, let {Gω
t }t∈T be the natural filtration generated by the empirical

process Xω, i.e.,
Gω

t := σ({Xω
s : s ∈ T, s ≤ t}), t ∈ T,

where Xω
s := X(·, ω, s). It is obvious that the empirical process Xω is {Gω

t }-
adapted.

Note that X can be viewed as a stochastic process itself with the time parameter
space T and the sample space (I×Ω, I�F , λ�P ). It thus also generates a natural
filtration on the Loeb product space, which is denoted by

Ht := σ({Xs : s ∈ T, s ≤ t}), t ∈ T,

where Xs := X(·, ·, s). Of course, {Xt}t∈T is {Ht}t∈T -adapted.
It is clear that martingales with respect to the above three natural filtrations can

be defined as in the case of {F i
t}t∈T . In the next section, we present two theorems

on the martingale property of the empirical processes Xω.

3. The main results

Before stating the first main result, we need the following definition on the
independence of stochastic processes.

Definition 3.1. (1) Two real-valued stochastic processes ϕ and ψ on the same
sample space with time parameter space T are said to be independent, if, for any
positive integers m, n, and for any t11, · · · , t1m in T and t21, · · · , t2n in T , the random
vectors (ϕt11

, · · · , ϕt1m
) and (ψt21

, · · · , ψt2n
) are independent.

(2) We say that the stochastic processes {Xi, i ∈ I} are essentially independent
if, for λ � λ-almost all (i1, i2) ∈ I × I, the stochastic processes Xi1 and Xi2 are
independent.

Note that the essential independence of the stochastic processes {Xi, i ∈ I}
as defined above only uses pairwise independence. Though pairwise independence
and mutual independence are quite different for a countable collection of random
variables (the first being, in general, weaker than the second, [13], p. 126), they
are essentially equivalent for a continuum collection of random variables/stochastic
processes (see Theorem 3 and Remark 4.16 in [25]). We also note that if, for
all (i1, i2) ∈ I × I with i1 �= i2, Xi1 and Xi2 are independent, then the non-
atomic property of λ implies that the stochastic processes {Xi, i ∈ I} are essentially
independent.

We are now ready to state the first main result of this paper. It says that for a
large collection of essentially independent martingales, the martingale property is
essentially preserved on the empirical processes.

Theorem 3.2. Assume that the stochastic processes {Xi, i ∈ I} are essentially
independent. If, for λ-almost all i ∈ I, the stochastic process Xi is an {F i

t}t∈T -
martingale on (Ω,F , P ), then, for P -almost all ω ∈ Ω, the empirical process Xω is
a {Gω

t }t∈T -martingale on (I, I, λ).
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To state the next theorem, we need the following definition.

Definition 3.3. (1) Two real-valued stochastic processes ϕ and ψ on some (pos-
sibly different) sample spaces with time parameter space T are said to have the
same finite-dimensional distributions if, for any t1, · · · , tn ∈ T , the random vectors
(ϕt1 , · · · , ϕtn

) and (ψt1 , · · · , ψtn
) have the same distribution.

(2) We say that the stochastic processes {Xi, i ∈ I} have essentially the same
finite-dimensional distributions if there is a real-valued stochastic process Y with
time parameter space T such that for λ-almost all i ∈ I, the stochastic processes
Xi and Y have the same finite-dimensional distributions.

Under the assumptions of essential independence and essentially identical finite-
dimensional distributions, the next main result of this paper shows that a large
collection of stochastic processes are essentially martingales with respect to the
natural filtration if and only if the empirical processes are also essentially martin-
gales.

Theorem 3.4. Assume that the stochastic processes {Xi, i ∈ I} are essentially
independent and have essentially the same finite-dimensional distributions. Then,
the following are equivalent:

(1) For λ-almost all i ∈ I, the stochastic process Xi is an {F̃ i
t}t∈T -martingale

on (Ω,F , P ).
(2) For P -almost all ω ∈ Ω, the empirical process Xω is a {Gω

t }t∈T -martingale
on (I, I, λ).

4. Proof of the main results

This section is divided into three subsections. The first subsection provides a
proof of Theorem 3.2 in the case of discrete time, while the second subsection
considers the case of continuous time. The proof of Theorem 3.4 is given in the last
subsection.

4.1. Proof of Theorem 3.2 with discrete time.

Proposition 4.1. Theorem 3.2 holds for T = Z+.

Proof. As in the proof of Theorem 5.8 in [24], we define an R
∞-valued process g

on I × Ω by letting g(i, ω) = {X(i, ω, n)}∞n=1. Then it is clear that the essential
independence of the real-valued discrete parameter stochastic processes {Xi, i ∈
I} is equivalent to the essential independence of the R

∞-valued random variables
{gi, i ∈ I}. Note that R

∞ can be given a complete metric compatible with the
product topology.

By the exact law of large numbers in [24] (which is included in this paper as
Proposition 6.1 in the appendix), there exists a set A ∈ F with P (A) = 1 such that
for any ω ∈ A, the distribution µω on R

∞ induced by the sample function gω on I
is equal to the distribution µ on R

∞ induced by g viewed as a random variable on
I × Ω.

Now let k, m be any positive integers with k < m, and let h be any bounded
Borel function from R

k to R. Define a Borel function H from R
∞ to R by setting

H({xn}∞n=1) = h(x1, . . . , xk) · (xm − xk). Then, it is clear that

H(g)(i, ω) = h (X(i, ω, 1), . . . , X(i, ω, k)) [X(i, ω, m) − X(i, ω, k)] .
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Since h is a bounded Borel function, H(g) is thus integrable on (I×Ω, I�F , λ�P ).
It is obvious that

H(gω)(i) = h(Xω
1 (i), . . . , Xω

k (i)) [Xω
m(i) − Xω

k (i)] .

For any ω ∈ A, we thus obtain∫
I×Ω

H(g)(i, ω)dλ � P (i, ω) =
∫

R∞
Hdµ =

∫
R∞

Hdµω =
∫

I

H(gω)dλ(i).

This means that∫
I

h(Xω
1 (i), . . . , Xω

k (i)) [Xω
m(i) − Xω

k (i)] dλ

=
∫

I×Ω

h (X1(i, ω), . . . , Xk(i, ω)) [Xm(i, ω) − Xk(i, ω)] dλ � P.(1)

Next, since Xi is an {F i
t}t∈T -martingale for λ-almost all i ∈ I, we have, for

λ-almost all i ∈ I, EP

([
Xi

m − Xi
k

]
|F i

k

)
= 0 for all positive integers k < m. Since

Xi
1, . . . , X

i
k are all F i

k-measurable, we have, for λ-almost all i ∈ I,

(2) EP

(
h

(
Xi

1(ω), . . . , Xi
k(ω)

) [
Xi

m − Xi
k

]
|F i

k

)
= 0.

Thus, for λ-almost all i ∈ I,

(3)
∫

Ω

h
(
Xi

1(ω), . . . , Xi
k(ω)

) [
Xi

m − Xi
k

]
dP (ω) = 0.

By taking the integration on I on both sides and by using Keisler’s Fubini Theorem
(which is included in this paper as Proposition 2.1), we obtain

(4)
∫

I×Ω

h (X1(i, ω), . . . , Xk(i, ω)) [Xm(i, ω) − Xk(i, ω)] dλ � P = 0.

By (1), we know that, for any ω ∈ A,

(5)
∫

I

h (Xω
1 (i), . . . , Xω

k (i)) [Xω
m(i) − Xω

k (i)] dλ = 0

holds for any positive integers with k < m, and for any bounded Borel function h
from R

k to R. Since (Xω
1 , . . . , Xω

k ) generates Gω
k (with the addition of the λ-null

sets in I), the arbitrary choice of h implies

(6) Eλ ([Xω
m − Xω

k ] |Gω
k ) = 0.

Hence, we know that the empirical process Xω is a {Gω
t }t∈T -martingale on (I, I, λ)

for P -almost all ω ∈ Ω. �

4.2. Proof of Theorem 3.2 with continuous time. For the case where T is an
interval (starting from 0) in R+, we remark that even if T = R+, the martingale
property we want to check only depends upon the closed time interval [0, t] for
t ∈ R+. Thus, without loss of generality, we assume that T = [0, 1]. Before
proceeding further, let us present some auxiliary results.

The following lemma is a version of Hoover and Keisler’s lemma (see [15], p. 172,
and [17], which is also stated as Lemma 8.1 in [24]) in a way convenient for our
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present situation. It suffices to take Λ = I ×Ω, the separable metric space to be R,
and to denote the composition φ ◦ ψ by ψ in the statement of Lemma 8.1 of [24].

Lemma 4.2. There is a sequence {tn}∞n=1 in [0, 1] and a Borel function ψ : R
∞ ×

[0, 1] → R, such that for any t ∈ [0, 1]

X(i, ω, t) = ψ({X(i, ω, tn)}∞n=1, t)

holds for λ � P -almost all (i, ω) ∈ I × Ω.

Now we have the following.

Proposition 4.3. Theorem 3.2 is true for T = [0, 1].

Proof. We follow the same idea as in the proof of Proposition 4.1.
Define an R

∞-valued process Y on I × Ω by setting

Y (i, ω) = {X(i, ω, tn)}∞n=1.

Thus, Lemma 4.2 says that for any t ∈ [0, 1], X(i, ω, t) = ψ(Y (i, ω), t) holds for
λ � P -almost all (i, ω) ∈ I × Ω.

First, the almost independence of the real-valued stochastic processes {Xi, i ∈ I}
implies the almost independence of the R

∞-valued random variables {Yi, i ∈ I}.
By the exact law of large numbers in [24] (see Proposition 6.1 in the Appendix),
there exists a set B ∈ F with P (B) = 1 such that for any ω ∈ B, the distribution
νω on R

∞ induced by the sample function Yω on I is equal to the distribution ν on
R

∞ induced by Y viewed as a random variable on I × Ω.
Now let s, t be any numbers in [0, 1] with s < t, {rm}∞m=1 any sequence in the

interval [0, s], and let f be any bounded Borel function from R
∞ to R. Define a

Borel function F from R
∞ to R by setting

F (x) = f ({ψ(x, rm)}∞m=1) [ψ(x, t) − ψ(x, s)]

for each x = {xk}∞k=1 ∈ R
∞. Then, it is clear that

F (Y )(i, ω) = f ({ψ(Y (i, ω), rm)}∞m=1) [ψ(Y (i, ω), t) − ψ(Y (i, ω), s)]
= f ({Xrm

(i, ω)}∞m=1) [Xt(i, ω) − Xs(i, ω)] .

Since f is a bounded Borel function, F (Y ) is thus integrable on (I×Ω, I�F , λ�P ).
It is obvious that

F (Yω)(i) = f
(
{Xω

rm
(i)}∞m=1

)
[Xω

t (i) − Xω
s (i)] .

For any ω ∈ B, we thus obtain∫
I×Ω

F (Y )(i, ω)dλ � P (i, ω) =
∫

R∞
Fdν =

∫
R∞

Fdνω =
∫

I

F (Yω)dλ(i).

This means that∫
I

f
(
{Xω

rm
(i)}∞m=1

)
[Xω

t (i) − Xω
s (i)] dλ

=
∫

I×Ω

f ({Xrm
(i, ω)}∞m=1) [Xt(i, ω) − Xs(i, ω)] dλ � P.(7)

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



524 SERGIO ALBEVERIO, YENENG SUN, AND JIANG-LUN WU

Next, since Xi is an {F i
t}t∈T -martingale for λ-almost all i ∈ I, we have, for

λ-almost all i ∈ I, EP

([
Xi

t − Xi
s

]
|F i

s

)
= 0 for all s, t ∈ [0, 1] with s < t. For

λ-almost all i ∈ I, the F i
s-measurability of f

(
{Xi

rm
(·)}∞m=1

)
implies

(8) EP

(
f

(
{Xi

rm
(·)}∞m=1

) [
Xi

t(·) − Xi
s(·)

]
|F i

s

)
= 0.

Thus, for λ-almost all i ∈ I,

(9)
∫

Ω

f
(
{Xi

rm
(ω)}∞m=1

) [
Xi

t(ω) − Xi
s(ω)

]
dP (ω) = 0.

By taking the integration on I on both sides and by using Keisler’s Fubini Theorem
(Proposition 2.1), we obtain

(10)
∫

I×Ω

f ({Xrm
(i, ω)}∞m=1)

[
Xi

t − Xi
s

]
dλ � P = 0.

By (7), we know that, for any ω ∈ B,

(11)
∫

I

f
(
{Xω

rm
(i)}∞m=1

)
[Xω

t (i) − Xω
s (i)] dλ = 0

holds for any s, t ∈ [0, 1] with s < t, any sequence {rm}∞m=1 in the interval [0, s],
and for any bounded Borel function f from R

∞ to R. Since Gω
s = σ({X(·, ω, r) :

r ≤ s, r ∈ [0, 1]}), it is easy to verify that

Gω
s =

⋃
{rm}∞

m=1∈[0,s]∞

σ({X(·, ω, rm) : 1 ≤ m ≤ ∞}),

which simply means that for any C ∈ Gω
s , there is {rm}∞m=1 in [0, s]∞ such that

C ∈ σ({X(·, ω, rm) : 1 ≤ m ≤ ∞}). This fact together with (11) implies that for
any s, t ∈ [0, 1] with s < t,

(12) Eλ ([Xω
t − Xω

s ] |Gω
s ) = 0.

Hence, we know that the empirical process Xω is a {Gω
t }t∈T -martingale on (I, I, λ)

for P -almost all ω ∈ Ω. �

4.3. Proof of Theorem 3.4. We are now ready to prove Theorem 3.4.

Proof. (1) =⇒ (2) is already covered by Theorem 3.2. We only need to show (2) =⇒
(1). Assume that for P -almost all ω ∈ Ω, the empirical process Xω is a {Gω

t }t∈T -
martingale on (I, I, λ). We need to show that for λ-almost all i ∈ I, the stochastic
process Xi is an {F̃ i

t}t∈T -martingale on (Ω,F , P ).
Since the stochastic processes {Xi, i ∈ I} are essentially independent and have

essentially the same finite-dimensional distributions, the duality result in Theorem
8.12 of [24] (which is included in this paper as Proposition 6.2 in the Appendix)
implies that the empirical processes {Xω, ω ∈ Ω} are also essentially independent.
Since the empirical process Xω is also assumed to be a {Gω

t }t∈T -martingale for
P -almost all ω ∈ Ω, we can use Theorem 3.2 to conclude that for λ-almost all i ∈ I,
the stochastic process Xi is an {F̃ i

t}t∈T -martingale on (Ω,F , P ) by exchanging the
notations of the two variables i and ω. �
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5. Extensions

It is easy to generalize Theorems 3.2 and 3.4 to the cases of submartingales and
supermartingales. One can simply prove the corresponding results for submartin-
gales and supermartingales by replacing the equalities in Equations 2 - 6 and 8 -
12 with suitable inequalities in the proofs of Propositions 4.1 and 4.3. The proof of
Theorem 3.4 also works for the new cases. Thus, we state the following two results
without proofs.

Proposition 5.1. Assume that the stochastic processes {Xi, i ∈ I} are essentially
independent. If, for λ-almost all i ∈ I, the stochastic process Xi is an {F i

t}t∈T -
submartingale (supermartingale) on (Ω,F , P ), then, for P -almost all ω ∈ Ω, the
empirical process Xω is a {Gω

t }t∈T -submartingale (supermartingale) on (I, I, λ).

Proposition 5.2. Assume that the stochastic processes {Xi, i ∈ I} are essentially
independent and have essentially the same finite-dimensional distributions. Then,
the following are equivalent:

(1) For λ-almost all i ∈ I, the stochastic process Xi is an {F̃ i
t}t∈T -submartingale

(supermartingale) on (Ω,F , P ).
(2) For P -almost all ω ∈ Ω, the empirical process Xω is a {Gω

t }t∈T -submartingale
(supermartingale) on (I, I, λ).

Based on the proof of Theorem 3.2 (especially, (2)-(4) and (8)-(10), the following
remark is obvious.

Remark 5.3. If the stochastic process Xi is an {F i
t}t∈T -martingale (submartin-

gale or supermartingale) on (Ω,F , P ) for λ-almost all i ∈ I, then the stochastic
process {Xt}t∈T is an {Ht}t∈T -martingale (submartingale or supermartingale) on
(I×Ω, I�F , λ�P ). That is, the essential independence of the stochastic processes
{Xi, i ∈ I} is not required to claim the martingale (submartingale or supermartin-
gale) property for {Xt}t∈T with the natural filtration {Ht}t∈T .

6. Appendix

For the convenience of the reader, we include in this Appendix the statements of
two results in [24], which are used crucially in the proofs of Theorems 3.2 and 3.4.

The following is an exact law of large numbers for a continuum of essentially
independent random variables, which can be found in Theorem 5.2 in [24] (also see
Proposition 3.1 in [25]).

Proposition 6.1. Let g be a process from the Loeb product space (I × Ω,
I � F , λ � P ) to a separable metric space S. If the random variables gi := f(i, ·)
are essentially independent, i.e., for λ � λ-almost all (i1, i2) ∈ I × I, gi1 and gi2

are independent, then, for P -almost all ω ∈ Ω, the distribution µω on S induced by
the sample functions gω := f(·, ω) on I equals the distribution µ on S induced by g
viewed as a random variable on I × Ω.

Let {Xi, i ∈ I} be the family of stochastic processes as introduced in Section 2.
The next result shows a duality between the stochastic processes {Xi, i ∈ I} and
the empirical processes {Xω, ω ∈ Ω}. The case of continuous time is Theorem 8.12
in [24], while the discrete time case follows trivially from Theorem 7.16, as noted
in Remark 5.9 in [24].
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Proposition 6.2. The stochastic processes {Xi, i ∈ I} are essentially independent
and have essentially the same finite-dimensional distributions if and only if so are
the empirical processes {Xω, ω ∈ Ω}.

Acknowledgments

This work was initiated in June 2000 when Yeneng Sun visited the University
of Bonn. Part of this work was done when Jiang-Lun Wu visited the Department
of Mathematics, National University of Singapore in August-September 2001, and
the Institute for Mathematical Sciences (IMS), National University of Singapore
in March-April 2003. Wu’s visits were supported by the IMS and the National
University of Singapore.

References

1. S. Albeverio, J. E. Fenstad, R. Høegh-Krohn and T. Lindstrøm, Nonstandard methods
in stochastic analysis and mathematical physics. Academic Press, Orlando, Florida, 1986.
MR0859372 (88f:03061)

2. R. M. Anderson, A nonstandard representation of Brownian motion and Itô-integration. Israel
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