
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in :

Advances in Visual Computing

                                          

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa33

_____________________________________________________________

 
Book chapter :

Lipsa, D., Bergeron, R., Sparr, T. & Laramee, R. (2009).  Dynamic Chunking for Out-of-Core Volume Visualization

Applications. Advances in Visual Computing, (pp. 117 Springer.

http://dx.doi.org/10.1007/978-3-642-10520-3_11

 

 

 

 

 

 

 

 

_____________________________________________________________
  
This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository. 

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 

http://cronfa.swan.ac.uk/Record/cronfa33
http://dx.doi.org/10.1007/978-3-642-10520-3_11
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 


 

Dynamic Chunking for Out-of-Core Volume

Visualization Applications

Dan R. Lipsa1, R. Daniel Bergeron2, Ted M. Sparr2, and Robert S. Laramee3

1 Armstrong Atlantic State University, Savannah GA 31411, USA,
2 University of New Hampshire, Durham, NH 03824, USA

3 Swansea University, Swansea SA2 8PP, Wales, United Kingdom

Abstract. Given the size of today’s data, out-of-core visualization tech-
niques are increasingly important in many domains of scientific research.
In earlier work a technique called dynamic chunking [1] was proposed that
can provide significant performance improvements for an out-of-core, ar-
bitrary direction slicer application. In this work we validate dynamic
chunking for several common data access patterns used in volume visu-
alization applications. We propose optimizations that take advantage of
extra knowledge about how data is accessed or knowledge about the be-
havior of previous iterations and can significantly improve performance.
We present experimental results that show that dynamic chunking has
performance close to regular chunking but has the added advantage that
no reorganization of data is required. Dynamic chunking with the pro-
posed optimizations can be significantly faster on average than chunking
for certain common data access patterns.

1 Introduction

Disk drive size and processor speed have increased significantly in the last couple
of years. This enables scientists to generate ever larger simulation data and to
acquire and store ever larger real world data. While visualization is one of the
most effective techniques to analyze these large data sets, visualization usually
requires loading the entire data into the main memory. Often, this is impossible
given the size of data. This problem has led to a renewed interest in out-of-core
visualization techniques, which execute the visualization by loading only a small
part of the data into the main memory at any given time.

While multidimensional arrays are usually stored in a file using linear storage,
a common way of improving access to them is to reorganize the file to use chunked

storage. That happens when data is split in chunks (cubes or bricks) of equal
size and the same dimensionality as the original volume, and each individual
chunk is stored contiguously in the file using linear storage. Chunks are stored
in the file in linear fashion by traversing the axes of the volume in a certain order
using nested loops. The order of traversing the axes and the size of the chunks
is determined by the expected access pattern. However, chunked file storage
typically results in better file system performance (compared to linear storage)
even when the access pattern does not match the “expected” one.



2 Dan R. Lipsa et al.

Dynamic chunking views a dataset stored using linear storage as if it were
chunked into blocks of configurable size and shape. As soon as an item in any
block is accessed, the entire block is read. Loading a block in memory may require
many read operations.

Previously, dynamic chunking was described in the context of a slicer visual-
ization application [1] and it was shown that it provides some of the benefits of
file chunking without having to reorganize or maintain multiple copies of the file.
In this paper we extend this work to apply to an arbitrary direction slicer and
to ray casting. We propose an optimization that can take advantage of further
knowledge about the iteration pattern and significantly improve performance.
We propose an optimization that can take advantage of knowledge about the
behavior of previous iterations to improve performance. We show that dynamic
chunking has performance close to that of regular chunking without the need to
reorganize the data, and it can be significantly faster in the average with the
proposed optimizations.

2 Related Work

The field of out-of-core visualization has a large body of work. Engel et al. [2]
present techniques used to render large data on the GPU while Silva et al. [3]
present a survey of external memory techniques. In this section we summarize
work that is most closely related to ours.

Chunking and related techniques. Sarawagi et al. [4] introduced chunk-
ing as a way to improve access to multidimensional arrays stored in files. Many
other techniques use chunks as a unit of storage for data [5] or as a unit of com-
munication between a server that contains the data and clients that visualize
the data [6]. A technique similar with chunking but applied to irregular grids is
the meta-cell technique [7, 8, 9]. Meta-cells contain several spatially close cells,
have fixed size (several disk blocks) and are loaded from disk as a unit which
enables them to be stored in a space saving format.

Pascucci and Frank [10] describe a scheme to reorganizes regular grid data in
a way that leads to efficient disk access and enables extracting multiple resolution
versions of the data.

While chunking is very effective and widely used, it has the disadvantage that
data needs to be reorganized using chunked storage. Dynamic chunking works
directly with a linear storage file, so no reorganization is required. While reading
a dynamic chunk from a linear storage file is less efficient than reading a chunk
from a chunked file, dynamic chunking can benefit from choosing the dynamic
chunk size based on the available memory and iteration parameters.

Caching and prefetching. Common ways to mediate the effect of slow I/O
are to use prefetching when the user is thinking what to do as in [11] or to use
a separate thread to overlap rendering with data I/O as in [12].

Brown et al. [13] use a compiler to analyze future access patterns in an
application and issue prefetch and release hints and use the operating system
to manage these requests for all applications. Rhodes et al. [14] use information



Lecture Notes in Computer Science 3

on disk
data

Chunking
DynamicApplication

Datasource

Datasource

Fig. 1. The Dynamic Chunking module provides the same interface as the Datasource
module. This allows for easy integration into an application.

about the access pattern provided by an iterator object to calculate a cache block
shape that reduces the number of reads from the file. Chisnall et al. [15] use data
inferred from previous accesses to an out-of-core octree, to improve out-of-core
rendering of a point dataset using discrete ray tracing.

Cox et al. [16] speed up out-of-core visualization of Computational Fluid
Dynamics using application controlled demand paging. This works similarly with
memory mapped files but with the additional advantage that the application
can specify the page size and it can translate from an external storage format.
Dynamic chunking differs from this work in how we decide which data is chosen
to be prefetched and cached. The dynamic chunking module prefetches blocks
with the same dimensionality as the data, regardless of where that data is stored
on disk. Multiple application-level read operations are required to load such a
block, but most of those reads would have occurred eventually anyway.

3 Dynamic Chunking Validation

We use dynamic chunking [1] to speed-up out-of-core execution for two visu-
alization applications using four different data access patterns. One pattern is
implemented in an arbitrary direction slicer application that reads slices from
a volume of data and composes them to build a maximum intensity projection
(MIP) [2] representation of the volume. A ray casting application supports three
different access patterns: it reads individual voxels, blocks of size 23 voxels and
blocks of size 43 voxels along rays and builds either a MIP representation or a
volume rendering [17] representation of the volume.

Our applications access 3D data through the Granite library [14] datasource
which hides the location of data from its users. Our applications can access data
from main memory or from disk without any change in the source code. A data-
source is conceptually an n-dimensional volume of voxels where each voxel can
store one or more attributes. Our dynamic chunking module uses a datasource
to read data from disk and the module, together with the datasource it reads
from, is encapsulated behind a datasource interface as showed in Figure 1.

This enables us to switch between accessing data from main memory, ac-
cessing data from disk and accessing data from disk through dynamic chunking
without changing the application source code or the data representation. An
application could easily be converted to use dynamic chunking by using a data-
source for all data accesses.



4 Dan R. Lipsa et al.

Lipsa et al. [1] describe dynamic chunking in detail. We summarize the the
main idea here. We view the entire volume as composed of blocks of configurable
size and shape and we create a block table that stores a reference to each of
these blocks. Each reference can point to a block from the volume which has the
same number of dimensions as the original volume or it can be nil. Loading a
block is done on demand, as soon as any element from the block is needed. We
use the Least Recently Used (LRU) block replacement algorithm to maintain
cache relevance. We apply dynamic chunking to regular grid data stored using
conventional linear storage. We use dynamic chunking to speed up out-of-core
execution for two visualization applications: a slicer application and a ray casting
application.

Slicer application. The slicer application builds a MIP representation of
a subvolume by using a slice iterator. This iterator allows a user to specify a
subvolume of the data and a vector which represents a plane normal. We move
the plane along its normal, using a unit step, for as many iterations as the plane
touches the subvolume. At every step, we determine the voxels in the inter-
section of the subvolume and the plane. This intersection polygon is computed
using a 3D scan-conversion algorithm for polygons [18]. We use nearest-neighbor
interpolation to determine voxels that form the intersection polygon. We read
them from the file and we store them as a texture. Textures are composed using
graphics hardware to obtain a final image which is the MIP representation of the
volume viewed from the direction specified by the vector normal to the plane.

Ray casting application. We implemented a ray casting application and
used it to generate a MIP image or a volume rendering [17] representation of a
subvolume. The subvolume is an arbitrarily oriented cuboid (rectangular paral-
lelepiped) subset of the entire dataset. The ray casting application accesses the
data file by reading equally spaced voxels along each ray such that the distance
between any of these voxels is equal to the distance between two voxels.

For the MIP image we use either nearest neighbor interpolation or trilinear
interpolation to determine data values along the ray. These three possibilities:
MIP with nearest neighbor interpolation, MIP with trilinear interpolation and
volume rendering require three different access patterns through the data file:
reading voxels, reading blocks of size 23 voxels and reading blocks of size 43 voxels
along each ray. For each of the three access patterns, the distance between two
sample points along a ray is the same as the distance between two neighboring
voxels. The resolution of the image produced is determined by the resolution of
the data, for instance a volume of size 2563 voxels will produce an image of size
2562 pixels.

Volume rendering [17] is implemented by compositing the color and opacity
of equally spaced points along a viewing ray. For each point along a ray we read
a 43 block of voxels from the data file, which is used to calculate the color and
opacity at the current position in the ray.

While the slicer and the ray casting applications do not load into the main
memory the visualized subvolume, they cache blocks of data through the dy-
namic chunking module. Denning [19] defines the working set of a program as



Lecture Notes in Computer Science 5

“the smallest collection of information that must be present in main memory to
assure efficient execution” of the program. For the slicer application, the working
set consists of all blocks that cover the current slice in an iteration. For the ray
casting application, the working set consists of all blocks that completely enclose
all ray segments along one rectangular side of the iteration cuboid.

4 Dynamic Chunking Optimizations

Dynamic chunking is a general technique because it does not know about a
particular data access pattern the application may want to use. If the application
makes this information known, or if the module can infer this information, further
optimizations can be applied that can improve performance.

These optimizations are based on the observation that a larger block size
results in better performance for dynamic chunking because of larger reads from
disk. At the same time, increasing the block size results in a larger cache memory
required to store the working set of the application and a block size too large can
result in cache thrashing. Our goal is to find the maximum block size that allows
us to store the working set of the application in the available physical memory.
Our optimizations work when the iteration subvolume is aligned with the princi-
pal axes. If the iteration subvolume is not aligned with the principal axes, larger
cache blocks result in reading more data that is not used by the application. In
this case increasing the cache blocks size may not increase performance of the
iteration.

We present two block size optimizations: analytical and adaptive. The an-
alytical optimization uses information provided by the application to calculate
the optimal block size for certain iteration patterns while the adaptive optimiza-
tion uses information gathered from previous iterations to optimize the block
size used by the dynamic chunking module.

Analytical block size optimization. We present an algorithm that finds
the maximum block size for the dynamic chunking module such that we can
store all blocks that cover a slice in memory. While our algorithm works with
either a slicing application or a ray casting application for which the iteration
subvolume is aligned with the principal axes, the iteration direction and the view
is arbitrary.

For simplicity we present our algorithm in 2D, but the same reasoning can
be applied in 3D. A slicing application provides two extra parameters to the
dynamic chunking module: the iteration subvolume and the orientation of the
iteration slice. Our module then calculates the maximum block size that can be
used by the dynamic chunking module that avoids cache thrashing.

Suppose that the iteration area (see Figure 2) has an edge size of l and that
the iteration area is partitioned by the dynamic chunking module into n × n

squares. Suppose that the angle between the iteration line and the horizontal
axis is α and that the amount of available memory is M . We want to minimize
n (this in turn will maximize the square size) such that the working set of the
application (the squares that cover the iteration line) still fits in the amount of



6 Dan R. Lipsa et al.

l

Y

X

C

BA

D

O

N

iteration line

α

~n

Fig. 2. An area with edge length l partitioned in n
2 squares where n = 4. The inter-

section between square ABCD and the iteration line can be determined by looking at
the projections of the corners of the square on the normal to the iteration line.

available memory M . We can assume that α is between 0◦ and 45◦; all other
angles can be treated similarly through symmetry.

We denote with IB the maximum number of squares intersected by the iter-
ation line as it traverses the whole subvolume. Note that the number of squares
intersected by the iteration line in Figure 2 varies through the iteration. It starts
with one square at the beginning of the iteration, then it increases and then it
decreases back to one square at the end of the iteration. We denote with MB

the size (area) of a square where MB(n) = l2

n2 . Our goal is to find the maximum
square size, or equivalently to find the minimum n, such that all squares inter-
sected by the iteration line can be stored in the available memory M . That can
be done by using a for loop that starts with n = 1 and tests at each iteration if
IB ∗MB < M . If the test is true, then we have found n and, in turn, the square
size; if it is not true, we continue by doubling n (which means that we decrease
the square size by a factor of 4) until a minimum square size when we give up.
In that case we do not have enough memory to optimize the execution of the
application through dynamic chunking.

So, the only problem left is to find IB the maximum number of squares
intersected by the iteration line as it traverses the subvolume. We start by looking
at the intersection between the iteration line and a square from the partition of
the subvolume. We can deduce that an iteration line sliding along its normal n

(which corresponds to angle α ∈ [0, 45] degrees) intersects the square with the
left-lower corner at position (i, j) if

d ∈ (
l

n
(nx(i + 1) + nyj),

l

n
(nxi + ny(j + 1)))

where d is the distance from the origin to the line d = ‖ON‖, n is the number
of squares per edge of the iteration area, l is the iteration area edge size, nx and



Lecture Notes in Computer Science 7

ny are the components of the normal to the iteration line n. A similar result can
be deduced in 3D.

For each of the n3 blocks, we have an interval that gives us the position of the
slice that intersects the block. Overlapping intervals give us positions of the slice
that intersects several blocks. We can find the maximum number of overlapping
intervals by creating a sorted list with the left and right ends of all intervals. We
initialize IB , the maximum number of blocks intersected by the slice, to 0. We
traverse the sorted list of interval ends and we execute the following: if we see a
left end of an interval we increment IB , if we see a right end of an interval we
decrement IB . While we do that we keep track of the maximum value for IB .
That maximum value is the maximum number of blocks intersected by the slice
as it traverses the subvolume.

To overcome large time requirements (n3 log n) of this algorithm, especially
for partitions with more blocks than 643, we note that the maximum number of
blocks intersected by a slice depends only on the direction of iteration and on the
number of blocks in the partition of the subvolume, and it does not depend on
the data itself. In our implementation the maximum number of blocks intersected
by a slice are calculated and stored in the application for expected directions of
iteration and number of blocks in the partition of the subvolume.

Adaptive block size optimization. For iteration patterns for which the
working set is not a slice but a more complex shape, such as a part of a sphere,
or for applications that do not provide the required additional information, it is
not possible to analytically calculate the biggest block size that does not cause
cache thrashing for a certain memory size. In this case the dynamic chunking
module can learn from the behavior of past iterations and adjust the block size
for best performance.

The application provides a unique identifier for the iteration pattern used.
This identifier allows the dynamic chunking module to keep track of previous
iterations and decide if a certain block size worked well for a certain iteration and
memory size. The identifier differentiates between different working set shapes,
working set sizes and cache memory sizes.

The dynamic chunking module starts with a default block size, eventually
provided by the application. While the application executes an iteration, the
dynamic chunking module tests for cache thrashing by keeping track of the blocks
used. If a block is discarded, and then reused we conclude that the working set
does not fit in memory and so the cache is thrashed.

If an iteration thrashes the cache for a certain block size, the iteration is
restarted with a smaller block size that has half the edge size of the original
block. We continue this process until we complete an iteration without thrashing
or a minimum block size is reached. If the minimum block size is reached, we
have too little memory to use dynamic chunking. If we complete an iteration
without thrashing, the dynamic chunking module stores the block size for the
current identifier together with an optimal flag which signals that no other block
size besides the one stored will be tried for future iterations.



8 Dan R. Lipsa et al.

If an iteration completes without thrashing for a certain block size, the dy-
namic chunking module stores the block size for the current identifier. A future
iteration tries to use a larger block that has an edge size double the edge size of
the stored block, and if that completes without thrashing, the block size will be
stored for the current identifier. The process continues until a block size results
in cache thrashing, in which case the block size with edge size half the edge size
of the original block is stored for the current identifier together with the optimal

flag.

This algorithm results in progressively larger block sizes used for the dynamic
chunking module, which results in progressively better performance. If the initial
block size provided by the application does not result in thrashing, the only price
paid for this improved performance is one iteration that will thrash the cache,
which will be quickly detected by the fact that a block discarded is being reused.
If the initial block size provided by the application results in thrashing, several
iterations that result in thrashing are possible until a block size that does not
result in thrashing is found or the dynamic chunking module gives up. If a block
size that does not result in thrashing is found, that block size is optimal.

5 Results

To test the dynamic chunking module we traversed a subvolume of size 2563

voxels with three bytes per voxel (the subvolume has 48 MB) located inside a
data volume of size 1024x1216x2048 voxels (the data volume has 7.2GB) with
25 MB allocated to the dynamic chunking module for caching. The subvolume
is centered at (256, 256, 256) and we vary either the orientation of the slice for
the slicer application or the orientation of the subvolume for ray casting.

Our tests measure traversal time through the subvolume for 84 orienta-
tions specified by the following pairs of heading and pitch Euler angles [20]:
{0, 30, . . . , 330} × {−90,−60, . . . , 90}. We summarize all times required for a
traversal for all possible orientation angles using a box plot. For the ray casting
application, the orientation of the iteration cuboid uses a bank angle of 20 de-
grees. For the slicer application, the orientation of the normal to the slice can
be specified only using heading and pitch angles.

Dynamic chunking improves the time required to read data for various access
patterns used in visualization algorithms. Our tests measure only the time re-
quired to read the data when using the same access pattern as the visualization
application. Note that we set the Java Virtual Machine memory to 30MB (using
-Xms and -Xmx switches) and we set the cache memory to 25MB, both less than
the size of the subvolume traversed, so our visualization applications and our
tests run with data out-of-core.

Before each run of a traversal for a particular orientation, we clear the file
system cache by running a separate program called thrashcache. For the Linux
operating system, this program umounts and then mounts the file system that
contains the data.



Lecture Notes in Computer Science 9

0 50 100 150 200 250 300 350 400

SLICE DC

SLICE C

MIP_N DC

MIP_N C

MIP_T DC

MIP_T C

VOL DC

VOL C

time (s)

Fig. 3. Data read time for dynamic chunking (DC ) versus chunking (C ) optimizations
for four access patterns: slicing (SLICE), ray casting with nearest neighbor interpola-
tion (MIP N), ray casting with trilinear interpolation (MIP T), and volume rendering
(VOL).

In the graphs presenting our test results, we use acronyms for the data access
patterns tested: SLICE for the slicer application, MIP N for the ray casting
application that calculates a MIP image and uses nearest neighbor interpolation,
MIP T for the ray casting application that calculates a MIP image and uses
trilinear interpolation and VOL for volume rendering. We also use acronyms for
the optimization technique used when the test is run: DC for dynamic chunking,
C for chunking, FS for file system cache only.

Our test machine has a dual Intel Xeon at 3GHz processor, with 512KB
L2 cache and it has 1GB of RAM. The disk drive has rotational speed of 7200
RPM, it has 8.5 ms average seek time and 2 MB of cache. The machine is
running Fedora Core 5 GNU-Linux Operating System and Java 1.5.0. All our
applications are built in Java, using Java binding to OpenGL (JOGL) [21] for
rendering. This makes our application platform independent.

The results presented report only the time required to read the data, the time
needed for the actual visualization is not included in the results. This makes our
results relevant to any implementation of a visualization algorithm that accesses
data using one of the patterns tested.

Dynamic chunking versus chunking. Figure 3 displays the time to read
a 48MB subvolume from a 7.2GB chunked file and from a 7.2GB file with data
stored using linear storage. The box plots labeled C shows the time to read the
subvolume from a chunked file. The graphs labeled DC shows the time to read
the subvolume from a linear file using dynamic chunking with block size 163

voxels.

The file is chunked with chunks of size 163 voxels, the same as the size of
pages in the paging module. Paging over a chunked file works about 17% faster



10 Dan R. Lipsa et al.

than dynamic chunking over a linear file, but it requires reorganization of the
file. The big speed advantage that would be expected from chunking, is not seen
because of the file system and disk drive cache which are able to avoid many
actual hard drive operations. For example, when the dynamic chunking module
loads a block of size 163 voxels, from 16x16 read operations sent to the file system
many of them are served from the file system or hard drive cache.

Block size optimizations. To test the block size optimizations we ran the
same tests as before for the SLICE access pattern, but we turn on either the
analytical block size optimization or the adaptive block size optimization.

For the analytical optimization the block size used by the dynamic chunking
module is determined before the iteration based on the information provided
by the application (iteration subvolume and normal to the iteration plane), and
information determined from the system (the amount of available memory).
Figure 4 shows that we get about 25% better performance than chunking in the
average, while chunking is still better for certain traversal angles that match the
way chunks are stored in the file.

For testing the adaptive optimization we still use the SLICE access pattern
but we do not provide the extra information needed to calculate the best block
size for the given amount of cache memory. In this case, the block size used
by the dynamic chunking module is determined from knowledge gathered from
previous iterations. The graph for the adaptive block size optimization shows the
mean of ten iterations for each iteration angle. For iterations that are interrupted
because of cache thrashing we add the iteration time but we do not count the
iteration when we calculate the mean.

As an example, we present the sequence of block sizes used for iteration di-
rection (heading, pitch) = (0,-90), in the ten iterations tested. The first iteration
uses block size 163 (supplied by the application), and then the adaptive opti-
mization adjusts that to 323 and then 643. For block size 1283 cache thrashing
occurs which signals that the optimal block size is 643. Cache thrashing is quickly
detected from the fact that a block discarded is reused by the application. The
rest of 6 iterations are run with the optimal block size 643. Other iteration direc-
tions behave similarly the only difference being the block size where thrashing
occurs, which in turn determines the optimal block size.

6 Conclusions and Future Work

We have presented performance tests for dynamic chunking, a technique that
can speed-up common data iterations used in volume visualization algorithms.
Our test results show that dynamic chunking performs 5.3 times better than file
system cache alone and that by using dynamic chunking over a linear file yields
about 83% performance of that of paging over a chunked file.

We presented optimizations that can improve performance further if addi-
tional information is either provided by the application or infered by the dynamic
chunking module.



Lecture Notes in Computer Science 11

15 20 25 30 35 40 45 50

 DC, block size 16^3

 chunking, chunk size 16^3

 DC, analytical block size

 DC, adaptive block size

33.9

30.74

48.29

40.45

time (s)

Fig. 4. Data read time for traversing a 48MB subvolume from a 7.2GB volume with a
cache of 25MB. We test the SLICE iteration pattern for four optimizations: dynamic
chunking (DC) with fixed blocks of size 163 voxels, chunking with chunks of size 163

voxels, dynamic chunking with analytical block size optimization and dynamic chunking
with adaptive block size optimization. For adaptive block size optimization we show
the average of ten iterations.

In the future, we plan to explore other possible dynamic chunking optimiza-
tions that can be applied to different iterations and visualization applications.
We also plan to investigate different ways to get more information from the
application about the access pattern.

7 Acknowledgments

We would like to thank Radu G. Lipsa for a valuable discussion on the block
size optimization. This research was partially funded by the Welsh Institute of
Visual Computing (WIVC).

References

1. Lipsa, D.R., Rhodes, P.J., Bergeron, R.D., Sparr, T.M.: Spatial Prefetching for
Out-of-Core Visualization of Multidimensional Data. In: Proc. of SPIE, Visualiza-
tion and Data Analysis. Volume 6495–0G., San Jose, CA, USA (2007) 1–8

2. Engel, K., Hadwiger, M., Kniss, J.M., Lefohn, A.E., Salama, C.R., Weiskopf, D.:
Real-Time Volume Graphics, Course Notes. In: Proc. of ACM, SIGGRAPH, New
York, NY, USA, ACM Press (2004) 29

3. Silva, C., Chiang, Y., El-Sana, J., Lindstrom, P.: Out-of-Core Algorithms for
Scientific Visualization and Computer Graphics, Course Notes for Tutorial 4. In:
IEEE Visualization, Boston, MA, USA, IEEE Computer Society Washington, DC,
USA (2002)



12 Dan R. Lipsa et al.

4. Sarawagi, S., Stonebraker, M.: Efficient Organizations of Large Multidimensional
Arrays. In: Proc. of the Tenth International Conference on Data Engineering,
Washington, DC, USA, IEEE Computer Society (1994) 328–336

5. Chang, C., Kurc, T., Sussman, A., Saltz, J.: Optimizing Retrieval and Processing of
Multi-Dimensional Scientific Datasets. In: Proc. of the Third Merged IPPS/SPDP
Symposiums, IEEE Computer Society Press (2000)

6. Wetzel, A., Athey, B., Bookstein, F., Green, W., Ade, A.: Representation and
Performance Issues in Navigating Visible Human Datasets. In: Proc. Third Visible
Human Project Conference, NLM/NIH. (2000)

7. Chiang, Y.J., Silva, C.T., Schroeder, W.J.: Interactive Out-Of-Core Isosurface
Extraction. In: IEEE Visualization. Volume 0., Los Alamitos, CA, USA, IEEE
Computer Society (1998) 167–174

8. Chiang, Y.J., Farias, R., Silva, C.T., Wei, B.: A Unified Infrastructure for Parallel
Out-of-Core Isosurface Extraction and Volume Rendering of Unstructured Grids.
In: Proc. of the IEEE Symposium on Parallel and Large-Data Visualization and
Graphics, Piscataway, NJ, USA, IEEE Press (2001) 59–66

9. Farias, R., Silva, C.T.: Out-Of-Core Rendering of Large, Unstructured Grids. IEEE
Computer Graphics and Applications 21 (2001) 42–50

10. Pascucci, V., Frank, R.J.: Global Static Indexing for Real-Time Exploration of Very
Large Regular Grids. In: Supercomputing ’01: Proc. of the 2001 ACM/IEEE Con-
ference on Supercomputing (CDROM), New York, NY, USA, ACM Press (2001)
2–2

11. Doshi, P., Rundensteiner, E., Ward, M.: Prefetching for Visual Data Exploration.
Proc. Eighth International Conference on Database Systems for Advanced Appli-
cations 8 (2003) 195–202

12. J.Gao, J.Huang, Johnson, C., S.Atchley: Distributed Data Management for Large
Volume Visualization. In: IEEE Visualization. (2005)

13. Brown, A., Mowry, T.: Compiler-Based I/O Prefetching for Out-of-Core Applica-
tions. ACM Trans. on Computer Systems 19 (2001)

14. Rhodes, P.J., Tang, X., Bergeron, R.D., Sparr, T.M.: Iteration Aware Prefetching
for Large Multidimensional Scientific Datasets. In: SSDBM’2005: Proc. of the
17th International Conference on Scientific and Statistical Database Management,
Berkeley, CA, US, Lawrence Berkeley Laboratory (2005) 45–54

15. Chisnall, D., Chen, M., Hansen, C.: Knowledge-Based Out-of-Core Algorithms for
Data Management in Visualization. In: EUROVIS - Eurographics /IEEE VGTC
Symposium on Visualization. (2006) 107–114

16. Cox, M., Ellsworth, D.: Application-Controlled Demand Paging for Out-of-Core
Visualization. In: IEEE Visualization, Los Alamitos, CA, USA, IEEE Computer
Society Press (1997) 235–ff.

17. Levoy, M.: Display of Surfaces from Volume Data. IEEE Computer Graphics and
Applications 8 (1988) 29–37

18. Kaufman, A., Shimony, E.: 3D Scan-Conversion Algorithms for Voxel-Based
Graphics. In: SI3D ’86: Proc. of the 1986 Workshop on Interactive 3D Graph-
ics, New York, NY, USA, ACM Press (1987) 45–75

19. Denning, P.J.: The Working Set Model for Program Behavior. Commun. ACM 11

(1968) 323–333
20. Dunn, F., Parberry, I.: 3D Math Primer for Graphics and Game Development.

Wordware Publishing Inc (2002)
21. java.net: Java Bindings for OpenGL (JSR-231) (2008) online document, https:

//jogl.dev.java.net/.


