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SUMMARY  

Melanins (eumelanin and pheomelanin) are synthesised in insects for several purposes including 

cuticle sclerotisation and color patterning, clot formation, organogenesis and innate immunity. 

Traditional views of insect immunity detail the storage of pro-phenoloxidases inside specialized blood 

cells (hemocytes) and their release upon recognition of foreign bodies. Activated phenoloxidases 

convert monophenols into reactive quinones in a two-step enzymatic reaction, and until recently, the 

mechanism of tyrosine hydroxylation remained a mystery. Herein, we present our interpretations of 

these enzyme-substrate complexes. The resultant melanins are deposited onto the surface of microbes 

to immobilise, agglutinate and suffocate them. Phenoloxidase activity and melanin production are not 

limited to the blood (hemolymph) or cuticle, as recent evidence points to more diverse, sophisticated 

interactions in the gut and with the resident symbionts. This review offers insight into the somewhat 

neglected areas of insect melanogenesis research, particularly in innate immunity, its role in beneficial 
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insects such as pollinators, the functional versatility of phenoloxidases and the limitations of common 

experimental approaches that may impede progress inadvertently.  

  

Keywords: phenoloxidase; innate immunity; hemocytes; gut melanisation; molecular scaffolds 

 

Running title: Re-evaluation of insect melanogenesis research 

 

INTRODUCTION 

Pathogen challenge or trauma from abiotic factors (e.g. temperature shock, UV damage, 

overcrowding) trigger a highly distinctive feature of insect innate immunity: the recruitment of 

phenoloxidases (POs) to initiate the biogenesis of melanin. The subsequent blackening of insect blood 

(hemolymph), caused by the gross accumulation of melanic polymers, has been debated for many 

years due to its apparent inefficiency and toxicity to the host (reviewed by Cerenius et al., 2008; for 

an overview of insect immunity see Hillyer, 2016; Butt et al., 2016). Nevertheless, PO activities and 

melanin production are vital to many physiological processes, including cuticle sclerotisation 

(tanning) post ecdysis, hemostasis and wound repair, wing and eye pigmentation, as well as gut 

homeostasis.  

The insect cuticle is hardened for muscle attachment and made impervious to pathogens and parasites 

via the independent outputs of the sclerotinogenic and melanogenic pathways. At the cuticle, L-

tyrosine is converted into L-DOPA and dopamine via hydroxylase and decarboxylase activities, 

respectively (Figure 1). Either of these two catecholamines can undergo melanogenesis, whereas 

dopamine alone is metabolised independently by laccases (amongst other enzymes) into colorless 

(dehydro-N-acetyldopamine) and brown (dehydro-N-β-alanyldopamine) biopolymers used to ‘glue’ 

the newly formed cuticle together (Sugumaran and Semensi, 1991; Ricketts and Sugumaran, 1994; 

Sugumaran and Barek, 2016). Concurrently, L-tyrosine is converted directly into DOPAquinone via 

extracellular PO activity and ultimately produces black melanin (5,6-Dihydroxyindole; DHI) (Figure 

1). The quinone groups of melanin are cross-linked with existing proteins (e.g. sclerotin) in the 

terminal polymerisation step. Immunity-related melanogenesis is facilitated by soluble POs (o-

diphenoloxidase) in the hemolymph, whereas cuticular melanisation (i.e. sclerotisation) is performed 

by laccases (p-diphenoloxidase) (Arakane et al., 2005). The varied pigmentation patterns displayed by 

insects, and the underlying color palette available, are dependent on the presence of particular amino 

acids (e.g. tyrosine, aspartate, cysteine) and the plethora of enzymes involved in their processing 
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(reviewed by Kronforst et al., 2012). Color patterning is indispensible in crypsis (camouflage and 

mimicry), mate selection and recognition, aposematismatic warning signals, and even 

thermoregulation.   

The availability of sophisticated molecular and bioinformatics toolkits have enabled researchers to 

disentangle the complex relationships between POs, melanins and host defenses. Using such 

resources, we have interrogated the resolved crystal structures of the available insect PPOs and 

deduced that monophenol de-protonation by a conserved water molecule prior to hydroxylation and 

subsequent oxidation into quinone is a conserved mechanism across insects, plants and microbes. This 

review also highlights recent developments relating to the gut-melanin-symbiont axis and a division 

of labor between different POs. We additionally examine the importance of melanization in beneficial 

insects such as the beleagured honeybee, and re-visit evidence suggesting that POs form activation 

complexes and associate with molecular scaffolds (amyloids).   

 

1. STRUCTURE-FUNCTION DYNAMICS OF INSECT (PRO) PHENOLOXIDASES  

Insect proPhenoloxidases (PPOs) are metallated zymogens belonging to the family of type III copper 

proteins, which includes arthropod and mollusc hemocyanins, as well as microbial, vertebrate and 

plant oxidoreductases. Such proteins are identifiable by their distinct dicupric active sites (CuA and 

CuB) where each copper atom is supported by three highly conserved histidines residues, thus 

enabling the binding of oxygen as peroxide in a side-on bridging (μ–η2:η2) orientation (Solomon et al., 

2014). Insect phenoloxidases (POs) share high degrees of sequence homology with arthropod 

hemocyanins (up to 40%), whereas microbial, human and plant tyrosinases are more closely related to 

mollusc hemocyanins (Kawabata et al., 1995). Insect PPOs can be found as either homo-dimers such 

as PPO8 from Anopheles gambiae (Hu et al., 2016) or hetero-dimers (~160 kDa) such as PPO1/2 

(isozymes) from Manduca sexta and Bombyx mori (Li et al., 2009; Figure 2). Irrespective of the 

species’ origin, PO monomers (70–80 kDa) consist of three domains: (I) an N-terminal domain, (II) a 

central, α-helical domain housing the copper centre, and (III) a multi-stranded, antiparallel β-barrel 

(C-terminal) domain (Kanteev et al., 2015). A pro-region containing the proteolytic site for trypsin-

like serine proteases usually precedes the N-terminus of insect PPO (Figure 2). Serine proteases 

coordinate several insect defense responses (including antimicrobial peptide generation) and modulate 

the proPO activation cascade (Cerenius et al. 2010). Specific serine proteases, known as PPO-

activating proteins (PAPs), cut the polypeptide at the carboxyl end of arginine to yield active PO (see 

below). Human tyrosinase shares little homology with insect POs – an exception being the invariant 

histidine residues found in the hydrophobic pocket of a 4-alpha helix bundle. Instead of a pro-region, 

human tyrosinase has an N-terminal signal peptide and a transmembrane domain, which guide the 
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protein through the secretory pathway and to the cytosolic membrane of the melanosomes (Olivares 

and Solano, 2009).  

The term phenoloxidase (PO) is often used interchangeably across the literature and subsumes three 

distinct enzymes: tyrosinase (EC. 1.14.18.1), catecholoxidase (EC. 1.10.3.1) and laccase (EC 

1.10.3.2). Tyrosinase (TY) is responsible for the ortho-hydroxylation of monophenols (e.g. L-tyrosine) 

into ortho-diphenols (e.g. L-DOPA) and their subsequent two-electron oxidation to ortho-quinones 

(e.g. L-DOPAquinone), whereas catecholoxidase (CO) performs the second reaction only (Decker et 

al., 2007). DOPAquinone undergoes auto-catalysis to form DOPAchrome, followed by the auto-

polymerisation of 5,6-dihydroxyindole (DHI) into blackish-brown eumelanin. Notably, the presence 

and functional significance of sulfurous (yellow) pheomelanin in insects has been overlooked for 

some time (see Figure 3). Melanoid polymers are deposited directly onto the surface of microbes to 

immobilise, agglutinate and suffocate the cells. Simultaneously, a suite of antimicrobial oxidising 

(•OH, O2
-) and nitrosative (ONOO-) species are produced as by-products (Zhao et al., 2007). In 

humans, eumelanin is composed of 5,6-dihydroxyindole-2-carboxylic acid (DHICA) (Sugumaran et 

al., 1999; Sugumaran and Barek, 2016), which has not been detected in any insect studied to date. 

Whilst insect POs and human TYs are able to convert a broad range of L-isomers of phenolic 

substrates into melanoid products, information regarding the presence of D-isomers in insect 

hemolymph is lacking. That said, several studies report that PO and TY have a distinct preference for 

L-isomers (e.g. tyramine, dopamine, 4-methylcatechol) in vitro (Sugumaran and Semensi, 1991; 

Chang, 2009). 

In contrast to binuclear TY and CO, laccase uses both a mononuclear type I copper site and a 

trinuclear copper cluster to catalyse the single electron oxidation of ortho- and para- isomers of 

diphenols (reviewed by Dittmer and Kanost, 2010; Solomon et al., 2014). Therefore, laccase should 

be referred to as a multicopper oxidase (MCO) rather than a PO sensu stricto. Until recently, the 

reason behind the enzymatic discrimination between TY and CO was a mystery, compounded by their 

almost identical physio-chemical modalities in vitro (Solem et al., 2016). Interrogation of the resolved 

crystal structures of several type III copper proteins, namely Bacillus megaterium TY with L-DOPA 

and tyrosine bound (PDB-4P6S/4P6R; Goldfeder et al., 2014) and Vitis vinifera PO-g with tyrosol 

bound (PDB-2P3X; Solem et al., 2016), revealed that a conserved water (HOH) molecule appears to 

facilitate the ortho-hydroxylation of monophenols, supported by glutamate and asparagine (Kanteev et 

al., 2015). As L-tyrosine enters the dicopper centre and passes over the activated water molecule it is 

de-protonated into a phenolate intermediate, and the liberated hydrogen combines with water to form 

hydronium (H3O). Phenolate is then directed towards CuA where it interacts with the bound peroxide 

to form catecholate. Catecholate is oxidised and released as o-quinone alongside H2O. Using a series 

of V. vinifera PO mutants, Solem et al. (2016) confirmed that both glutamate and asparagine are 
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necessary for ortho-hydroxylase activity. If asparagine does not immediately follow H1 of CuB 

(Figure 4) or is mutated to glycine, then only diphenolase activity is possible.  

Previously, Li et al. (2009) suggested that glutamate-395 of M. sexta PPO2 served as a general base 

for de-protonation of monophenols due to its close proximity (~3 Å) to the placeholder residue, 

phenylalanine-88 (Figure 4). Upon PO activation, L-tyrosine would occupy the position of the 

displaced phenylalanine as it enters the active site to be turned over and released as a product.   

However, after careful re-evaluation of the PO crystal structures from M. sexta (PDB-3HHS) and A. 

gambiae (PDB-4YZW; Hu et al., 2016), we propose an alternative mechanism of insect PO activity in 

agreement with Goldfeder et al. (2014) and Solem et al. (2016). A conserved water molecule 

(HOH700) bound by glutamate-353 and asparagine-369 of M. sexta PO2 is responsible for removing 

hydrogen from the hydroxyl group of monophenols, and likewise, glutamate-364 and asparagine-380 

of A. gambiae PO8 (Figure 4). Furthermore, the key active site residues (E and N) are located in all 

insect POs surveyed here, including the single PO found in Apis mellifera. Conventional amino acid 

sequence alignments of human, mouse, insect, plant and microbial tyrosinases were not sufficient to 

reveal the importance of E and N within the copper active sites (data not shown). Only after 

performing structural alignments of the available crystal structures (and mapping of the residues) did 

the conserved positions and geometries of these critical amino acids in insect POs (and human 

tyrosinase) become apparent.  

Despite possessing homologous active sites, the structural hierarchy and heterogeneity of the various 

type III copper proteins present a variety of issues for substrate accessibility (Decker et al., 2007). The 

common denominator in all structural investigations is that POs (TY and CO) need to undergo 

structural rearrangements in and around the dicopper centre prior to the admittance of substrates (i.e. 

activation). This is regardless of the induction mechanism – protease-mediated, intermolecular 

complex formation (see below), partial unfolding, or a combination of these. Selected proteases (e.g. 

trypsin), polar solvents and detergents have been used in vitro to characterise the biophysical and 

biochemical properties of POs pre- and post- activation (Kanteev et al., 2015; Coates and Decker, 

2017). Intact M. sexta PPO2 is mostly negatively charged and this may explain why the cationic 

detergent, cetylpyridinium chloride (CPC), is capable of binding to and activating the enzyme. A 

conserved ‘placeholder’ residue, usually with aromatic or aliphatic chemistry, blocks the entrance to 

the dicopper centre. Upon activation, this placeholder residue is dislodged thereby opening the active 

site to accommodate bulky phenolic substrates (Cong et al., 2009). Examples of such placeholder 

residues in insects include Phe85/88 in M. sexta PPO1/2 and Phe99 in A. gambiae PPO8 (Li et al., 

2009; Hu et al., 2016; Figure 4).   
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2. PHENOLOXIDASE ACTIVATION COMPLEXES AND MOLECULAR SCAFFOLDS 

The canonical view of PPO activation in insects follows a series of well-defined events. First, 

invading microbes and their exoplasmic sugar-lipid moieties (PAMPs) are intercepted by soluble 

and/or hemocyte-bound receptors (PRPs) residing in the hemolymph. These warning signals are 

transduced intracellularly, leading to the initiation of a multi-step proteolytic cascade that converts 

PPO zymogens into active POs. Specialized hemocytes containing the immune enzyme, namely 

crystal cells or oenocytoids, rupture to deposit PPOs at particular locations, e.g. damaged cuticle, the 

surface of encapsulated parasitoid wasp eggs and nodulated microbes (reviewed by Cerenius et al., 

2010). 

Some evidence suggests that monomeric PO may not be the terminal step in the PPO activation 

cascade. In fact, POs were found to interact with various macromolecules such as serine protease 

homologues (SPHs) in the lepidopterans M. sexta (Gupta et al., 2005) and B. mori (Clark and Strand, 

2013), and membrane phospholipids (Bidla et al., 2009) in D. melanogaster, thereby forming 

‘activation complexes’. The enzymatic properties of monomeric POs are recorded routinely in the 

presence of diphenolic substrates (dopamine, L-DOPA) in vitro due to the convenience of dopachrome 

detection via spectroscopy (c.a. 470 nm) and the poor rate of catalysis observed when using tyrosine 

(low Vmax; Chase et al., 2000). The latter observation is in tension with numerous studies where high 

levels of tyrosine compared to catecholamines were detected in the hemolymph (Hopkins et al., 1998; 

Clark and Strand, 2013), implying tyrosine is the natural substrate. Li et al (2009) observed a strong 

shift in electrostatic surface potential of M. sexta PPO2 models after simulated cleavage by PPO-

activating proteins (PAPs). They postulated that PAP-induced proteolysis at arginine 51 enables the 

now positively charged region of PO to interact with the negatively charged clip domain of the non-

catalytic SPH. Gupta et al. (2005) demonstrated clearly that both PAP and SPH are essential for 

‘switching on’ PO, and in doing so, a high molecular weight oligomer assembles.  

More recently, Clark and Strand (2013) removed a 670 kDa complex containing PO and SPH1 from 

the hemolymph of B. mori. Upon addition of substrate, HPLC-eluted fractions of monomeric PO 

showed little activity. Conversely, fractions containing the large PO-containing protein complex 

melanised almost instantly. SPHs, PAPs and POs from various insect species (e.g. Holotrichia 

diomphalia, Tenebrio molitor) have been shown to interact directly with microbial ligands, 

carbohydrates and immune-lectins (Kwon et al., 2000; Yu et al., 2003; Kan et al., 2008). In Tenebrio, 

a Spätzle-processing enzyme combines PPO (79 kDa) and SPH1 into a melanin producing complex 

with anti-septic properties (Kan et al., 2008). These biochemical properties may contribute to 

localising the PO activities (and their toxic by-products) – such that PO-containing complexes ‘stick’ 

to pathogens or wounds. In support of this, Bidla et al. (2007 and 2009) observed an increase in D. 

melanogaster PO activity in the presence of ruptured crystal cells and dying (perhaps senescent) 
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hemocytes. Further still, PO activity increased significantly in the presence of the cytoplasmic 

membrane phospholipid, phosphatidylserine. The authors proposed a model in which PO is released 

from crystal cells during injury and forms complexes with cellular fragments and is activated by PS. 

A clear advantage of this would be the protection of PO from serpin-mediated inhibition inside the 

developing clot (Bidla et al., 2009). Damage-associated molecular patterns (DAMPs) like inner 

membrane phospholipids and apoptotic bodies have also been shown to activate another type III 

copper protein, namely hemocyanin-derived phenoloxidase (Coates et al., 2011 and 2013).   

The deleterious effects of toxic by-products from the PO cascade are well documented (e.g. Nappi and 

Christensen, 2005; Zhao et al., 2007) so insects must strictly limit their dissemination and target 

melanin deposition only to where it is needed. Mammals evolved melanosome organelles to 

compartmentalize the process of melanin synthesis, but insects have developed alternative strategies. 

Interestingly, both containment systems appear to have amyloid proteins in common. Amyloids are 

aggregates of protein fibrils that adopt a characteristic cross-beta-sheet quaternary structure. 

Melanosome amyloids accelerate the polymerization of small-molecule quinone precursors of 

melanin, by concentrating and sequestering them and helping to orientate the molecules optimally. 

The amyloid acts as a kind of molecular scaffold to enhance the rate of melanin accumulation. An 

additional benefit of sequestration is to protect the melanosome from the toxicity of by-products 

(reviewed by Fowler et al., 2007).  

A similar, extracellular role for functional insect amyloid proteins was first indicated by Falabella et 

al. (2012) who identified a highly represented gene called 102 in the cDNA library from bracovirus-

infected Heliothis virescens larval hemocytes (Lepidoptera). The P102 protein has 86% amino acid 

identity with a XenDoU family venom protein from Lonomia obliqua (Lepidoptera) (Falabella et al., 

2012). Immunostaining showed that P102 is highly expressed in granular cells and especially 

spherulocytes, bundled as fibrils into cisternae surrounding the nucleus. When purified from 

hemocytes, these amyloids enhance the rate of hemolymph melanin formation from L-DOPA in vitro, 

and in vivo they are exocytosed from hemocytes to coat the surface of injected microbeads, where 

they become associated with large deposits of melanic polymers (Falabella et al., 2012). Although the 

salient features of XenDoU proteins are RNA binding and hydrolytic activities, an analysis of 102 

from Trichoplusia ni (Lepidoptera) indicates it lacks some essential residues in the catalytic site for 

classic XendoU endoribonuclease (Pascale et al., 2014). This might be a feature specific to the 

Lepidoptera due to a gene duplication event that separated two functional XendoU subfamilies; other 

non-lepidopteran insects are predicted to have retained a conserved, active XendoU domain (Pascale 

et al., 2014). To confirm the link between P102 and amyloid fibrils, both Falabella et al. (2012) and 

Pascale et al. (2014) expressed various lepidopteran 102-like genes in Drosophila S2 cells; this 

resulted in dense clusters of membrane-bound amyloid fibrils, whereas control S2 cells transformed 

with XendoU did not (Pascale et al., 2014). Similar observations of amyloid in hemocyte cisternae 
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have been noted from larvae of other Lepidoptera: in the granular cells of wasp-parasitized Heliothis 

virescens (Grimaldi et al., 2012), in Trichoplusia ni (Pascale et al., 2014), and in Spodoptera littoralis 

(Di Lelio et al., 2014). Knockdown of S. littoralis P102 Sl by RNAi interferes with both the cellular 

encapsulation and melanization of injected beads (Di Lelio et al., 2014).  

These authors collectively posit that, much as in the mammalian melanocyte, amyloids provide a site-

specific molecular scaffold with which to sequester and concentrate melanin precursors, to anchor 

melanin, and to attach hemocytes during encapsulation. The amyloid might also make the 

encapsulated intruder sticky enough to adhere to the hemocoel walls. A common histology dye used 

to diagnose amyloid formation is the benzothiazole salt, Thiofalvin T. The dye binds preferentially to 

ordered β-sheet structures, orientating itself parallel to the fibre axis (perhaps using charged nitrogen 

from thiazole to form hydrogen bonds with exposed hydroxyl groups of amyloid fibrils or 

neighbouring structures) (Khurana et al., 2005; Falabella et al., 2012). Due to the chemical similarities 

between the benzothiazole of Thiofalvin T and the indole of L-DOPAchrome (i.e. they are both 

aromatic heterocyclic compounds), it is postulated that quinone derivatives may combine with 

amyloids in a similar fashion. Furthermore, melanin accumulation on the surface of the amyloid 

plaques may be due to ionic and hydrophobic interactions. Fowler et al. (2006) argue that an amyloid 

formed by the protein PmeL17 is a non-pathological scaffold used to accelerate the polymerisation of 

melanin in mammalian tissue. Therefore, the formation of a functional amyloid-scaffold that 

coordinates melanin-related defenses in insects may in fact be a conserved feature of homeostasis in 

metazoans. 

 

3. HEMOCYTE ROLES IN MELANIZATION   

Hemocytes, the blood cells of insects, play a central role in melanogenesis as the source and vehicles 

of PPO. Many hemocyte types are recognised, with variable nomenclature between insect species. As 

with vertebrate blood cells, the role varies with each hemocyte type, and they may be active under 

different physiological conditions or at a different stage in ontogeny. Some hemocytes phagocytose 

non-self particles, others mediate the nodulation of bacteria or encapsulation of larger foreign objects, 

while others manufacture, store and eventually release PPO at the site of infection (reviewed by 

Browne et al., 2013).  

In recent years, we have learnt more about how hemocytes store and release particular PPOs, and that 

the roles of hemocytes in melanogenesis are not as simple as thought previously. The hemocytes of 

mosquitoes, Drosophila and a handful of important Lepidoptera have consistently received most 

intense scrutiny. In many instances it is not clear which hemocyte types have been investigated, and it 

is important to note that both hemocytes circulating in the hemolymph and sessile hemocyte 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

populations attached to the surface of organs or tissues can detect non-self and contribute to the 

immune response. 

Key recent advances in our understanding of hemocyte PPO storage have been made with Drosophila 

crystal cells. These are specialized larval hemocytes representing about 5% of the hemocyte 

population (reviewed by Honti et al., 2014). These fragile cells have characteristically crystalline 

cytoplasmic inclusions, and it has long been assumed, but only recently demonstrated with the use of 

PPO loss-of-function mutants, that the crystals contain PPO. Binggeli et al. (2014) analysed the 

morphology of crystal cells in PPO-deficient mutant larval Drosophila, and found cytoplasmic 

crystals persisting in both wildtype and PPO1 mutants, but no crystals in PPO2 mutants and PPO1/2 

double mutants. Furthermore, PPO2-specific antibodies stained the crystals in wild type larvae while 

anti-PPO1 antibodies did not. This indicates that PPO2 is either the major component of the crystals 

or is necessary for their formation. Interestingly however, wildtype Drosophila crystal cells are not 

completely devoid of PPO1, because both PPO1 and PPO2 disappear from the hemolymph of larvae 

with genetic ablation of crystal cells (Binggeli et al., 2014). The authors concluded that PPO2 is 

stored in the crystals (for release upon cell rupture) while PPO1 is putatively released into the 

hemolymph for acute-phase PO responses to injury or infection. This sequential model of PPO release 

by crystal cells raises intriguing questions about the structure of PPO1: unlike PPO2, is it dissolved in 

the cytosol and is it secreted? Similar questions have been raised about possible exocytosis of 

mosquito PPO6 from granulocytes (see below). The accepted dogma is that, unlike their vertebrate 

counterparts, all insect PPOs lack N-terminal signal peptides and thus require rupture of hemocytes 

for their release upon immunological insult. 

In Drosophila, crystal cells are attracted to the site of a primary clot to help form a scab. The nature of 

the attraction signals involved remains unknown (reviewed by Wang et al., 2014), although 

melanization at clotting wounds is locally enhanced through activity of apoptotic markers such as 

phosphatidylserine (Bidla et al., 2009). In clot formation, crystal cell rupture and subsequent 

melanization require JNK pathway activation, small GTPases and Eiger (the Drosophila equivalent of 

TNF). Factors such as Eiger, produced by both crystal cells and plasmatocytes, can also trigger 

melanization independently of microbial PAMPs. However, the molecular signal that activates the 

JNK pathways when crystal cells rupture is still not clear (Bidla et al., 2007). 

Crystal cell studies are conspicuously focussed on larval melanogenesis since there are few crystal 

cells in adult flies, and the paradigm is that crystal cell hematopoiesis is a phenomenon limited to 

embryos and larvae. Thus far, one study has challenged this view by suggesting that a potential 

hematopoietic site exists in dorsal abdominal cell clusters of adult Drosophila (Ghosh et al., 2015). 

Although this study awaits corroboration from other researchers, the authors claimed that these 

clusters contain progenitors of plasmatocytes and crystal cells, which under the control of Notch 
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signalling give rise to functional hemocytes. A more widely acknowledged phenomenon is the 

flexibility of hemocyte cell lineages in the later larval stages of Drosophila, which allows 

plasmatocytes to trans-differentiate into functional crystal cells (e.g. Leitão and Sucena, 2015). This 

transformation, too, is under the control of Notch. 

Overall, our knowledge of which insect PPO genes are expressed in which hemocyte type is currently 

very patchy, especially in insects with a large number of PPO genes such as the mosquitoes (Figure 

5). The picture is simpler and more resolved for D. melanogaster, which possesses three PPO genes 

(all located on the 2nd chromosome): PPO1, PPO2 and PPO3, although until recently it was not clear 

whether the crystal cell is also the site of PPO3 synthesis. Binggeli et al. (2014) and Dudzic et al. 

(2015) created a series of single, double and triple mutations for all three Drosophila PPO genes to 

clarify the roles and hemocyte specificity of each enzyme; in the latter study PPO3 knockout mutants 

were created using the CRISPR-Cas9 system. The researchers found that although PPO1 and PPO2 

are the major players in Drosophila, PPO3 appears to have evolved to deal with specific threats linked 

to parasitoid wasps like Leptopilina boulardi. Parasitoid (braconid or ichneumon) wasps are 

prominent members of the Hymenoptera, and play important ecological roles in regulating 

populations of lepidopteran, coleopteran and dipteran insect species by parasitising their larvae. Many 

host / parasitoid relationships are species-specific. Adult parasitoids oviposit into the host’s body 

cavity, an action that also introduces a cocktail of venom, viruses, and even behaviour-modifying and 

immunomodulatory secretions (reviewed in Moreau and Asgari, 2015). Drosophila PPO3 is expressed 

in lamellocytes, a cell type rarely found in healthy naive insects, but which is derived directly from 

plasmatocytes and from larval lymph gland after parasitization (reviewed by Vlisidou and Wood, 

2015). These large cells are specialized for a role in encapsulation (of parasitoid eggs) and attach 

during the latter stages of the capsule formation. Intriguingly, although PPO1 and PPO2 both require 

proteolytic cleavage to achieve an active form, this is not a requirement for PPO3 (Nam et al., 2008 

and Chen et al., 2012).    

In non-drosophilid insects, non-phagocytic oenocytoids are functionally analogous to crystal cells, but 

do not exhibit obvious crystalline cytoplasmic inclusions. Despite many efforts, there is paucity in the 

literature regarding the fundamental differences between crystal cells and oenocytoids. The roles of 

oenocytoids and granular cells in nodule formation have been reviewed recently by Dubovskiy et al. 

(2016) and will not be addressed here. The cytosol of oenoytoids has been shown to contain PPO 

mRNA and protein (e.g. PPO1 in Bombyx mori; Kato et al., 2014; Tokura et al., 2014). In some 

insects including the Lepidoptera, oenocytoids lyse upon immune challenge to release PPO and other 

components of the PO cascade, but in other insects, such as mosquitoes, it is still unclear exactly how 

PPO is released from these cells. 
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Granular cells (granulocytes) are phagocytic hemocytes that often internalize melanized bacteria and 

other particles; they are the equivalent of Drosophila plasmatocytes. In mosquitoes, granular cells 

occupy 90% of the hemocyte population and can be isolated and enriched by inducing the 

phagocytosis of magnetic beads (Smith et al., 2016). A proteomic analysis of enriched proteins 

specifically associated with these cells (Smith et al., 2016) indicated PPO2 and PPO4 clustered with 

phagocytic activity. Not only does this suggest that melanization is important in phagocytosis, but 

also that some mosquito PPOs can be expressed in granular cells. 

 

Bryant and Michel (2016) provided evidence for mosquito granulocyte synthesis of PPO6 triggered 

by a bloodmeal. Adult female A. gambiae hemocyte PPO6 enzyme concentrations peaked one day 

after a blood meal (but not after feeding on sugar solution). All A. gambiae hemocytes exhibited 

detectable levels of PPO6 immunostaining, manifesting as granule-like punctate signals, with a small 

hemocyte subpopulation exhibiting consistently very intense staining (presumably oenocytoids). 

Although there was no deliberate attempt to identify the different hemocyte types in the study, 

assuming that the anti-PPO6 antibody was sufficiently specific, we can deduce that most of the cells 

observed with moderate PPO6 staining were granulocytes. It is tempting to imagine this could be a 

pre-emptive strategy to protect the insect from parasite invasion.  

A recently-described immune phenomenon in mosquitoes relies on sessile periostial hemocytes 

attached to the periostium region of the heart (i.e. flanking the valves) to sequester and concentrate 

circulating microbes and pathogens (King and Hillyer, 2012; League and Hillyer, 2016; Sigle and 

Hillyer, 2016). This builds on previous observations that pathogens accumulate in discrete foci along 

the surface of the mosquito heart during infection (Hillyer et al., 2001). Using intravital imaging and 

microdissection techniques, King and Hillyer (2012) showed that during bacterial and malarial 

infections, hemocytes migrate to the periostial regions where they bind to the musculature and each 

other, and engage in the rapid phagocytosis and melanization of certain pathogens including 

Plasmodium sporozoites. The population of sessile periostial cells is permanently elevated thereafter, 

although the situation is dynamic with cells constantly arriving and leaving.  

 

A similar phenomenon, with stronger melanization, occurs when using soluble PAMPs as elicitors. 

The location of periostial hemocytes coincides with the site of the fastest hemolymph flow (Sigle and 

Hillyer, 2016). The authors point out that this is probably a common occurrence, and indeed there are 

already accounts of hemocytes on, or in, the heart of other insects including D. melanogaster 

(Diptera), Baculum extradentatum (Phasmida) and Galleria mellonella (Lepidoptera), and the 

periostial accumulation of pathogens and melanin has been detected in both the Lepidoptera and 
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Diptera (reviewed in Sigle and Hillyer, 2016). The accumulation of melanin at these sites may be due 

to phagocytosis of microbes that have already been melanized in the hemolymph, but it is also 

possible that local melanization occurs. It will be interesting to uncover the identity of the hemocyte 

types in these periostial clusters. 

 

4. PO ACTIVITY ASSOCIATED WITH THE INSECT GUT 

In insects, ingested food is stored and partially digested in the foregut, whereas the midgut is the 

primary site of digestion and absorption of nutrients. During feces formation the hindgut absorbs 

water and salts to balance the hemolymph osmotic pressure. The gut is a particular site of interest due 

to its contact with external abiotic and biotic factors and the need to regulate its microflora and fauna. 

Although some PO activity and melanization in the gut clearly originate from hemocytes, there is 

increasing evidence that the gut itself expresses PPO genes in situ, and is the location of gut-specific 

melanogenesis (Figure 6).  

Melanin precursors have long been posited to originate in the hemocytes and infiltrate the gut tissues 

by crossing the basal lamina, particularly in the context of melanotic encapsulation of parasites that 

breach the gut epithelium (reviewed in Whitten et al., 2006). More recent studies have indicated PO 

activity in the lumen of the gut, such as in the cricket Gryllus bimaculatus (Joseph, 2014). When the 

cricket midgut was removed, washed and incubated in vitro with the appropriate substrates, PO 

activity was undetectable in either the epithelium or the lumenal contents and the zymogen PPO could 

not be detected in the lumen. This strongly suggests that PPO enters the midgut from a hemocytic 

origin, transported via the hemolymph, and then is activated by gut trypsin behaving as a serine 

protease (Joseph, 2014). The gut contents visibly darken from green to black as they travel towards 

the hindgut - a phenomenon not limited to crickets. Why do insects need PO activity in their gut 

lumen? The most obvious answer is as protection against microbial overpopulation, particularly in 

insect species that might feed on substrates contaminated by their own feces, but also conceivably to 

protect the gut microbiota or to prevent host toxic shock-like responses to microbial overgrowth in the 

host insect.  

While the cricket study above linked hemocytes to gut PO activity, other studies have identified the 

gut itself as the source of endogenous PPO synthesis and PO activity. In herbivores such as the 

silkworm Bombyx mori whose larvae feed on mulberry leaves in dense populations, PPO is 

transcribed and expressed by hindgut epidermal cells to induce fecal melanization (Shao et al., 2012). 

The ultimate effect is that melanization turns the food debris from green to black in the hindgut and in 

so doing destroys the majority of microorganisms in the feces. To support these observations guts 

were stained for PO activity using a dopamine substrate and ethanol to activate PPO; this activity was 
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suppressible by the PO-specific inhibitor phenylthiourea (PTU). When PTU was administered to live 

larvae, the feces reverted to a green color with a high bacterial population. The authors also performed 

in situ hybridization and immunostaining to demonstrate that mRNA and protein of both B. mori PPO 

genes (PPO1 and PPO2) localize to epidermal cells in the hindgut, but not nearby structures such as 

the Malpighian tubules, or midgut. The contribution of other enzymes such as laccase or peroxidase 

was excluded via enzymatic assays using enzyme-specific substrates and inhibitors, as well as 

Western blots.  

In their study of silkworm larvae, Shao et al. (2012) injected fluorescently-labeled beads as bait for 

phagocytic hemocytes, which acted as a tool to visualize these cells. Finding no fluorescent signal in 

the hindgut, the authors deduced that hemocytes do not co-localize with melanisation activity that 

arises endogenously from gut cells in this region. However, it is possible that melanin could quench 

fluorescence, and it should also be noted that PPO-generating oenocytoids are non-phagocytic and so 

would not be visualized by this method. Shao et al. (2012) ruled out plasma infiltration of the gut by 

probing hemolymph, hindgut and gut contents for the plasma protein lysozyme: of these samples, 

only the hemolymph yielded a positive lysozyme signal by Western blot analysis. Pulpitel et al. 

(2015) used immuno-stimulatory molecules to trigger insect gut PPO expression. Hemocoelic 

injection of bacterial LPS, but not sterile saline, triggered up-regulated PPO mRNA expression in all 

regions of the adult Locusta migratoria gut and especially in the foregut (Pulpitel et al., 2015). 

Although hemocyte contamination of these tissues could not be discounted, their observations are 

likely to reflect endogenous expression since hemolymph samples did not evidence a concomitant 

increase in PPO expression.  

Bacteria similarly trigger insect gut melanization. Natural (oral) infections with the Drosophila 

pathogen Pseudomononas entomophila, for example, trigger melanisation in the area around the larval 

midgut / foregut junction (Vodovar et al., 2005). The distinct localization of such responses is nicely 

illustrated by a phenomenon that has been known - but remained unexplained - for 70 years: the 

highly prevalent and very specifically-located darkened “scab” which appears in the gut of several 

European bee species. The scab develops shortly after eclosion, thickens with age, and occurs only on 

the luminal surface of the pylorus region dividing the midgut and hindgut. Engel et al. (2015) found 

that the scabs correlated with the presence of the gut γ-proteobacterium Frischella perrara, which 

densely colonizes the edges of the scab structure. Scabs are absent from bees eclosing under sterile 

conditions and from bees naturally lacking F. perrara, but present in naturally-infected hive bees as 

well as those deliberately infected in the lab (Emery et al., 2017). Although low populations of 

F. perrara inhabit other gut regions, the pylorus appears to represent a special niche for the 

bacterium; the dense population here triggers host immune responses including the upregulation of 

tyrosine hydroxylase and DOPA decarboxylase genes, and the multicopper oxidase MCO1 (Emery et 

al., 2017). Other components of the immune system are also activated (e.g. antimicrobial peptides), 
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leading the authors to suggest that this could represent a case of immune priming, aimed in particular 

at protecting newly-emerged adult bees from more extensive infections of the hindgut region. This 

may hinder other pathogens, but only keeps F. perrara in check, since it is still possible to recover 

some viable F. perrara from the scab, and may explain why scabs continue to build as the bee ages. 

Although it is often described as an opportunistic pathogen, it is still unclear whether F. perrara 

directly impinges on the growth and health of honeybees. 

The Shao et al. (2012) study mentioned above is also interesting because it looked beyond silk moths 

to guts from a diverse range of insect orders. The researchers applied PO activity staining assays to 

guts from termite, Drosophila, mosquito, cricket, flour beetle, Asian corn borers and cotton bollworm, 

and noted blackened melanic coloration in the foregut and hindgut of all these species. However, it is 

not reported whether this activity was susceptible to PTU inhibition. When larval Tribolium 

castaneum (red flour beetle) PPO2 was knocked down by RNAi alone or in combination with PPO1, 

foregut and hindgut melanization was greatly diminished (Shao et al., 2012). Taken together, these 

studies are tantalizing glimpses of a potentially highly conserved strategy to keep gut microbes in 

check. There are also some interesting parallels with the phenomenon of brown body formation and 

autotomy in annelids (Valembois et al., 1992), clearly deserving of further study. 

Melanization is also evident in the gut under stress conditions. When the Drosophila hindgut is put 

under dietary salt stress and deprived of protective stress-activated protein kinases, the enterocytes 

become disorganized, undergo JNK-mediated apoptosis and melanize. During this process, Hemese (a 

hemocyte marker) cannot be detected at or within the hindgut epithelium, which indicates that the 

hindgut melanization is independent of hemocyte involvement (Seisenbacher et al., 2011). In this 

situation, melanin probably fulfills a wound-healing role to mitigate the loss of apoptotic enterocytes, 

similar to that seen during Plasmodium invasions of the mosquito gut (Shiao et al., 2006).  

A parallel role for gut PO activity is emerging in the context of detoxification of plant secondary 

metabolites that evolved as protection against insect herbivory (Figure 6). Sometimes this role is 

delegated to beneficial microbes; for example, several insects are known to benefit from specialized 

gut symbionts that detoxify metabolites like caffeine or carotenoids (e.g. Ceja-Navarro et al., 2015), 

and leaf-cutter ants employ laccase from their so-called ‘fungal gardens’ to detoxify polyphenolic 

assemblages in ingested leaf matter (De Fine Licht et al., 2013). Other insects perform detoxification 

roles for themselves. Insects fed toxic plant diets spiked with excess L-DOPA exhibit foregut PO 

activity that converts phenolics into non-toxic intermediates (Wu et al., 2015). This has been observed 

in the silkworm (B. mori), the cotton bollworm (Helicoverpa armigera) and Drosophila. In 

Drosophila, PPO1 and PPO2 were detectable in the foregut lumen by immunoblotting. In the 

silkworm foregut, PPO1 is released into the lumen where it binds to toxic food particles and is 

activated by an as-yet unidentified serine protease. The PPO activity is unaffected by antibiotics and 
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so is unlikely to have arisen as an immune response to gut bacteria (Wu et al., 2015). The active PO 

then oxidizes the phenolics to non-toxic intermediates that travel to the hindgut (possibly indirectly: 

via the hemolymph and then Malpighian tubules) where they are oxidized further into melanized 

particles. Silkworm PPO1 mRNA and protein were detected in the foregut, but only trace amounts of 

PPO2. Plasma contamination was ruled out due to the absence of detectable lysozyme, but it is 

unclear whether sessile hemocytes were attached to the gut.  

It is interesting that the majority of the above studies indicate a regional localization to the fore and 

hindgut, but limited involvement of the midgut. Perhaps this reflects suboptimal midgut conditions 

such as very high pH (as in Lepidoptera) that could inhibit the PO cascade, or it may be connected to 

the different embryonic origin of the gut regions: while the midgut develops from endodermal cells, 

the fore and hind-guts are derived from embryonic ectoderm. The latter are lined with a chitinous 

exoskeleton that is shed during moulting while the midgut is lined (in most insects) by a secreted 

peritrophic matrix (reviewed by Engel and Moran, 2013). There may be a requirement to protect 

symbionts that precludes excessive PO activity in the midgut. The regional localisation of immune 

responses in the gut, and how this relates to pathogens and resident microbiota, deserves to be a focus 

for future investigations. 

It is a shame that many studies of insect melanotic immunity do not specifically examine gut 

melanization. Having seen some convincing evidence of endogenous expression of gut PPOs, an 

obvious question is how - and by what triggers - PPO could be released from the gut epithelium. 

Considering the dynamic and complex environment of the gut, the exact composition and structure of 

the PO cascade components is probably critical, and has no obvious parallels among higher animals. 

These gut-specific molecules need to be hardier than those acting at physiological pH (in the 

hemolymph), considering they could encounter digestive proteases, extremes of pH, sudden 

temperature fluctuations (in hematophagous insects), toxins, or inhibitory factors produced by gut 

bacteria or pathogens; factors which may be localised to specific regions of the gut. Interestingly, Lu 

et al. (2014) demonstrated that the stability of Drosophila PPO1 is conditional on the formation of 

two di-sulphide bonds at the C-terminus of the native structure. Expression of recombinant PPO 

mutants lacking one or both of these bonds led to a decrease in PO activity and antibacterial activity, 

and an increase in protein susceptibility to thermal-induced denaturation. A single mutation to 

cysteine596 (i.e. disruption of one disulphide bond) had a negative impact on enzymatic activities at 

pH 5 and >pH 8.5. Disulphide bonds are known to improve stability and protein folding (sometimes 

making them rigid), however, the presence of two disulphide bonds in Drosophila PPO1 may enable 

it to withstand the harsh environment of the gut, whilst remaining functionally intact.  
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5. BACTERIA AND OTHER MICROBES VERSUS MELANOGENIC COMPETENCE  

The previous section touched on melanotic activity in the insect gut triggered by bacteria. Relatively 

few immunological studies have focused on infections (or intoxications) via the gut, and fewer still 

have interrogated the role of symbionts, commensals and other resident microbes in these interactions. 

An exciting development in recent years is the recognition that symbiotic gut bacteria are critical in 

insect hematopoiesis, and particularly in dipteran crystal cell development.  

Dipteran embryonic hematopoiesis initially relies on the GATA family factor serpent (Srp) for 

progenitor hemocyte maturation. In both the embryo and the larval lymph gland, Lozenge (Lz; a 

RUNX family transcription factor) directs the prohemocytes towards a crystal cell fate (e.g. Waltzer 

et al., 2003). The larvae of the viviparus tseste fly (Glossina morsitans morsitans) develop in utero, 

during which they receive two symbionts from maternal milk gland secretions: Sodalis glossinidius 

and Wigglesworthia. It has been appreciated for several years that an aposymbiotic larva (GmmApo) 

derived from a symbiont-cured (antibiotic-treated) mother will develop into a severely 

immunocompromised adult lacking all hemocyte types and incapable of melanization. These 

individuals have low expression of Srp and Lz (Weiss et al., 2011). Using transcriptomics comparing 

tsetse gene expression in GmmApo and GmmWT larvae, Benoit et al. (2017) have identified an odorant 

binding protein gene (obp6) that is 22 times more highly transcribed in the latter. Tsetse larvae that 

develop in the presence of reduced obp6 transcript abundance (GmmOBP6-) fail to express Lz and thus 

fail to generate crystal cells. Their phenotype can be rescued by restoring Wigglesworthia (but not 

Sodalis) to the symbiont-cured mother tsetse. Transgenerational RNAi targeting obp6 results in 

crystal cell ablation in siOBP6 larvae, although phagocytic hemocytes are unaffected - which strongly 

suggests that obp6 is expressed during larvagenesis but only controls crystal cell maturation (Benoit et 

al., 2017). Despite normal populations of functional phagocytic hemocytes, siOBP6 adult offspring 

nevertheless succumb to normally sub-lethal challenges with E. coli, and even sterile injury causes 

exceptionally high mortality consistent with a failure of the melanotic wound healing process. Benoit 

et al. (2017) also identified the site of obp6 expression as the larval gut (indeed, it is localised to the 

specialized bacteriocytes harboring Wigglesworthia).  

A parallel phenomenon occurs in another dipteran, D. melanogaster. Benoit et al. (2017) show that 

the expression of Lz and obp28a (orthologous to the tsetse obp6) was compromised in axenically 

reared Drosophila larvae, which was attributable to a lack of (still to be identified) gut bacteria. Just 

like the tsetse flies, most adult Drosophila from an RNAi line (obp28a knockdowns) can neither 

melanize nor survive sterile injury. It seems, therefore, that odorant binding protein expression, 

triggered by the presence of enteric symbiotic bacteria, is an evolutionarily conserved mechanism for 

hematopoiesis of crystal cells in Diptera.   
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While some bacteria guide the development of the immune system, others suppress it either directly 

or via toxins. The nematode symbiont but insect pathogen Photorhabdus temperata M1021 secretes 

1,2-benzenedicarboxylic acid (phthalic acid, PA) which dose-dependently inhibits PO activity and 

nodule formation in larvae of the lepidopteran Galleria mellonella (Ullah et al., 2014). Similar 

chemicals interact directly with insect PO (Pieris rapae larvae) to inhibit the enzyme non-

competitively in the presence of L-DOPA (Xue et al., 2007). Phthalic acid also has antioxidant 

properties that could help ameliorate oxidative stress resulting from the melanization cascade - this 

may be protective to the nematode parasite when it invades an insect. Phthalic acid adds to a growing 

list of secondary metabolites produced by Photorhabdus spp. that act as toxins to a range of insects 

and which interfere with melanization (reviewed in Hu et al., 2000). Such compounds have obvious 

potential as biocontrol agents. 

With some bacterial toxins, the outcome and tissue specificity may depend on the exact insect- 

bacterium species combination. The most studied relationships are those between Bacillus 

thuringiensis (Bt) toxins and lepidopteran hosts. In Spodoptera exigua, sublethal intoxication with 

Vip3A toxin triggers over-expression of PPO activating enzyme (PPAE) and the majority of the 

insect’s serpin gene repertoire (Bel et al., 2013). Conversely, Crava et al. (2015) found that gut-

confined sublethal exposure to Vip3Aa or Cry1Ca fails to trigger hemolymph (i.e. systemic) PO 

activity in this insect (unfortunately the authors did not look for gut melanization). Some insect strains 

that are refractory to Bt exhibit permanently induced melanization in the hemolymph, e.g. Bt-tolerant 

strains of Ephestia kuehniella (Rahman et al., 2004) and Cry1Ac resistant strains of H. armigera (Ma 

et al., 2005), which must surely impart a fitness cost to the insect.  

There is also an unusual report of melanization specifically in fat body tissue (Akhouayri et al., 2013). 

Chronic melanotic lesions form in the fat body cells of Anopheles gambiae larvae, pupae and adults in 

response to a dominant vertically transmitted commensal gut bacterium, Elizabethkingia 

meningoseptica. This is significant because adult co-infection with Plasmodium seems to have a 

synergistically negative impact on mosquito survival. The fat body is a vital organ in general 

physiology and immune defenses, and melanotic damage in the tissue also leads to a decreased ability 

to heal wounds.  

Deserving of special mention are pollinators and especially honeybees, which are receiving closer 

scrutiny due to their exposure to multiple stressors, including pesticides and pathogens. Colony 

Collapse Disorder (CCD) has caused worrying honeybee losses recently (Oldroyd, 2007). Not 

surprisingly, the impact of pesticides is under examination, especially neonicotinoids that tend to 

contaminate pollen and nectar due to their system action on plants.  Several studies indicate sub-lethal 

pesticide effects that weaken bee immunity, including melanization. This renders bees more 

susceptible to other stressors such as parasites (e.g. varroa mite) and pathogens (e.g. deformed wing 
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virus, DMV). The neonicotinoids thiacloprid and imidacloprid dramatically inhibit melanotic 

encapsulation, hemocyte numbers and antimicrobial activity (Brandt et al., 2016). Both the 

neonicotinoid clothianidin and DMV negatively modulate the honeybee NF-kB pathway (Di Prisco et 

al., 2013 & 2016). NF-kB activation is needed for Toll-mediated immune responses - including 

encapsulation - against fungi, viruses and Gram-positive bacteria, and it is also required for 

expression of Amel\102, which forms amyloids (see the section on amyloid, above, for details). 

Immunocompetence fluctuates seasonally in honeybees, with a winter down-regulation of cellular 

immunity and melanization genes PPO, PPOa (PPO activator), eater (a phagocytic receptor), and 

glucose dehydrogenase, which generates free radicals by interacting with quinones derived from the 

PO cascade (Steinmann et al., 2015). If, as suspected, melanization turns out to be an effective 

defense against honeybee viruses (e.g. Mazzei et al., 2016), then the recent Varroa and DWV 

outbreaks could leave honeybees insufficiently protected from viruses during the winter. 

In a search for protective countermeasures, the potential use of pre- and pro-biotics to boost the 

immunity of beleaguered honeybee colonies is at an experimental stage, but this practice has 

precedents in aquaculture to support fish and shellfish immunity (Akhter et al., 2015). However, 

Ptaszyńska et al. (2016) presented a cautionary tale in their assessment of Lactobacillus rhamnosus (a 

commercial probiotic) on the survival rates of honeybees. The authors were surprised that their 

probiotic treated bees were more susceptible to infection and had shorter lifespans. In bees infected 

with the microsporidian gut pathogen Nosema ceranae (a common affliction of honeybees 

worldwide), the effect of ingesting the probiotic was dramatic: a 20-fold loss of PO activity. 

Administration of the prebiotic inulin had an innocuous effect but failed to confer any immune 

priming (Ptaszyńska et al., 2016). In administering probiotics it is apparently vital to choose carefully; 

an incompatible bacterium might exclude or displace the normal gut microbiota and synergistically 

augment the immunosuppressive activity of pathogens. Feeding a sugar solution containing 0.5% β-

glucan to newly emerged honeybees has been a more encouraging approach (Mazzei et al., 2016). 

This immunostimulatory fungal cell component boosted melanization, which in DWV-infected bees 

overcame virus-induced immunosuppression and helped to limit viral loads. However, it was noted 

that the correct dose was important to avoid a negative impact on bee survival.  

Larvae of the waxmoth, Galleria mellonella, exposed to varying doses of fungus (Aspergillus 

fumigatus; Fallon et al., 2011) and/or β-glucan (Mowlds et al., 2010) induced changes in cellular and 

humoral responses including PO activity and PO expression, which directly correlated in magnitude 

and duration to the dose or pathogenicity of the challenge. Importantly, sub-lethal doses of A. 

fumigatus, or an optimized dose of β-glucan, can confer immune priming effects on the insect that 

protect it from subsequent, normally lethal doses of fungi or yeast. This priming has an impressive 

longevity lasting several days (Mowlds et al., 2010).    
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CONCLUSIONS 

The selected studies dissected by this review illustrate exciting nuances in insect melanogenesis and 

some previously unrecognized overlap with mammalian systems. Thanks to the availability of PO 

crystal structures, we now have better insight into tyrosine hydroxylation mechanisms. The gut is 

emerging as an active player in insect melanogenesis that goes beyond immunity, but due to the 

complexity and species-specific properties of the gut environment, challenges lie ahead in teasing out 

the various roles of host and microbe factors. Finally, we have noted a small focus-shift in recent 

publications, from Drosophila and pest insects, to include more non-model and beneficial species 

(especially pollinators). However, the balance between holo- and hemi-metabolous insects still leans 

heavily towards the former. We would welcome studies that address this imbalance, particularly with 

the availability of exciting new molecular tools such as symbiont-mediated RNAi (Whitten and 

Dyson, 2017), CRISPR-Cas9 (e.g. Chen et al., 2016) and bioinformatic resources like the 5,000 

arthropod genomes initiative (i5k; http://i5k.github.io/).  
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FIGURE LEGENDS 

Figure 1. A simplified schematic of the (A) melanogenic and (B) sclerotinogenic pathways in 

insects. During infection, phenoloxidases (released by hemocytes) in the hemolymph convert tyrosine 

directly into DOPAquinone via a two-step enzymatic process (hydroxylation followed by oxidation). 

DOPAquinone undergoes auto-catalysis to form DOPAchrome. An isomerase converts DOPAchrome 

into DHI, which polymerises to form black eumelanin. Concurrently (and independently), laccases in 

the cuticle can oxidise dopamine-derivatives (NBAD and/or NADA) into quinones. Isomerases then 

convert NBAD and NADA into quinone methides that will eventually form brown and colorless 

polymers in the cuticle, respectively. Additionally, DOPA (3,4-dihydroxphenylalanine) and dopamine 

can be oxidised by cuticular laccases.   

 

 

Figure 2. Structural features of insect proPhenoloxidases. A) The resolved crystal structure of 

Manduca sexta PPO (PDB-3HHS) reveals a heterodimer consisting of PPO1/2. Anopheles gambiae 

PPO8 is a homo-dimer (PDB-4YZW) sharing ~41% and ~39% amino acid sequence similarities with 

M. sexta PPO1 and PPO2, respectively. B) The distinct regions of each phenoloxidase monomer are 

depicted: pro-region containing the proteolytic site (R51 - black), N-terminal domain I (orange), 

middle domain II containing the dicopper active site (gray) and C-terminal domain III (pink). C) 

Conservation mapping of insect phenoloxidase sequences onto M. sexta PPO2. Sequences from 

Anopheles gambiae (PDB – 4YZW), Bombyx mori (NP_001037335.1), Drosophila melanogaster 

(NP_476812.1) and M. sexta (PDB – 3HHS) were aligned in CLUSTALX 2.1 and mapped in UCSF 

Chimera using the ‘sum of pairs’ algorithm (Pettersen et al., 2004). The coloured scale bar indicates 

percentage conservation of amino acids. Inset is the dicopper active site containing the six highly 

(100%) conserved histidine residues (red). Each copper atom is depicted as an orange sphere. 

 

Figure 3. Box 1: Where are the insect pheomelanins, and what do they do? 
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Figure 4. Monophenolase activity is facilitated by conserved amino acids in the dicopper active 

site of insect phenoloxidases. Secondary structural elements of (A) Manduca sexta PPO2 (PDB-

3HHS) and (B) Anopheles gambiae PPO8 (PDB-4YZW) are presented as ribbons. Amino acid side 

chains of the six highly conserved histidines are visible, alongside those residues considered to be 

responsible for monophenolase activity, namely glutamate (E) and asparagine (N). (C) The copper 

centres of M. sexta PPO2 and A. gambiae PPO8 have been aligned and then superimposed onto the 

corresponding structural motif of the common grape (Vitis vinifera) PPOg (PDB-2P3X; refined by 

Solem et al., 2016) - represented in green. In this instance, the copper atoms are depicted as black 

spheres and the peptide backbone has been removed for clarity. If an asparagine (N) residue does not 

immediately follow H1 of CuB, then only diphenoloxidase activity is observed. (D) Sequence 

alignments of the CuB sites of insect PPOs. Images were produced using UCSF Chimera (Pettersen et 

al., 2004).  

 

Figure 5. PPO genes in various insect orders. PPO gene data for most insects are based on 

published analyses, or annotated genes retrieved from genome databases (Diptex: http://diptex.crg.es/; 

VectorBase: http://vectorbase.org/index.php; GenBank® www.ncbi.nlm.nih.gov/genbank/). Insects 

indicated in red are considered beneficial species. Selected insect orders are placed in a basic 

phylogenetic tree adapted from Ishiwata et al., 2011 & Evans and Gundersen-Rindal, 2003; no 

information should be inferred from the branch lengths. Note the relative under-representation of 

studies on hemimetabolous insects (those undergoing incomplete metamorphosis). 

 

 

Figure 6. The insect gut: a hub for melanogenesis and factors influencing melanogenic activity. 

Phenoloxidase activity in the gut epithelium and lumen is derived from both endogenous and 

hemocytic sources in response to triggers such as microbes and PAMPs. Examples of various triggers 

are indicated in white boxes, and outcomes in yellow boxes. Many insects, both adult and juvenile, 

upregulate endogenous PPO gene expression in the fore- and hind- gut, and sometimes in highly 

localized regions, as in honeybees infected by Frischella perrara. In Diptera, the presence of gut 

symbionts and/or other bacteria can trigger crystal cell hematopoiesis in the lymph gland and a 

bloodmeal in mosquitoes can trigger upregulated hemocyte PPO synthesis. Ingested pesticides, 

bacterial toxins and probiotics have variable effects in modulating an insect’s PPO activity, but are 

often suppressive; certain gut entomopathogens e.g. Elizabethkingia meningoseptica trigger melanotic 

lesion formation in fat body tissue, thereby suppressing host immunity. Many phytophagous insects 

employ endogenous gut PPO activity to suppress bacterial growth in the hindgut; this results in black 
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