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Abstract

We analyze the space of geometrically continuous piecewise polynomial func-
tions, or splines, for rectangular and triangular patches with arbitrary topol-
ogy and general rational transition maps. To define these spaces of G1 spline
functions, we introduce the concept of topological surface with gluing data
attached to the edges shared by faces. The framework does not require
manifold constructions and is general enough to allow non-orientable sur-
faces. We describe compatibility conditions on the transition maps so that
the space of differentiable functions is ample and show that these conditions
are necessary and sufficient to construct ample spline spaces. We determine
the dimension of the space of G1 spline functions which are of degree 6 k
on triangular pieces and of bi-degree 6 (k, k) on rectangular pieces, for k
big enough. A separability property on the edges is involved to obtain the
dimension formula. An explicit construction of basis functions attached re-
spectively to vertices, edges and faces is proposed; examples of bases of G1

splines of small degree for topological surfaces with boundary and without
boundary are detailed.
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1. Introduction

The accurate and efficient representation of shapes is a major challenge
in geometric modeling. To achieve high order accuracy in the representa-
tion of curves, surfaces or functions, piecewise polynomials models are usu-
ally employed. Parametric models with prescribed regularity properties are
nowadays commonly used in Computer Aided Geometric Design (CAGD)
to address these problems. They involve so-called spline functions, which
are piecewise polynomial functions on intervals of R with continuity and dif-
ferentiability constraints at some nodes. Extensions of these functions to
higher dimension is usually done by taking tensor product spline basis func-
tions. Curves, surfaces or volumes are represented as the image of parametric
functions expressed in terms of spline basis functions. For instance, surface
patches are described as the image of a piecewise polynomial (or rational)
map from a rectangular domain of R2 to Rn. But to represent objects with
complex topology, such maps on rectangular parameter domains are not suf-
ficient. One solution which is commonly used in Computer-Aided Design
(CAD) is to trim the B-spline rectangular patches and to “stitch” together
the trimmed pieces to create the complete shape representation. This results
in complex models, which are not simple to use and to modify, since struc-
tural rigidity conditions cannot easily be imposed along the trimming curve
between two trimmed patches.

To allow flexibility in the representation of shapes with complex topology,
another technique called geometric continuity has been studied. Rectangular
parametric surface patches are glued along their common boundary, with
continuity constraints on the tangent planes (or on higher osculating spaces).
In this way, smooth surfaces can be generated from quadrilateral meshes by
gluing several simple parametric surfaces, forming surfaces with the expected
smoothness property along the edges.

This approach built on the theory on differential manifolds, in works such
as [7], [12], [9]. The idea of using transition maps or reparameterizations
in connection with building smooth surfaces had been used for instance by
DeRose [7] in CAGD, who gave one of the first general definitions of splines
based on fixing a parametrization.

Since these initial developments, several works focused on the construc-
tion of such G1 surfaces [18], [16], [24], [23], [5], [32], [11], [13], [10], [27], [26],
[3], . . . with polynomial, piecewise polynomial, rational or special functions
and on their use in geometric modeling applications such as surface fitting
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or surface reconstruction [8], [25], [15], . . .
The problem of investigating the minimal degree of polynomial pieces

has also been considered [19]. Other research investigate the construction
of adapted rational transition maps for a given topological structure [1].
We refer to [20] for a review of these constructions. Constraints that the
transition maps must satisfy in order to define regular spline spaces have also
been identified [21]. But it has not yet been proved that these constraints
are sufficient for the constructions.

The use of Gk spline functions to approximate functions over computa-
tional domains with arbitrary topology received recently a new attention for
applications in isogeometric analysis. In this context, describing the space
of functions, its dimension and adapted bases is of particular importance. A
family of bi-cubic spline functions was recently introduced by Wu et al [31]
for isogeometric applications, where constant transition maps are used, which
induce singular spline basis functions at extraordinary vertices. Multi-patch
representations of computational domains are also used in [4], with constant
transition maps at the shared edges of rectangular faces, using an identifica-
tion of Locally Refined spline basis functions. In [14], Gk continuous splines
are described and the G1 condition is transformed into a linear system of re-
lations between the control coefficients. The case of two rectangular patches,
which share an edge is analysed experimentally. In [2], the space of G1

splines of bi-degree > 4 for rectangular decompositions of planar domains is
analyzed. Minimal Determining Sets of points are studied, providing dimen-
sion formulae and dual basis for G1 spline functions over planar rectangular
meshes with linear gluing transition maps.

Our objective is to analyze the space of G1 spline functions for rectangular
and triangular patches with arbitrary topology and general rational transition
maps. We are interested in determining the dimension of the space of G1

spline functions which are of degree 6 k on triangular pieces and of bi-degree
6 (k, k) on rectangular pieces. To define the space of G1 spline functions,
we introduce the concept of topological surface with gluing data attached
to the edges shared by the faces. The framework does not require manifold
constructions and is general enough to allow non-orientable surfaces. We
describe compatibility conditions on the transition maps so that the space of
differentiable functions is ample and show that these conditions are necessary
and sufficient to construct ample spline spaces. A separability property is
involved to obtain a dimension formula of the G1 spline spaces of degree
6 k on such topological surfaces, for k big enough. This leads to an explicit
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construction of basis functions attached respectively to vertices, edges and
faces.

For the presentation of these results, we structure the paper as follows.
The next section introduces the notion of topological surface M, differen-
tiable functions on M and constraints on the transition maps to have an
ample space of differentiable functions. Section 3 deals with the space of
spline functions which are piecewise polynomial and differentiable on M.
Section 4 analyzes the gluing conditions along an edge. Section 5 analyzes
the gluing condition around a vertex. In Section 6, we give the dimension
formula for the space of spline functions of degree 6 k over a topological sur-
face M and describe explicit basis constructions. Finally, in Section 7, we
detail an example with boundary edges and another one with no boundary
edges. We also provide an appendix with an algorithmic description of the
basis construction.

2. Differentiable functions on a topological surface

Typically in CAGD, parametric patches are glued into surfaces by splines
(i.e., polynomial maps) from polygons in R2. The simplest Cr construction
is with the polygons in R2 situated next to each other, so that Cr continuity
across patch edges comes from Cr continuity of the coordinate functions
across the polygon edges. This is called parametric continuity. A more
general construction to generate a Cr surface from polygonal patches is called
geometric continuity [7], [20]. Inspired by differential geometry, attempts
have been made [12], [28], [29] to define geometrically continuous Gr surfaces
from a collection of polygons in R2 with additional data to glue their edges
and differentiations. They are defined by parametrization maps from the
polygons to R3 satisfying geometric regularity conditions along edges.

It is easy to define a C0 surface from a collection of polygons and home-
omorphisms between their edges.

Definition 2.1. Given a collection M2 of (possibly coinciding) polygons σi
in R2, a topological surfaceM is defined by giving a set of homeomorphisms
µ : τi → τj between pairs of polygonal edges τi ⊂ σi, τj ⊂ σj (σi, σj ∈ M2).
Each polygonal edge can be paired with at most one other edge, and it cannot
be glued with itself.

A G0-continuous function on the topological surface M is defined by as-
signing a continuous function fi to each polygon σi, such that the restrictions
to the polygonal edges are compatible with the homeomorphisms µ.
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The topological surface M is the disjoint union of the polygons, with
some points identified to equivalence classes by the homeomorphisms µ. The
polygons are also called the faces of M and their set is denoted M2. Each
homeomorphism µ identifies the edges τi, τj of the polygons σi, σj to an in-
terior edge of M. We say that the edge is shared by the faces σi and σj.
An edge not involved in any homeomorphism µ is a boundary edge of M.
The edges of M are the equivalent classes of edges of the polygons of R2

identified by the homeomorphisms µ. Their set is denoted M1. Similarly,
let M0 denote the set of M-vertices, that is, equivalences classes of polygo-
nal vertices. An interior vertex is an equivalence class of polygonal vertices
γ0, γ1, . . . , γn = γ0 such that the adjacent vertices γi, γi+1 are identified by
an edge homeomorphism. The set of these equivalent classes of identified
vertices of the polygons, or interior vertices of M, is denoted M◦

0.

2.1. Gluing data

The definition of a differential surface S typically requires an atlas of S,
that is a collection {Vp, ψp}p∈J such that {Vp}p∈J is an open covering of S
[30]. Each ψp is a homeomorphism ψp : Up → Vp, where Up is an open set in
R2. For distinct p, q ∈ J such that Vp ∩ Vq 6= ∅, let Up,q := ψ−1

p (Vp ∩ Vq) and
Uq,p := ψ−1

q (Vp ∩ Vq). Then the map ψ−1
q ◦ ψp : Up,q → Uq,p is required to be

a C1-diffeomorphism. The maps φpq : ψ−1
q ◦ ψp are called transition maps.

A differentiable function f on S is a function such that for any open set Vp,
the composition fp = f ◦ ψ−1

p : Up ⊂ R2 → R is differentiable.
Our objective is to study the space of differentiable functions that can be

constructed on a surface S associated to the topological surfaceM. Instead
of an atlas of a differential surface S, we consider a topological surface M
together with gluing data given by maps (that we call transition maps) be-
tween the pairs of faces ofM that share an edge inM. We make this precise
in the following definition.

Definition 2.2. For a topological surface M, a gluing structure associated
to M consists of the following:

• for each face σ ∈M2 an open set Uσ of R2 containing σ;

• for each edge τ ∈M1 of a cell σ, an open set Uτ,σ of R2 containing τ ;

• for each edge τ ∈M1 shared by two faces σi, σj ∈M2, a C1-diffeomorphism
called the transition map φσj ,σi : Uτ,σi → Uτ,σj between the open sets
Uτ,σi and Uτ,σj , and also its correspondent inverse map φσi,σj ;
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• for each edge τ ∈ M1 of a cell σ, the identity C1-diffeomorphism that
defines the identity transition map φσ,τ = Id between Uσ and Uτ,σ.

σ1

σ2

τ1

τ2

γ2

γ1 b

b

Figure 1: Topological surface constructed from two triangles.

A transition map as in Definition 2.2 differs from the usual notion of
transition map in the context of differential manifolds (see [12]), since we do
not require compatibility conditions at the vertices and across edges. The
precise compatibility conditions that we need on these maps φσj ,σi are given
in Sections 2.3 ans 2.4.

Let τ = (τ1, τ2) be an edge shared by two faces σ1, σ2 ∈ M2 and let
γ = (γ1, γ2) be a vertex of τ corresponding to γ1 in σ1 and to γ2 in σ2, as in
Figure 1. We denote by τ ′1 (resp. τ ′2) the second edge of σ1 (resp. σ2) through
γ1 (resp. γ2) We associate to σ1 and σ2 two coordinate systems (u1, v1) and
(u2, v2) such that γ1 = (0, 0), τ1 = {(u1, 0), u1 ∈ [0, 1]}, τ ′1 = {(0, v1), v1 ∈
[0, 1]} and γ2 = (0, 0), τ2 = {(0, v2), v2 ∈ [0, 1]}, τ ′2 = {(u2, 0), u2 ∈ [0, 1]}.
Using the Taylor expansion at (0, 0), a transition map from Uτ,σ1 to Uτ,σ2 is
then of the form

φσ2,σ1 : (u1, v1) −→ (u2, v2) =

(
v1 bτ,γ(u1) + v2

1ρ1(u1, v1)
u1 + v1 aτ,γ(u1) + v2

1ρ2(u1, v1)

)
(1)

where aτ,γ(u1), bτ,γ(u1), ρ1(u1, v1), ρ2(u1, v1) are C1 functions. We will refer
to it as the canonical form of the transition map φσ2,σ1 at γ along τ . The
functions [aτ,γ, bτ,γ] are called the gluing data at γ along τ on σ1.

Definition 2.3. An edge τ ∈M which contains the vertex γ ∈M is called
a crossing edge at γ if aτ,γ(0) = 0 where [aτ , bτ ] is the gluing data at γ along
τ . We define cτ (γ) = 1 if τ is a crossing edge at γ and cτ (γ) = 0 otherwise.
By convention, cτ (γ) = 0 for a boundary edge. If γ ∈ M0 is an interior
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vertex where all adjacent edges are crossing edges at γ, then it is called a
crossing vertex. Similarly, we define c+(γ) = 1 if γ is a crossing vertex and
c+(γ) = 0 otherwise.

2.2. Differentiable functions on a topological surface

We can now define the notion of differentiable function on M:

Definition 2.4. A differentiable function f on the topological surfaceM is
a collection f = (fσ)σ∈M of differentiable functions fσ : Uσ → R such that
∀γ ∈ τ = σ1 ∩ σ2, ∀u ∈ Uτ,σ1 ,

Jγ(fσ1)(u) = Jγ(fσ2 ◦ φσ2,σ1)(u) (2)

where Jγ is the jet or Taylor expansion of order 1 at γ.

If f1, f2 are the functions associated to the faces σ1, σ2 ∈ M2 which are
glued along the edge τ with a transition map of the form (1), the regularity
condition (2) leads to the following relations:

• f1(u1, 0) = f2 ◦ φσ2,σ1(u1, 0) for u1 ∈ [0, 1]; that is

f1(u1, 0) = f2(0, u1) (3)

• ∂f1

∂v1

(u1, 0) =
∂(f2 ◦ φ)

∂v1

(u1, 0) for φ = φσ2,σ1 and u1 ∈ [0, 1], which

translates to

∂f1

∂v1

(u1, 0) = bτ,γ(u1)
∂f2

∂u2

(0, u1) + aτ,γ(u1)
∂f2

∂v2

(0, u1) (4)

for u1 ∈ [0, 1], with a(u1) = ∂φ1

∂v1
(u1, 0), b(u1) = ∂φ2

∂v1
(u1, 0), where φ1

and φ2 are the components of φ at the first and the second variable
respectively.

A convenient way to describe this regularity condition is to express the rela-
tion (4) as a relation between differentials acting on the space of differential
functions on the edge τ :

aτ,γ(u1)∂v2 + bτ,γ(u1)∂u2 − ∂v1 = 0 (5)

With this notation, at a crossing vertex γ with 4 edges we have bτ,γ(0)∂u2 −
∂v1 = 0. The differentials along two opposite edges are “aligned”, which
explains the terminology of crossing vertex.
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Definition 2.5. A subspace D of the vector space of differentiable functions
on M is said to be ample if at every point γ of a face σ of M, the space of
values and differentials at γ, namely

[
f(γ), ∂uσ(f)(γ), ∂vσf(γ)

]
for f ∈ D,

is of dimension 3.

This definition does not depend on the choice of the face σ to which γ
belongs, since for γ on a shared edge, the value and differentials coincide
after transformation by the invertible transition map.

2.3. Compatibility condition at a vertex

Giving gluing data on the edges is not sufficient to ensure the existence of
an ample space of differentiable functions onM. At vertices shared by several
edges and faces, additional conditions on the transition maps need to be
satisfied. We describe them in this section, and show that they are sufficient
to construct an ample space of splines on M in the following sections.

For a vertex γ ∈ M◦
0, (see Fig. 2) which is common to faces σ1, . . . , σF

glued cyclically around γ, along the edges τi = σi+1 ∩ σi for i = 1, . . . , F
(with σF+1 = σ1), we impose the following condition:

Jγ(φ1,F ) ◦ · · · ◦ Jγ(φ3,2) ◦ Jγ(φ2,1)(u, v) = (u, v), (6)

where Jγ is the jet or Taylor expansion of order 1 at γ. We can assume that

σ4

τ5 σ5

τ1

σ1τ2σ2

τ3

σ3 τ4

b
γ

Figure 2: The faces σi for i = 1, . . . , 5 are glued cyclically around a vertex γ.

for each i = 1, . . . , F , the edge τi is defined (linearly) by vi = 0 in σi. It is
easy to check that the condition (6) on the Taylor expansion at γ leads to
the following:
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Condition 2.6. If the vertex γ is on the faces σ1, . . . , σF glued cyclically
around γ, the gluing [ai, bi] at γ on the edges τi between σi−1 and σi satisfy

F∏
i=1

(
0 1

bi(0) ai(0)

)
=

(
1 0
0 1

)
. (7)

This gives algebraic restrictions on the values ai(0), bi(0). At a crossing
vertex γ (see Def. 2.3) of four incident edges, the equality (7) amounts to

b1(0)b3(0) = 1, b2(0)b4(0) = 1. (8)

It turns out that Condition 2.6 is not sufficient around crossing vertices for
ensuring an ample space of differentiable functions on M. An obstruction
was noticed in [21] in a setting of rectangular patches. We write this constrain
in a general setting:

Condition 2.7. If the vertex γ is a crossing vertex with 4 edges τ1, . . . , τ4,
the gluing data [ai, bi] i = 1 . . . 4 on these edges at γ satisfy

a′1(0) +
b′4(0)

b4(0)
= −b1(0)

(
a′3(0) +

b′2(0)

b2(0)

)
, (9)

a′2(0) +
b′1(0)

b1(0)
= −b2(0)

(
a′4(0) +

b′3(0)

b3(0)

)
. (10)

Lemma 2.8. If the space of differentiable functions on M is ample and
Condition 2.6 is satisfied, then the gluing data at every crossing vertex γ of
4 incident edges must also satisfy Condition 2.7.

Proof. The value and first derivatives at every point γ ∈ M of all differen-
tiable functions on M should span a space of dimension 3.

If γ is a crossing vertex, then we have 4 restrictions on the Taylor expan-
sions of a spline components (f1, f2, f3, f4). Let us write the Taylor expansion
of fi at γ = (0, 0) as fi = pi + qiui + rivi + siuivi + . . .. The gluing conditions
imply the following. From (3),

p1 = p2 = p3 = p4, q1 = r2, q2 = r3, q3 = r4 and q4 = r1 (11)

this together with the Condition (4) on the first derivatives imply

b2(0)q1 − q3 = 0, b3(0)q2 − q4 = 0.
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When we consider the derivative of fi with respect to ui, again applying (4),
we get the conditions

s2 − b2(0)s1 = b′2(0)q1 + a′2(0)q2,

s3 − b3(0)s2 = b′3(0)q2 + a′3(0)q3,

s4 − b4(0)s3 = b′4(0)q3 + a′4(0)q4,

s1 − b1(0)s4 = b′1(0)q4 + a′1(0)q1.

By combining the last four equations respectively with the weights b4(0),
b1(0)b4(0), b1(0), 1, together with Condition 2.6, we get

q1

(
a′1(0) + b2(0)b′4(0)

)
+ q3 b1(0)

(
b2(0)a′3(0) + b′2(0)

)
+

q2

(
b1(0)a′2(0) + b′1(0)

)
+ q4 b2(0)

(
a′4(0) + b1(0)b′3(0)

)
= 0. (12)

This relation does not involve the cross derivatives s1, s2, s3, s4, but gives
an unwanted relation between the first order derivatives. After replacing
(11) and (8) in (12), we encounter conditions (9) and (10). Under these
conditions, there is no relation between q1, q2, and there is one degree of
freedom for (s1, s2, s3, s4).

The restrictions (9) and (10) were noticed in [21] in the context of gluing
tensor product rectangular patches with all bi(0) = −1. The restrictions are
then simply

a′1(0) = a′3(0), a′2(0) = a′4(0).

2.4. Topological restrictions

A guiding principle for the construction of geometric continuous functions
is that G1 properties are equivalent to C1 properties in the plane after an
adequate reparameterization of the problem. Gluing two faces along an edge
is transformed locally via such reparameterization maps, into gluing two half-
planes along a line. Each half-plane is in correspondence with the half-plane
determined by one of the faces and the shared edge. A natural gluing is
to have the half planes on each side of the line. In this case, the points of
one face are mapped by the reparameterizations on one side of the line and
the points of the other face on the other side of the line. This implies that
the transition maps keep locally the points of a face on the same side of the
edge and thus it should have a positive Jacobian at each point of the edge.
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Therefore the first topological restriction that we ask for each edge τ , using
the canonical form (1), is the following:

∀u ∈ [0, 1], bτ (u) < 0.

When the function bτ is positive on the edge; the transition map identifies
interiors of the polygons. It corresponds to two patches of surfaces virtually
pasted at a sharp edge (i.e., at angle 0) rather than in a proper continuously
smooth manner (i.e., at the angle π). In some CAGD applications, it may
be useful to model surfaces with sharp wing-like edges by the G1 continuity
restrictions with bτ > 0. But typical G1 continuity applications should re-
quire bτ < 0 on the whole edge to prevent this degeneration. The regularity
property across edges, considered irrespective of orientation, is called weak
geometric continuity [7, §6.7] and the restriction we consider corresponds to
coherently oriented parametrizations in [7, §6.8].

Similarly, gluing the faces around a vertex γ should be equivalent to gluing
sectors around a point in the plane, via the reparameterization maps. Such
sectors should form a fan around the parameter point, which can be identified
with the local neighborhood of the vertex γ on the surface. Thus these sectors
should not overlap. If this fan is defined by vectors u1, . . . ,uF ′ ∈ R2 (ui+1 is
supposed to be outside the union of the sectors defined by two consecutive
vectors uj−1,uj for 2 < j < i), we easily check that the coefficients ai(0),
bi(0) of the transition map (1) across the edge τi at γ are such that:

ui−1 = ai(0)ui + bi(0) ui+1 (13)

or equivalently

[ui,ui−1] =

[
0 1

bi(0) ai(0)

]
[ui+1,ui]

(see also the construction in the next section 2.5). If the sector angles are less
than π (i.e. the sector ui,ui+1 coincides with the cone generated by ui,ui+1)
the condition that the sectors form a fan and do not overlap translates as
follows: the coefficients of the last row of

k∏
i=j

(
0 1

bi(0) ai(0)

)
should not be both non-negative for 1 < j 6 k < F .
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A natural way to define transition maps at a vertex γ which satisfy this
condition is to choose vectors in the plane that define a fan, as in Figure 2.
Then the coefficients ai(0), bi(0) are uniquely determined from the relations
(13).

The topological constraints could be dropped in some applications, for
example, when modeling analytical surfaces with branching points, or sur-
faces with sharp wing-like interior edges, or with winding-up boundary. In
these specific applications, the compatibility Condition 2.7 at crossing vertex
might need to be extended, to allow winding up of 8, 12, etc., crossing edges,
and take into account the sharp edges. Apart from this kind of consideration,
the topological conditions do not essentially affect our algebraic dimension
count.

The framework that we propose is more general than previous approaches
used in Geometric Modeling to define G1 splines (see e.g. [22, §3]) since it
allows to define differentiable functions on topological surfaces such as a
Möbius strip or a Klein bottle.

Moreover, it does not rely on the construction of manifold surfaces and
atlas, but only on compatible transition maps.

2.5. Example

A simple way to define transition maps is to use a symmetric gluing as
proposed in [12, §8.2] for rectangular patches. If τ = (γ0, γ1) is the shared
edge between σ1 and σ2, the transition map can be of the form:

φ(u, v) =

(
−v

u+ 2v
(
d0(u) cos 2π

n0
− d1(u) cos 2π

n1

) ) (14)

where n0 (resp. n1) is the number of edges at the vertex γ0 (resp. γ1).
Additionally, if γ0 corresponds to u = 0 and γ1 to u = 1, the functions a and
b interpolate 0 and 1: d0(0) = 1, d0(1) = 0, d1(0) = 0, d1(1) = 1 and their
derivatives of order 1 should vanish at 0, 1. It corresponds to a symmetric
gluing, where the angle of two consecutive edges at γi is 2π

ni
. If d0(u) and

d1(u) are polynomial functions, their degree must be at least 3. If d0(u) and
d1(u) are rational functions with the same denominator, the maximal degree
of the numerators and denominator must be at least 2. As we will see the
dimension of the spline space decreases when the degree increases. Thus it
is important to construct transition maps with low degree numerators and
denominators. See e.g. [20, 21] for low degree constructions, which depend
on the structure of M.
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A general construction of gluing data which satisfies the compatibility
conditions is as follows.

(i) For all the vertices γ ∈ M0 and for all the edges τ1, . . . , τF of M1

that contain γ, choose vectors u1, . . . ,uF ∈ R2 such that the cones
generated by ui,ui+1 form a fan in R2 and such that the union of these
cones is R2 when γ is an interior vertex.
Compute the transition map φσi,σi−1

at γ = (0, 0) on the edge τi

φσi,σi−1
(0, 0) = S ◦ [ui,ui+1]−1 ◦ [ui−1,ui] ◦ S =

[
0 bτi(0)
1 aτi(0)

]
where S =

[
0 1
1 0

]
, [ui,ui+1] is the matrix which columns are the

vectors ui,ui+1, |ui,uj| is the determinant of the vectors ui,uj and

aτi(0) =
|ui−1,ui+1|
|ui,ui+1|

, bτi(0) = −|ui−1,ui|
|ui,ui+1|

.

(ii) For all the edges τ ∈M1, define the rational functions aτ = aτ
cτ
, bτ = bτ

cτ
on the edges τ by interpolation as follows: if there is no crossing edge in
M1, then a linear interpolation of the value at the vertices is sufficient.
If γ1, . . . , γn is a sequence of crossing vertices, and γ0γ1, γ1γ2, . . . , γnγn+1

is a sequence of edges passing “straight” through them, we can choose
linear gluing data on one edge, and quadratic data on the remaining
edges of the sequence so that the constraints (9) and (10) are satisfied.

Therefore, for general meshes, gluing data which satisfy the compatibility
condition and the topological condition can be constructed in degree 6 2.

3. Spline space on a topological surface

The main object of our study is the space of functions on the topological
surface M, which are differentiable and piecewise polynomial. Such func-
tions are called spline functions on M. Let R(σ) = R[uσ, vσ] be the ring of
polynomials in the variables (uσ, vσ) attached to the face σ. A spline function
f is defined by assigning to each face σ ∈ M2 a polynomial fσ ∈ R(σ), and
by imposing the regularity conditions across the shared edges.

We also consider rational gluing data on the interior edges τ ∈M1:

aτ (u1) =
aτ (u1)

cτ (u1)
and bτ (u1) =

bτ (u1)

cτ (u1)
(15)
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with aτ (u1), bτ (u1) and cτ (u1) polynomials in the variable u1, where bτ (u1)
and cτ (u1) do not vanish on τ (i.e. for u1 ∈ [0, 1]). As b(u1), c(u1) do not van-
ish on τ , the transition map φσ2,σ1 is a C1-diffeomorphism in a neighborhood
of the edge τ = (τ1, τ2) between σ1 and σ1. The polynomial vector [aτ , bτ , cτ ]
is also called hereafter the gluing data of the edge τ . We assume hereafter
that the transition maps satisfy Conditions 2.6, 2.7 and all crossing vertices
of M have 4 edges.

We can now define the space of splines on M:

Definition 3.1. We denote by S1(M) the (R-linear) space of differentiable
functions on the topological surfaceM which are defined by assigning poly-
nomials to the faces σ ∈M2 satisfying the G1 constrains (2). More precisely,

S1(M) := {f ∈ ⊕σ∈M2R(σ) | Jγ(fσ1) = Jγ(fσ2 ◦ φσ2,σ1) ∀γ ∈ τ = σ1 ∩ σ2},

where Jγ is the jet or Taylor expansion of order 1.

A spline f ∈ S1(M) gives a piecewise-polynomial map, defined on every
face ofM, and the jets of order 1 coincide on the shared edges. This definition
implies that a spline function f ∈ S1(M) is C1 on a neighborhood of a shared
edge τ = σ1 ∩ σ2 if we use the re-parametrization fσ2 ◦ φσ2,σ1 .

Definition 3.1 can be directly extended to splines of any order r but in
this paper we only consider r = 1.

3.1. Polynomials on faces

On each face σ ∈ M2, we consider polynomials of degree bounded by
k ∈ N.

If σ ∈ M2 is a triangle (P,Q,R), we denote by Rk(σ) the finite dimen-
sional vector space of polynomials in R[uσ, vσ] with total degree bounded by
k.

After a change of coordinates, we may assume that the coordinate func-
tion u = uσ satisfies uσ(PR) = 0 and uσ(Q) = 1, while v = vσ satisfies
vσ(PQ) = 0 and vσ(R) = 1. Introducing w = 1 − u − v, we can express
any polynomial in Rk(σ) as a homogeneous polynomial of degree 6 k in the
barycentric coordinates u, v, w using the Bernstein-Bézier basis:

b
∆

i,j(u, v, w) =
k!

i!j!(k − i− j)!
ui vj wk−i−j,

14



for 0 6 i+ j 6 k. We verify directly that for a function

f(u, v) =
∑

06i+j6k

ci,jb
∆

i,j(u, v, 1− u− v)

expressed in this basis, we have

f(0, 0) = c0,0, (16)

∂uf(0, 0) = k(c1,0 − c0,0), ∂vf(0, 0) = k(c0,1 − c0,0),

∂u∂vf(0, 0) = k (k − 1) (c1,1 − c1,0 − c0,1 + c0,0).

If σ ∈ M2 is a rectangle (P,Q,R, S), we will denote by Rk(σ) the finite
dimensional vector space of polynomials in R[uσ, vσ] with partial degree in
uσ and vσ bounded by k, where u = uσ is chosen such that uσ(PS) = 0,
uσ(QR) = 1, and v = vσ is chosen such that vσ(PQ) = 0, vσ(RS) = 1.
Introducing ũ = 1− u, ṽ = 1− v, we can express any polynomial function of
Rk(σ) as a bi-homogeneous polynomial of degree k in u, ũ and degree k in
v, ṽ, using the tensor product Bernstein-Bézier basis

b
�

i,j(u, ũ, v, ṽ) =
k!k!

i!j!(k − i)!(k − j)!
ui ũk−i vj ṽk−j.

for 0 6 i 6 k, 0 6 j 6 k. We verify directly that for a function f =∑
06i,j6k ci,jb

�

i,j expressed in this basis, we have

f(0, 0) = c0,0, (17)

∂uf(0, 0) = k(c1,0 − c0,0), ∂vf(0, 0) = k(c0,1 − c0,0),

∂u∂vf(0, 0) = k2 (c1,1 − c1,0 − c0,1 + c0,0).

The finite dimensional vector space of spline functions f = (fσ)σ∈M2 ∈ S(M)
of degree bounded by k ∈ N on each face (fσ ∈ Rk(σ)) and of regularity r is
denoted Srk(M) or simply Sk(M) when r = 1.

3.2. Taylor maps

An important tool that we are going to use intensively is the Taylor map
associated to a vertex or to an edge of M.

Let γ ∈ M0 be a vertex on a face σ ∈ M2 belonging to two edges
τ, τ ′ ∈ M1 of σ. We define the ring of γ on σ by Rσ(γ) = R(σ)/(`2

τ , `
2
τ ′)

where (`2
τ , `

2
τ ′) is the ideal generated by the squares of `τ and `τ ′ , the equations
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`τ (u, v) = 0 and `τ ′(u, v) = 0 are respectively the equations of τ and τ ′ in
R(σ) = R[u, v].

The Taylor expansion at γ on σ is the map

T σγ : f ∈ R(σ) 7→ f mod (`2
τ , `

2
τ ′) in Rσ(γ).

Choosing an adapted basis of Rσ(γ), one can defined T σγ by

T σγ (f) =
[
f(γ), ∂uf(γ), ∂vf(γ), ∂u∂vf(γ)

]
.

The map T σγ can also be defined in another basis of Rσ(γ) in terms of the
Bernstein coefficients by

T σγ (f) =
[
c0,0(f), c1,0(f), c0,1(f), c1,1(f)

]
where c0,0, c1,0, c0,1, c1,1 are the first Bernstein coefficients associated to γ =
(0, 0).

We define the Taylor map Tγ on all the faces σ that contain γ,

Tγ : f = (fσ) ∈ ⊕σR(σ)→ (T σγ (fσ)) ∈ ⊕σ⊃γRσ(γ).

Similarly, we define T0 as the Taylor map at all the vertices on all the faces
of M.

For an edge τ ∈ M1 on a face σ ∈ M2, we define the ring of τ on σ by
Rσ(τ) = R(σ)/(`2

τ ) where `τ (u, v) = 0 is the equation of τ in R(σ) = R[u, v].
The Taylor expansion along τ on σ is defined by

T στ : f ∈ R(σ) 7→ f mod (`2
τ ) in Rσ(τ),

and the Taylor map on all the faces σ that contain τ is given by

Tτ : f = (fσ) ∈ ⊕σR(σ)→ (T στ (fσ)) ∈ ⊕σ⊃τRσ(γ).

Similarly, we define T1 as the Taylor map along all the edges on all the faces
of M.

4. G1 splines along an edge

To analyze the constraints imposed by gluing data along an edge, we
consider first a simple topological surface N composed of two faces σ1, σ2

glued along an edge τ .
A spline function f ∈ S1

k(N ) on N is represented by a pair of polynomials
f = (f1, f2) with fi ∈ R(σi) = R[ui, vi] for i = 1, 2.

By a change of coordinates, we assume that the edge τ is defined by
v1 = 0 and u1 ∈ [0, 1] in σ1 and by u2 = 0 and v2 ∈ [0, 1] in σ2.

16



4.1. Splines and syzygies

With the transition map φσ2,σ1 defined by the rational functions a = aτ
cτ

and b = bτ
cτ

as in (15), the differentiability Condition (4) along the interior
edge τ becomes

a(u1)A(u1) + b(u1)B(u1) + c(u1)C(u1) = 0,

where

A(u1) =
∂f2

∂v2

(0, u1), B(u1) =
∂f2

∂u2

(0, u1), C(u1) = −∂f1

∂v1

(u1, 0).

Thus, the G1-smoothness condition along an interior edge is equivalent to the
condition on (A,B,C) of being a syzygy of the polynomials a(u1), b(u1), c(u1).

More precisely, a G1 spline (f1, f2) on N is constructed from a syzygy
(A,B,C) of a, b, c by defining:

f1(u1, v1) = c0 +

∫ u1

0

A(t)dt− v1C(u1) + v2
1E1(u1, v1), (18)

f2(u2, v2) = c0 +

∫ v2

0

A(t)dt+ u2B(v2) + u2
2E2(u2, v2), (19)

where c0 ∈ R is any constant, and E1, E2 are (any) polynomials in R[ui, vi]
for i = 1, 2, respectively.

We will use this representation for the splines on N to compute the di-
mension of the space of G1 splines S1

k(N ), see Proposition 4.6 below. Before,
we introduce some notation, both for the proof and the dimension formula.

The module of syzygies of a(u1), b(u1), c(u1) over the ring R[u1] is de-
noted by Z = Syz(a, b, c). For (A,B,C) ∈ Z, the maximum of the degrees,
max(degA, degB, degC) is called the coefficient degree of the syzygy.

Each of the faces σ1 and σ2 in N can be a triangle or a rectangle. Let us
denote by F� the number of rectangles and by F∆ the number of triangles in
N .

Definition 4.1. As before, let σ1, σ2 be the faces of N . We define

m = min
(
F∆(σ1), F∆(σ2)

)
,
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where F∆(σi) = 1 if σi is a triangle and 0 otherwise. For the polyno-
mials a, b, c ∈ R[u1] defining the gluing data along the edge τ , let n =
max

(
deg(a), deg(b), deg(c)

)
,

da = n+ 1, db = n+ F∆(σ2), and dc = n+ F∆(σ1),

and

e =

{
0 , if min

(
da − deg(a), db − deg(b), dc − deg(c)

)
= 0 and

1 , otherwise.

By the formulas (18) and (19) representing a spline (f1, f2) ∈ S1
k(N ),

let us notice that we need to consider syzygies (A,B,C) of a, b, c such that
deg(A) 6 k−1, deg(B) 6 k−F∆(σ2), and deg(C) 6 k−F∆(σ1). The reason
is that fi is of bidegree at most (k, k) if σi is a rectangle and of total degree
at most k if σi is triangle.

Definition 4.2. For k > 0, we will denote by Zk the vector subspace of Z
of syzygies of (a, b, c) defined as the set

Zk = {(A,B,C) ∈ Z : deg(A) 6k − 1, deg(B) 6 k − F∆(σ2),

and deg(C) 6 k − F∆(σ1)}.

Let us consider the map

Θτ : Z → S1(N ) (20)

(A,B,C) 7→
(∫ u1

0

A(t)dt− v1C(u1),

∫ v2

0

A(t)dt+ u2B(v2)

)
.

By construction, we have Θτ (Zk) ⊂ S1
k(N ).

The dimension of Zk, as a vector space over R, will be deduced from
classical results on graded modules over S = R[u0, u1]. We will study the
module Syz(ā, b̄, c̄), where ā, b̄, c̄ ∈ S are the homogenization of a, b and c in
degree da, db and dc respectively. The elements in Syz(ā, b̄, c̄) in degree n+ k
will precisely lead to the syzygies in Zk.

Lemma 4.3. For polynomials a, b, c ∈ R[u1], with b, c 6= 0, gcd(a, b, c) = 1
and Z = Syz(a, b, c) as defined above,

(i) Z is a free R[u1]-module of rank 2.
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(ii) The module Z is generated by vectors (A1, B1, C1), (A2, B2, C2) of co-
efficient degree µ and ν = n − µ + 1 + F∆ − e − 2m where µ is the
smallest possible coefficient degree.

(iii) For k ∈ N, the dimension of Zk as vector space over R is given by

dimZk = (k − µ−m+ 1)+ + (k − n+ µ+m− F∆ + e)+

where t+ = max(0, t) for t ∈ Z.

(iv) The generators (A1, B1, C1), (A2, B2, C2) of Z can be chosen so that

(a, b, c) = (B1C2 −B2C1, C1A2 − C2A1, A1B2 − A2B1).

Proof. We study the syzygy module Z = Syz(a, b, c) using results on graded
resolutions. For this purpose, we homogenize a, b and c in degree da = n+ 1,
db = n + F∆(σ2), and dc = n + F∆(σ1), respectively, where F∆(σi) is as in
Definition 4.1. Let u0, u1 be the homogeneous coordinates, and ā, b̄, c̄ the
corresponding homogenizations of a, b, and c. We consider the module of
homogeneous syzygies Syz(ā, b̄, c̄) over the polynomial ring S = R[u0, u1].

Claim 4.4. For any k > 0, the elements in Zk are exactly the syzygies of
degree n+ k in Syz(ā, b̄, c̄) after dehomogenization by setting u0 = 1.

Proof. It is clear that if Āā + B̄b̄ + C̄c̄ = 0, then by dehomogenization
taking u0 = 1, we get a syzygy (A,B,C) of (a, b, c). Moreover, if deg(Āā) =
deg(B̄b̄) = deg(C̄c̄) = n+ k, then deg(Ā) = k− 1, deg(B̄) = k−F∆(σ2) and
deg(C̄) = k − F∆(σ1). It follows that (A,B,C) ∈ Zk.

On the other hand, any syzygy (A,B,C) ∈ Zk is given by polynomials
that satisfy the conditions in Definition 4.2. Thus max{degA, degB, degC} 6
k, and since n = max{deg a, deg b, deg c} then we may consider the homoge-
nization of the polynomial Aa+Bb+Cc in degree n+ k. These polynomials
satisfy

0 = uk+n
0 (Aa+Bb+ Cc)(u1/u0

)
= uk−1

0 · un+1
0 Aa

(
u1/u0

)
+ u

k−F∆(σ2)
0 · un+F∆(σ2)

0 Bb
(
u1/u0

)
+ u

k−F∆(σ1)
0 · un+F∆(σ1)

0 Cc
(
u1/u0

)
.

It is easy to check that

Ā = uk−1
0 A(u1/u0), B̄ = u

k−F∆(σ2)
0 B(u1/u0), C̄ = u

k−F∆(σ1)
0 C(u1/u0)
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are all polynomials in R[u1, u0], and define a syzygy of ā, b̄, c̄ of degree n+ k.
Let us also notice that the polynomials

ā = un+1
0 a(u1/u0), b̄ = u

n+F∆(σ2)
0 b(u1/u0), and c̄ = u

n+F∆(σ1)
0 c(u1/u0)

are precisely the homogenization of a, b, c in degree da, db, dc, respectively.

As gcd(a, b, c) = 1, we have gcd(ā, b̄, c̄) = u0 if e = 1, and gcd(ā, b̄, c̄) = 1
otherwise.

Let I = (ā, b̄, c̄) be the ideal generated by ā, b̄, c̄ in S. If gcd(ā, b̄, c̄) = 1
then there exists t0 ∈ N such that ∀t > t0, It = (u0, u1)t and in that case,
dimR(S/I)t = 0 for t sufficiently large. It follows that the Hilbert polynomial
HPS/I of S/I is the zero polynomial.

For the second case, namely if gcd(ā, b̄, c̄) = u0, since gcd(a, b, c) = 1 then
the polynomials ā/u0, b̄/u0 and c̄/u0 have gcd equal to 1. Hence there exists
t0 ∈ N such that ∀t > t0, It = u0 (u0, u1)t−1. In this case dimR(S/I)t = 1 for
t sufficiently large, and it follows that the Hilbert polynomial HPS/I is the
constant polynomial equal to 1.

Then the exact sequence

0→ I → S → S/I → 0

implies that

HPI(t) = HPS(t)−HPS/I(t) =

(
t+ 1

1

)
− e, (21)

where HPM is the Hilbert polynomial of the module M .
By the Graded Hilbert Syzygy Theorem, we get a resolution of the form

0 −→ S(−d1)⊕ · · · ⊕ S(−dL)
λ−−→ S(−da)⊕ S(−db)⊕ S(−dc) −→ I −→ 0.

Notice that this resolution is not necessarily minimal. Since this is an exact
sequence, then the Hilbert polynomial of the middle term is the sum of the
other two Hilbert polynomials, and applying (21) we get

3t− (da + db + dc) + 3 = (t− d1 + 1) + · · ·+ (t− dL + 1) + (t+ 1)− e.

It follows that L = 2 which proves (i). Furthermore, we have that the degrees
d1 and d2 of the syzygies satisfy d1 + d2 = da + db + dc − e.
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The matrix Λ representing λ is a 3× 2 matrix Ā1 Ā2

B̄1 B̄2

C̄1 C̄2


the first column corresponding to the generator of degree d1 and the second of
degree d2. These two syzygies correspond to vectors of polynomial coefficients
of degree µ = d1−min(da, db, dc) and ν = d2−min(da, db, dc). By Definition
4.1, min(da, db, dc) = n+ min

(
1, F∆(σ1), F∆(σ2)

)
= n+m, and also da +db +

dc = 3n+F∆ +1. Let us assume that d1 6 d2, then µ is the smallest degree of
the coefficient vector of a syzygy of (ā, b̄, c̄), and ν = n−µ+1+F∆−e−2m.

By exactness, the two columns of Λ generate Syz(ā, b̄, c̄). The dehomoge-
nization (by setting u0 = 1) of the syzygies in Syz(ā, b̄, c̄) leads to syzygies of
(a, b, c) over R[u1]. In particular, it is straightforward to show that the deho-
mogenization (Ai, Bi, Ci) of (Āi, B̄i, C̄i) for i = 1, 2 generate Z = Syz(a, b, c)
as a module over R[u1]. This proves (ii).

By Claim 4.4, the space Zk is in correspondence with the space of homo-
geneous syzygies of degree n+k, which is spanned by the multiples of degree
n+ k of (Ā1, B̄1, C̄1) and (Ā2, B̄2, C̄2). Therefore,

dimZk = (n+ k − d1 + 1)+ + (n+ k − d2 + 1)+

= (k − µ−m+ 1)+ + (k − ν −m+ 1)+

with ν = n− µ+ 1 + F∆ − e− 2m. This proves (iii).
The point (iv) is a consequence of Hilbert-Burch theorem. More details

on this proof can be found in [6, Chapter 6, § 4.17].

Definition 4.5. For an interior edge τ in the topological surfaceM shared by
the faces σ1, σ2 with gluing data [aτ , bτ , cτ ], we denote by Nτ the topological
surface formed by the cells σ1, σ2 glued along the edge τ with the same gluing
data. Let µτ be the smallest coefficient degree among the two generators of
the module Z = Syz(aτ , bτ , cτ ). Let ντ = nτ−µτ+1+F∆(τ)−eτ−2mτ denote
the complementary degree, where nτ = max(deg(aτ ), deg(cτ ), deg(cτ )), mτ =
min(F∆(σ1), F∆(σ2)), eτ = min(nτ + 1−deg(aτ ), nτ +F∆(σ2)−deg(bτ ), nτ +
F∆(σ1)−deg(cτ )) F∆(τ) = F∆(σ1) +F∆(σ2). The corresponding basis of the
syzygy module Z of [aτ , bτ , cτ ] is called the µτ -basis.

This construction allows us to determine the dimension of S1
k(Nτ ).
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Proposition 4.6. For F� (resp. F∆) the number of rectangles (resp. trian-
gles) of Nτ ,

dimSk(Nτ ) = 1 + (k2 − 1)F� +
1

2
(k2 − k)F∆ + dτ (k)

where dτ (k) = (k − µτ −mτ + 1)+ + (k − nτ + µτ +mτ − F∆ + eτ )+

Proof. Since the only constraints satisfied by the spline functions in S(Nτ )
are the gluing conditions along the edge τ , the number of linearly independent
splines on Nτ can be easily counted by using (18) and (19), and the linearly
independent terms in the Bernstein-Bézier representation of the polynomials
f1 and f2 that conform a spline.

The gluing data and the smoothness along the edge τ impose conditions
on the terms in f1 and f2 which are linear in v1 and v2, respectively. Thus,
the dimension of the space of splines on Nτ of degree exactly 1 in v1 and v2,
is given by dimZk = dτ (k). The formula for dτ follows from Lemma 4.3, by
considering Z = Syz(aτ , bτ , cτ ), where aτ , bτ , cτ define the gluing data along
τ .

4.2. Separation of vertices

We analyze now the separability of the spline functions on an edge, that
is when the Taylor map at the vertices separate the spline functions.

Let f = (f1, f2) ∈ R(σ1)⊕R(σ2) of the form fi(ui, vi) = pi+qi ui+ q̃i vi+
si uivi + ri u

2
i + r̃i v

2
i + · · · . Then

Tγ(f) = [p1, q1, q̃1, s1, p2, q2, q̃2, s2].

If f = (f1, f2) ∈ S1
k(Nτ ), then taking the Taylor expansion of the gluing

condition (4) centered at u1 = 0 yields

q̃1 + s1 u1 = (a(0) + a′(0)u1 + · · · ) (q̃2 + 2 r̃2 u1 + · · · ) (22)

+(b(0) + b′(0)u1 + · · · ) (q2 + s2 u1 + · · · )

Combining (22) with (3) yields

p1 = p2

q1 = q̃2

r1 = r̃2

q̃1 = a(0) q̃2 + b(0) q2

s1 = 2 a(0) r2 + b(0) s2 + a′(0) q̃2 + b′(0) q2.
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LetH(γ) be the linear space spanned by the vectors [p1, q1, q̃1, s1, p2, q2, q̃2, s2],
which are solution of these equations.

If a(0) 6= 0, it is a space of dimension 5 otherwise its dimension is 4. Thus
dimH(γ) = 5− cτ (γ).

Proposition 4.7. For k > ντ +mτ + 1, Tγ(S1
k(Nτ )) = H(γ). Its dimension

is dimTγ(S1
k(Nτ )) = 5− cτ (γ).

Proof. Let G(γ) = Tγ(S1
k(Nτ )). By construction G(γ) ⊂ H(γ). We are going

to prove that for k > ντ +mτ + 1, G(γ) and H(γ) have the same dimension
and thus are equal.

By the decompositions (18) and (19), the elements of Tγ(S1
k(Nτ )) are of

the form
[c0, A(0),−C(0),−C ′(0), c0, B(0), A(0), B′(0)]

where c0 ∈ R and [A,B,C] ∈ Zk. By Lemma 4.3, an element of Zk is
of the form [A,B,C] = P [A1, B1, C1] + Q [A2, B2, C2] with P,Q ∈ R[u],
deg(P ) 6 k−µτ −mτ and deg(Q) 6 k− ντ −mτ . By removing the repeated
columns, reordering and changing some signs, we see that G(γ) = Tγ(S1

k(Nτ ))
is isomorphic to the space spanned by the elements

f1(γ)
∂u1f1(γ)
∂u2f2(γ)
−∂v1f1(γ)
∂u2∂v2f2(γ)
−∂u1∂v1f1(γ)

 =


1 0 0 0 0
0 A1(0) A2(0) 0 0
0 B1(0) B2(0) 0 0
0 C1(0) C2(0) 0 0
0 B′1(0) B′2(0) B1(0) B2(0)
0 C ′1(0) C ′2(0) C1(0) C2(0)




c0

P (0)
Q(0)
P ′(0)
Q′(0)

 (23)

for P,Q ∈ R[u] with deg(P ) 6 k − µτ −mτ and deg(Q) 6 k − ντ −mτ . Let
us assume that k > ντ +mτ + 1 so that k − µτ −mτ > k − ντ −mτ > 1.

As A1B2−A2B1 = c and A1(0)B2(0)−A2(0)B1(0) = c(0) 6= 0, we deduce
that [B1(0), B2(0)] 6= [0, 0] and that dimG(γ) > 4.

If cτ (γ) = 0, then a(0) = B1(0)C2(0) − B2(0)C1(0) 6= 0 and dimG(γ) =
5 = 5− cτ (γ) = dimH(γ).

If cτ (γ) = 1, then a(0) = B1(0)C2(0) − B2(0)C1(0) = 0 and dimG(γ) =
4 = 5− cτ (γ) = dimH(γ).

In both cases, we have dimG(γ) = dimH(γ), which implies that G(γ) =
H(γ). This completes the proof of the proposition.
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If γ′ is the other end point of τ , we have a Taylor map for each γ and γ′,
that we join together. Let

Tγ,γ′ : R(σ1)⊕R(σ2) → Rσ1(γ)⊕Rσ2(γ)⊕Rσ1(γ′)⊕Rσ2(γ′) (24)

f = (f1, f2) 7→ (Tγ(f), Tγ′(f))

and let G(τ) = Tγ,γ′(S1
k(Nτ )).

Proposition 4.8. For k > ντ + mτ + 4, we have Tγ,γ′(S1
k(Nτ )) = (H(γ),

H(γ′)) and
dimTγ,γ′(S1

k(Nτ )) = 10− cτ (γ)− cτ (γ
′).

Proof. By a change of coordinates, we can assume that the coordinates of γ
(resp. γ′) are (0, 0) (resp. (1, 0)) in σ1 and (0, 0) (resp. (0, 1)) in σ2.

Similarly to the proof of the previous proposition, Tγ′(S1
k(Nτ )) is spanned

by the vectors

[c0 +

∫ 1

0

A(u)du,A(1),−C(1), C ′(1), c0 +

∫ 1

0

A(u)du,B(1), A(1), B′(1)]

for c0 ∈ R and [A,B,C] = P [A1, B1, C1]+Q [A2, B2, C2] ∈ Zk with deg(P ) 6
k − µτ −mτ and deg(Q) 6 k − ντ −mτ .

For k > ντ+mτ+4, we can find polynomials P = p0(1−3u2+2u3)+p1(u−
2u2−u3)+p2u

2(1−u)2, Q = q0(1−3u2 +2u3)+q1(u−2u2−u3)+q2u
2(1−u)2,

of degree 6 4 such that P (0) = p0, P
′(0) = p1, Q(0) = q0, Q′(0) = q1,

P (1) = 0, P ′(1) = 0, Q(1) = 0, Q′(1) = 0 and
∫ 1

0
(PA1 +QA2)(u)du = −c0.

This implies that (H(γ), 0) ⊂ G(τ). By symmetry, we also have (0,H(γ′)) ⊂
G(τ). By construction G(τ) ⊂ (H(γ), H(γ′)), therefore we have G(τ) =
(H(γ),H(γ′)) and dimG(τ) = dimH(γ) + dimH(γ′). We deduce the dimen-
sion formula from Proposition 4.7.

Definition 4.9. The separability s(τ) of the edge τ is the minimal k such
that Tγ,γ′(S1

k(Nτ )) = (Tγ(S1
k(Nτ )), Tγ′(S1

k(Nτ ))).

Remark 4.10. The bound ντ +mτ +4 > s(τ) is not necessarily the minimal
degree of separability. Separability can be attained as soon as dτ (k) > 9 −
cτ (γ)− cτ (γ

′).
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4.3. Decompositions and dimension

Let τ ∈ M1 be an interior edge τ shared by the cells σ1, σ2 ∈ M2.
Let K1 = (v2

1) ∩ Rk(σ1) and K2 = (u2
2) ∩ Rk(σ2) be the polynomials of

Rk(σ1) (resp. Rk(σ2)) divisible by v2
1 (resp. u2

2). Let L be the subspace of
polynomials of Rk(σ1)⊕Rk(σ2) spanned by the Bernstein basis functions on
σ1 and σ2, which are not divisible by v2

1 or u2
2 and let πL be the projection of

Rk(σ1) ⊕ Rk(σ2) on L along (K1, 0) ⊕ (0, K2). The functions in L are said
to have their support along τ . By construction, we have Rk(σ1)⊕Rk(σ2) =
(K1, 0)⊕ (0, K2)⊕L. The elements of (K1, K2) are obviously in S1

k(Nτ ) since
they vanish at the order 1 along τ .

Let Wk(τ) = πL(Θτ (Zk)) where Θτ is defined in (20). Notice that
Wk(τ) ⊂ S1

k(Nτ ) since kerπL ⊂ S1
k(Nτ ). Moreover, since ker πL does not in-

tersect Θτ (Zk) and Θτ is injective, the spaces Wk(τ), Θτ (Zk) and Zk have the
same dimension. Therefore, we have dim(Wk(τ)) = dτ (k) and Wk(τ) 6= {0}
when k > µτ +m (Lemma 4.3 (iii)).

From the relations (18) and (19), we deduce the following decomposition:

S1
k(Nτ ) = (K1, 0)⊕ (0, K2)⊕ Ru⊕Wk(τ) (25)

where u = πL((1, 1)). The sum of these spaces is direct, since the supports
of the functions of each space do not intersect.

The map Tγ,γ′ defined in (24) induces the exact sequence

0→ Kk(τ)→ S1
k(Nτ )

Tγ,γ′−→ G(τ)→ 0

where Kk(τ) = kerTγ,γ′ and G(τ) = Tγ,γ′(S1
k(Nτ )). It is clear that (K1, K2) ⊂

Kk(τ).

Definition 4.11. For an interior edge τ ∈Mo
1, let Ek(τ) = ker(Tγ,γ′)∩Wk(τ)

be the set of splines in S1
k(Nτ ) with their support along τ and with vanishing

Taylor expansions at γ and γ′. For a boundary edge τ ′ = (γ, γ′), which
belongs to a face σ, we also define Ek(τ ′) as the set of elements of Rk(σ) with
their support along τ ′ and with vanishing Taylor expansions at γ and γ′.

Notice that the elements of Ek(τ) have their support along τ and their
Taylor expansion at γ and γ′ vanish. Therefore, their Taylor expansion along
all (boundary) edges of Nτ distinct from τ also vanish.

Lemma 4.12. For an interior edge τ ∈ Mo
1, we have Kk(τ) = (K1, 0) ⊕

(0, K2)⊕ Ek(τ).
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Proof. As (K1, 0), (0, K2) ⊂ kerTγ,γ′ = Kk(τ) and Kk(τ) ∩ (Wk(τ)⊕ Ru) =
Kk(τ) ∩Wk(τ) = Ek(τ), we have

Kk(τ) = (K1, 0)⊕ (0, K2)⊕ ((Wk(τ)⊕ Ru) ∩ Kk(τ))

= (K1, 0)⊕ (0, K2)⊕ Ek(τ).

Corollary 4.13. For an interior edge τ ∈Mo
1 and for k > s(τ), the dimen-

sion of Ek(τ) is

dim Ek(τ) = dτ (k)− 9 + cτ (γ) + cτ (γ
′).

Proof. By Lemma 4.12, we have

dim Ek(τ) = dimKk(τ)− dimK1 − dimK2.

As Kk(τ) is the kernel of Tγ,γ′ and G(τ) is its image, we have

dimKk(τ) = dimS1
k(Nτ )− dimG(τ).

As dim(Wk(τ)) = dτ (k), we deduce from the decomposition (25) that dimS1
k(Nτ ) =

1 + dτ (k) + dimK1 + dimK2. Using Proposition 4.8, G(τ) = (H(γ),H(γ′))
and we obtain

dim Ek(τ) = dimS1
k(Nτ )− dimG(τ)− dimK1 − dimK2

= dτ (k)− 9 + cτ (γ) + cτ (γ
′).

Remark 4.14. When τ is a boundary edge, which belongs to the face σ1 ∈
M2, we have Sk(Nτ ) = Rk(σ1), Kk(τ) = K1 ⊕ Ek(τ) and for k > s(τ) =
3 + F∆(σ1), dimG(τ) = 8 and dim Ek(τ) = k + 1 + (k + 1 − F∆(σ1)) − 8 =
2 k − F∆(σ1)− 6.

Notice that this is also what we obtain if we attach a virtually rectangular
face along τ with constant gluing data: n = µ = 0, m = 0, e = 2, cτ (γ) =
cτ (γ

′) = 0 and
dτ (k) = 2 k + 3− F∆(σ1),

so that dim Ek(τ) = dτ (k)− 9 + cτ (γ) + cτ (γ
′).
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5. G1 splines around a vertex

We consider now a topological surface O composed of faces σ1, . . . , σF ∈
O2 sharing a single vertex γ, and such that σi and σi+1 share the edge τi+1 =
(γ, δi+1). In particular τi, τi+1 are the two edges of σi containing the vertex
γ. The number of edges containing γ is denoted F ′. All the vertices of O
different from γ are boundary vertices. The vertex γ is an interior vertex, iff
σF and σ1 share the edge τ1. In this case, we identify the indices modulo F
and we have F ′ = F , otherwise we have F ′ = F + 1. The gluing data for the
interior edge τi is ai = ai

ci
, bi = bi

ci
.

The coordinates in the ring R(σi) are chosen so that the coordinates of γ
are (0, 0) and τi is defined by vi = 0, ui ∈ [0, 1] and by ui−1 = 0, vi−1 ∈ [0, 1]
in R(σi−1). The canonical form of the transition map at γ across the edge τi
is then

φτi : (u, v) −→
(

vi bi(ui)
ui + vi ai(ui)

)
Let f = (fi)i=1,...,F ∈ S1(O). The gluing condition (4) implies that the Taylor
expansion of fi at γ is of the form

fi(ui, vi) = p+ qi ui + qi+1 vi + si uivi + ri u
2
i + ri+1 v

2
i + · · ·

for p, qi, si, ri ∈ R, i = 1, . . . , F (see Fig. 3).

! !
! !!

!!

!

!
σi

p qi

qi+1 si

ri

ri+1

τi

si+1ri+2

qi+2

σi+1
τi+1τi+2

Figure 3: Taylor coefficients around a vertex.

By a computation similar to (22), Condition (4) implies that

qi+1 = ai(0) qi + bi(0) qi−1 (i = 2, . . . , F ) (26)

si = 2 ai(0) ri + bi(0) si−1 + a′i(0) qi + b′i(0) qi−1 (i = 2, . . . , F ) (27)

LetH(γ) be the vector space spanned by the vectors h = [p, q1, . . . , qF ′ , s1, . . . , sF ]
for h′ = [p, q1, . . . , qF ′ , s1, . . . , sF , r1, . . . , rF ′ ] a solution of the linear system
(26), (27).
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Proposition 5.1.

dimH(γ) = 3 + F (γ)−
∑
τ3γ

cτ (γ) + c+(γ)

where F = F (γ) is the number of faces around the vertex γ.

Proof. Notice that H(γ) is isomorphic to the projection of the solution set of
system (26), (27) on the space of the variables [p,q, s] = [p, q1, . . . , qF ′ , s1, . . . , sF ].

The solutions in q = (q1, . . . , qF ′) of the first set of equations satisfy the
induction relations(

qi
qi+1

)
=

(
0 1

bi(0) ai(0)

) (
qi−1

qi

)
for i = 2, . . . , F.

As we have the compatibility condition 2.6 at an interior vertex, the solutions
of (26) span a linear space of dimension 2, parametrized for instance by q1, q2.

The system (27) is formed by linearly independent equations which in-
volve rk and qi, sj when ak(0) 6= 0 and by equations which only involve si, si−1

and qj when ai(0) = 0.
Therefore the projection of the solution set of (27) on the space cor-

responding to the variables [p,q, s] is defined by the equations which only
involve si, si−1 and qi, qi−1 when ai(0) = 0.

If one of the edges around γ is not a crossing edge, then the codimension
of this space is

∑
τ3γ cτ (γ), with the convention that cτ (γ) = 0 if τ is a

boundary edge.
If all the edges around γ are crossing edges, then the compatibility condi-

tions 2.7 at γ imply that one of these equations is dependent from the other.
Therefore, the codimension of this space is

∑
τ3γ cτ (γ)− c+(γ).

By intersecting it with the solution space of (26), we deduce that the
dimension of H(γ) is precisely given by

1 + 2 + F −
∑
τ3γ

cτ (γ) + c+(γ).

Let Tγ =
∏

σ3γ T
σ
γ be the Taylor map at γ on O and let T∂O =

∏
τ 63γ T

σ
τ

be the Taylor map along all the boundary edges which do not contain γ.
For k ∈ N, we define Vk(γ) = kerT∂O∩S1

k(O) the set ofG1 spline functions
on O which vanish at the first order along the boundary edges (which do not
contain γ).
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Proposition 5.2. For k > maxi=1,...,F (s(τi)), Tγ(Vk(γ)) = H(γ).

Proof. By construction, the elements of Vk(γ) satisfy the equations (26),
(27). This implies that Tγ(Vk(γ)) ⊂ H(γ).

Consider an element h = (h1, . . . , hF ) ∈ H(γ). By Proposition 4.8, for
k > s(τi), there exists (fi, f̃i) ∈ S1

k(Nτi) such that Tγ(fi, f̃i) = (hi, hi−1)
and Tδi(fi, f̃i) = 0. Let vi = 0 (resp. ui−1 = 0) be the equation of τi in σi
(resp. σi−1). As for any polynomials p ∈ (v2

i )∩Rk(σi), q ∈ (ui−1)2∩Rk(σi−1),
Tγ(p, q) = 0, we can assume that (fi, f̃i) has its support inRσi(τi)⊕Rσi−1(τi).

By construction, we have T σiγ (fi) = T σiγ (f̃i+1) = hi. Thus, there exist gi ∈
Rk(σi) supported in Rσi(τi) +Rσi(τi+1) such that T σiτi (gi) = fi, T

σi
τi+1

(gi) =

f̃i+1. It is constructed by taking the coefficients of fi on Rσi(τi) and those of
f̃i+1 on Rσi(τi+1), the coefficients in Rσi(τi) ∩ Rσi(τi+1) coinciding (see Fig.
4). As T σiδi (fi) = T σiδi (gi) = 0, T σiδi+1

(f̃i) = T σiδi+1
(gi) = 0 and gi is supported in

Rσi(τi) +Rσi(τi+1), we have T σiτ (gi) = 0 for any edge τ of the face σi, which
does not contain γ.

! !
!

!
!

!
!

!
!

❡ ❡
❡ ❡

❡ ❡
❡ ❡

❡

γ

σi

fi

f̃i+1

τi

τi+1

Figure 4: Lifting the edge functions.

Let g = [g1, . . . , gF ] ∈ ⊕σi3γRk(σi). By construction, g vanishes at the
first order along all the boundary edges of O, which do not contain γ. More-
over, Tτi(g) = (fi, f̃i) ∈ S1

k(Nτi), thus g satisfies the gluing conditions along
the edge τi. We also have Tτ (g) = 0 for any edge τ , which does not contain
γ. Thus g satisfies the gluing conditions along all the edges and its image by
T∂O vanishes, i.e. g ∈ S1

k(O)∩ kerT∂O = Vk(γ). By construction, Tγ(g) = h.
This shows that H(γ) ⊂ Tγ(Vk(γ)) and concludes the proof.
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6. G1 splines on a general mesh

We consider now a general mesh M with an arbitrary number of faces,
possibly with boundary edges.

We denote by T0 =
∏

γ∈M0
Tγ the Taylor map at all the vertices of M

and H = T0(S1
k(M)). We have the following exact sequence:

0→ Kk → S1
k(M)

T0→ G→ 0

where Kk = kerT0 ∩ S1
k(M) and G = T0(S1

k(M)). Let s∗ = max{s(τ) | τ ∈
M1}. We have s∗ 6 max{ντ +mτ + 4 | τ ∈M1}

6.1. Splines at a vertex

Let γ ∈ M0 be a vertex of M and let Oγ be the sub-mesh associated to
the faces of M which contain γ. Let Vk(γ) be the set of spline functions in
S1
k(M) supported on the faces of Oγ, which vanish at the first order along

the edges that do not contain γ.

Proposition 6.1. For k > s∗, T0(S1
k(M)) =

∏
γH(γ) and

dimT0(S1
k(M)) =

∑
γ∈M0

(F (γ) + 3)−
∑
γ∈M0

∑
τ3γ

cτ (γ) +
∑
γ∈M0

c+(γ),

where F (γ) is the number of faces of M that contain the vertex γ ∈M0.

Proof. By proposition 5.2, for k > s∗ the image of Vk(γ) by T0 is G(γ), and
Tγ′(Vk(γ)) = 0 for any other vertex γ′ 6= γ.

This shows that T0(S1
k(M)) =

∏
γ G(γ) =

∏
γH(γ). We deduce the

dimension formula from Proposition 5.1.

6.2. Splines on edges

For an interior edge τ = (γ, γ′) ∈ M1, let Nτ be the sub-mesh made
of the faces σ1, σ2 of M containing τ . Let Ek(τ) = kerTγ,γ′ ∩ Θτ (Zk) (see
Definition 4.11). The elements of Ek(τ) correspond to splines of S1

k(Nτ ),
which are in the kernel of Tγ,γ′ and with a support in Rσ1(τ)⊕Rσ2(τ). Thus,
Ek(τ) ⊂ kerTτ ′ for any edge τ ′ ∈ M1, distinct from τ . We deduce that any
element of Ek(τ) satisfies the gluing condition along all edges of M1, and
thus corresponds to a spline function in S1

k(M). In other words, we have
Ek(τ) ⊂ S1

k(M) ∩ kerT0 = Kk. The elements of Ek(τ) have a support in
Rσ1(τ)⊕Rσ2(τ) and their Taylor coefficients at the end points of τ vanish.
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Thus the support of the elements of Ek(τ) and Ek(τ ′) for two distinct
edges τ, τ ′ do not intersect, and their sum is direct. Let Ek = ⊕τ∈M1Ek(τ).

Let Fk = kerT1 ∩ S1
k(M) be the set of spline functions, which Taylor

expansions along all edges vanish.

Proposition 6.2.
Kk = Fk ⊕ Ek

Proof. Let f ∈ Kk and take an interior edge τ ∈ M1. Let σ1, σ2 be the two
faces of Nτ .

Then (fσ1 , fσ2) ∈ S1
k(Nτ ) ∩ kerT0 = Kk(τ). By Lemma 4.12, (fσ1 , fσ2) =

sτ + (k1, k2) with sτ ∈ Ek(τ) and (k1, k2) ∈ (K1, K2). As sτ lifts to a spline ∈
S1
k(M), f−sτ is an element of S1

k(M), which image by the Taylor expansion
Tτ along the edge τ vanishes.

If τ is a boundary edge of M, which belongs to the face σ1, we have a
similar decomposition f1 = sτ + k1 with sτ ∈ Ek(τ) and k1 ∈ K1, using the
convention of Remark 4.14. Similarly sτ lifts to a spline ∈ S1

k(M), f − sτ is
an element of S1

k(M) in the kernel of Tτ .
Repeating this process for all edges τ ∈M1, we can construct an element

f̃ = f −
∑

τ∈M1
sτ such that ∀τ ∈M1, Tτ (f̃) = 0, i.e. f̃ belongs to kerT1 =

Fk. This shows that Kk ⊂ Fk +
∑

τ∈M1
Ek(τ). By construction, we have

Fk ⊂ Kk and Ek = ⊕τ∈M1Ek(τ) ⊂ Kk. Considering the support of the
functions in Fk and Ek, we deduce that their sum is direct and equal to
Kk.

6.3. The dimension formula

We can now determine the dimension of S1
k(M).

Theorem 6.3. Let s∗ = max{s(τ) | τ ∈M1}. Then, for k > s∗,

dimS1
k(M) = (k − 3)2F� + 1

2
(k − 5)(k − 4)F∆

+
∑

τ∈M1
dτ (k) + 4F� + 3F∆ − 9F1 + 3F0 + F+

where

• dτ (k) is the dimension of the syzygies of the gluing data along τ in
degree 6 k,

• F� is the number of rectangular faces, F∆ is the number of triangular
faces,
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• F1 is the number of edges,

• F0 (resp. F+) is the number of (resp. crossing) vertices,

Proof. By definition, we have

dimS1
k(M) = dimH + dimKk.

By Proposition 6.2, we have

dimKk = dim Fk + dim Ek = dimFk +
∑
τ∈M1

dim Ek(τ)

= (k − 3)2F� +
1

2
(k − 5)(k − 4)F∆ +

∑
τ∈M1

(dτ (k)− 9 + cτ (γ) + cτ ′(γ
′))

From Proposition 6.1, we deduce that

dimS1
k(M) = dim Kk + dim H

= (k − 3)2F� +
1

2
(k − 5)(k − 4)F∆

+
∑

τ=(γ,γ′)∈M1

(dτ (k)− 9 + cτ (γ) + cτ ′(γ
′))

+
∑
γ∈M0

(F (γ) + 3)−
∑
γ∈M0

∑
τ3γ

cτ (γ) +
∑
γ∈M0

c+(γ)

= F�(k − 3)2 + F∆
1

2
(k − 5)(k − 4) +

∑
τ∈M1

dτ (k)− 9F1

+4F� + 3F∆ + 3F0 + F+

since
∑

τ=(γ,γ′)∈M1
(cτ (γ) + cτ ′(γ

′)) =
∑

γ∈M0

∑
τ3γ cτ (γ) and

∑
γ∈M0

F (γ) =
4F� + 3F∆.

As a direct corollary, we obtain the following result:

Corollary 6.4. If M is a topological surface with gluing data satisfying the
compatibility Conditions 2.6-2.7 and if all crossing vertices of M have 4
edges, then S1

k(M) is an ample space of differentiable functions on M for
k > s∗.
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6.4. Basis

We are going now to describe an explicit construction of spline functions
which form a basis of S1

k(M). An algorithmic description of the computation
of the Bernstein coefficients of these basis functions is provided in Appendix
A.

We assume that k is bigger than the separability s∗ of all edges.

6.4.1. Basis functions associated to a vertex

Let γ ∈M0 be a vertex and σ1, . . . , σF be the faces ofM2 adjacent to γ.
We also assume that σi and σi−1 share the edge τi ∈ M1 and that τ1 is not
a crossing edge at γ if such an edge exists.

To compute the basis functions attached to γ, we compute first the taylor
coefficients of fσi = p + qiui + qi+1vi + siuivi + · · · solutions of the system
(26)-(27) and then lift these Taylor coefficients to define a spline function
with support in Oγ. This leads to the following type of basis functions:

• 1 basis function attached to the value at γ: p = 1, qi = 0, si = 0

• 2 basis functions attached to the derivatives at γ: p = 0, [q1, q2] ∈
{[1, 0], [0, 1]} and si = 0 if τi is not a crossing edge at γ and determined
by the relations (26)-(27) if τi is a crossing edge at γ.

• F (γ) −
∑F ′

i=1 cτi(γ) + c+(γ) basis functions attached to the free cross
derivatives, with p = 0, qi = 0 and si ∈ {0, 1} if τi is not a crossing
edge and determined by the relations (26)-(27) if τi is a crossing edge
at γ.

6.4.2. Basis functions associated to an edge

Let τ be an edge ofM1 shared by two faces σ1, σ2 with vertices γ, γ′. Let
us assume that the coordinates of these points in the face σ1 are γ = (0, 0)
and γ′ = (1, 0).

The elements of Ek(τ) are the image by Θτ of the elements of Zk of
the form P [A1, B1, C1] + Q [A2, B2, C2] with degree deg(P ) 6 k − µτ −mτ ,
deg(Q) 6 k − ντ −mτ which are in the kernel of Tγ and Tγ′ .

From the relation (23), we deduce that P (0) = 0, Q(0) = 0. That is, P
and Q are divisible by u.

• If cτ (γ) = 0, i.e. γ is not a crossing vertex, we have B1(0)C2(0) −
B2(0)C1(0) = a(0) 6= 0 and the relation (23) implies that P ′(0) = 0,
Q′(0) = 0. That is P = u2P̃ , Q = u2Q̃.
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• If cτ (γ) = 1, then the kernel of Tγ is generated by polynomials such
that P (0) = 0, Q(0) = 0, P ′(0) = λC2(0), Q′(0) = −λC1(0). That is
P = u (λC2(0) + uP̃ ), Q = u (−λC1(0) + u Q̃).

That is

P = u
(
λ cτ (γ)C2(0) + u P̃

)
, Q = u

(
−λ cτ (γ)C1(0) + u Q̃

)
.

By symmetry at γ′, we see that P and Q are of the form:

P = u (1− u)
(
λ cτ (γ)C2(0) (1− u) + λ′ cτ (γ

′)C2(1)u+ u (1− u) P̃
)
,

Q = −u (1− u)
(
λ cτ (γ)C1(0) (1− u) + λ′ cτ (γ

′)C1(1)u+ u (1− u) Q̃
)
,

with λ, λ′ ∈ R, deg(P̃ ) 6 k − µ−m− 4, deg(Q̃) 6 k − ν −m− 4.
We construct a basis of Ek(τ) by taking the image by Θτ of a maximal set

of linearly independent elements of this form (see Section 4.3). This yields
dτ (k)− 9 + cτ (γ) + cτ (γ

′) spline basis functions.

6.4.3. Basis functions associated to a face

Finally, we define the basis functions attached to a face σ ∈ M2 as the
2-interior Bernstein basis functions in degree 6 k. There are (k − 3)2 such
basis spline functions for a rectangular face and

(
k−4

2

)
for a triangular face.

7. Examples

7.1. Splines on flat triangular tilings

We consider a subdivision of a planar domain Ω ⊂ R2 into a partition of
triangles and the topological surface M induced by this subdivision.

For two faces σ1, σ2 ∈ M2, which share an edge τ ∈ M1 at a vertex γ,
there is a linear map φσ2,σ1 , which transforms the variables (u1, v1) attached
to σ1 into the variables (u2, v2) attached to σ2.

With γ = (0, 0) and v1 = u2, the transition map φσ2,σ1 is given by[
u2

v2

]
=

[
0 b
1 a

] [
u1

v1

]
where a, b ∈ R and b 6= 0. We choose these constant transition maps to define
the space of splines S1(M). The gluing conditions along the edges correspond
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then to C1 conditions for the polynomials expressed in the same coordinate
system. In this case, S1(M) is the vector space of piecewise polynomial
functions onM, which are C1 on Ω, that is, the classical C1-spline functions
on Ω.

If a = 0, the edge of σ2 at γ distinct from τ is aligned with the edge of
σ1 at γ distinct from τ . The vertex γ is a crossing vertex (c+(γ) = 1; all the
coefficients a in the transition maps around γ vanish) if there are 4 edges at
γ, which are pair-wise aligned.

As for any interior edge τ ∈M1 the transition map is constant, we have
nτ = 0, µτ = 0, ντ = 0, mτ = 1, sτ 6 5 and dτ (k) = 2 k. For the boundary
edges, we have dτ (k) = 2 k + 2 (see Remark 4.14).

We deduce from Theorem 6.3 that for k > 5, we have

dimS1
k =

1

2
(k − 5)(k − 4)F∆ + 2k F o

1 + (2k + 2)F b
1 + 3F∆ − 9F1 + 3F0 + F+

=
1

2
(k + 2)(k + 1)F∆ − 6 (k − 2)F∆ + (2k − 9)F o

1 + (2k − 7)F b
1 + 3F0 + F+

where F o
1 (resp. F b

1 ) is the number of interior (resp. boundary) edges. Using
the relations 3F∆ = 2F o

1 +F b
1 (counting the edges per triangle, we count twice

the interior edges shared by two triangles and once the boundary edges),
F b

1 = F b
0 and F0 = F o

0 + F b
0 where F o

0 (resp. F b
0 ) is the number of interior

(resp. boundary) vertices, we obtain

dimS1
k =

1

2
(k + 2)(k + 1)F∆ − (2k + 1)F o

1 + 3F o
0 + F+.

This coincides with the dimension formula of C1 piecewise polynomials of
degree k > 5 on a triangular planar mesh, given in [17]. Here F+ counts the
number of crossing vertices, also called singular vertices in [17].

The basis functions constructed as in Section 6.4 are as follows:

• For each vertex γ, there are 3 basis functions associated to the evalua-
tion and derivatives in x, y at γ. There are F (γ)−

∑
τ3γ cτ (γ) + c+(γ)

basis functions associated to the free cross-derivatives on the triangles
containing γ.

• For each interior edge τ = (γ, γ′), there are 2k − 9 + cτ (γ) + cτ (γ
′)

basis functions associated to k + 1 − 6 = k − 5 free interior Bernstein
coefficients b3,0, . . . , bk−3,0 on the edge, k − 4 free interior Bernstein
coefficients b2,1, . . . , bk−2,1 on one triangle σ which contains τ and b2,0

(resp. bk−2,0) if τ is a crossing vertex at γ (resp. γ′).
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• For each boundary edge τ ′, there are 2k − 7 basis functions associated
to k − 3 free interior Bernstein coefficients b2,0, . . . , bk−2,0 on the edge
τ ′, and k − 4 free interior Bernstein coefficients b2,1, . . . , bk−2,1 on the
triangle σ which contains τ ′.

• For each triangle σ, there are
(
k−4

2

)
basis functions associated to the

interior Bernstein coefficients bi,j with 2 6 i, j 6 k−2 and 0 6 i+j 6 k.

This basis description involves the Bernstein coefficients of polynomial on the
triangles. The basis differs from the nodal basis proposed in [17]. From the
listed Bernstein coefficients, we can however recover the nodal basis of [17],
dual to the evaluation and derivatives at the vertices and at interior points
of the edges and the triangles.

7.2. A round corner

We consider a mesh M composed of 3 rectangles σ1, σ2, σ3 glued around
an interior vertex γ, along the 3 interior edges τ1, τ2, τ3. There are 6 boundary
edges and 6 boundary vertices.

γ

δ1

δ2

δ3

σ1 σ2

σ3

ǫ1 ǫ2

ǫ3

b bb

b b

b

Figure 5: Smooth corner.

We take symmetric gluing data at γ and at the crossing boundary vertices
δi. The transition map across the interior edge τi is given by the polynomials:
[a, b, c] = [(u − 1),−1, 1] where γ is the end point with u = 0 and δi is the
end point with u = 1. The generating syzygies are

S1 = [0, 1, 1], S2 = [1, u, 1].

For the interior edges τi, we have n = 1, m = 0, µ = 0, ν = 1 and dτi(k) =
k+ 1 + k = 2k+ 1. For the boundary edges τ ′, we have n = 0, m = 0, µ = 0,
ν = 0 and dτ ′(k) = 2 (k + 1).
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As a(0) = −1 (resp. a(1) = 0), γ is not a crossing vertex (cτi(γ) = 0) and
δi is a crossing vertex of τi (cτi(δi) = 1).

We check that the separability of all the interior edges is 4. For k = 4,
the dimension of S1

k(M) is

3× (4− 3)2 + 3× (2× 4 + 1) + 6× (2× 4 + 2) + 4× 3− 9× 9 + 3× 7 + 6 = 48.

The basis functions are constructed as in Section 6.4, using the algorithms
of Appendix A.

• The number of basis functions attached to γ is 6 = 1 + 2 + 3.

– The basis function associated to the value at γ is

[b0,0 + b1,0 + b0,1 + b1,1, b0,0 + b1,0 + b0,1 + b1,1, b0,0 + b1,0 + b0,1 + b1,1]

– The two basis functions associated to the derivatives at γ are[
1
4
b1,0 + 1

4
b1,1 + 7

12
b2,0 + 7

12
b2,1 + 1

8
b1,2,

−1
4
b0,1 − 1

4
b1,1 − 1

8
b2,1 − 7

12
b0,2 − b1,2,

1
4
b0,1 − 1

4
b1,0 − 7

12
b2,0 − 11

24
b2,1 + 7

12
b0,2 + 7

8
b1,2

][
1
4
b0,1 + 1

4
b1,1 + 1

8
b2,1 + 7

12
b0,2 + b1,2,

−1
4
b0,1 + 1

4
b1,0 + 7

12
b2,0 + 11

24
b2,1 − 7

12
b0,2 − 7

8
b1,2,

−1
4
b1,0 − 1

4
b1,1 − 7

12
b2,0 − 7

12
b2,1 − 1

8
b1,2

]
– The three basis functions associated to the cross derivatives at γ

are [
1
16
b1,1 − 1

12
b2,0 − 1

24
b2,1 − 1

12
b0,2 − 1

8
b1,2,

− 1
12
b2,0 − 1

12
b2,1,− 1

12
b0,2 − 1

6
b1,2

][
− 1

12
b0,2 − 1

6
b1,2,

1
16
b1,1 − 1

12
b2,0 − 1

24
b2,1 − 1

12
b0,2 − 1

8
b1,2,− 1

12
b2,0 − 1

12
b2,1

][
− 1

12
b2,0 − 1

12
b2,1,

− 1
12
b0,2 − 1

6
b1,2,

1
16
b1,1 − 1

12
b2,0 − 1

24
b2,1 − 1

12
b0,2 − 1

8
b1,2

]
• The number of basis functions attached to δi is 4 = 1 + 2 + 2− 1. Here

are the 4 basis functions associated to δ1:

[b3,0 + b3,1 + b4,0 + b4,1, 0, b0,3 + b1,3 + b0,4 + b1,4],
[b3,0 + b3,1, 0, b0,3 + b1,3],
[b3,1 + b4,1, 0,−b1,3 − b1,4],
[b3,1, 0,−b1,3].
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The basis functions associated to the other boundary points δ2, δ3 are
obtained by cyclic permutation.

• The number of basis functions attached to the remaining boundary
points is 4 = 1 + 2 + 1. For ε1, the 4 basis functions are

[b3,3 + b3,4 + b4,3 + b4,4, 0, 0], [b3,3 + b4,3, 0, 0], [b3,3 + b3,4, 0, 0], [b3,3, 0, 0]

The basis functions associated to the other boundary points are ob-
tained by cyclic permutation.

• The number of basis functions attached to the edge τi is 2× 4− 7 = 1.
For the edge τ1, it is

[b2,1, 0,−b1,2].

The basis functions associated to the other interior edges are obtained
by cyclic permutation.

• The number of basis functions attached to the boundary edges is 2(4−
3) = 2. For the boundary edge (ε1, δ1) of σ1, the two basis functions
are

[b3,2, 0, 0], [b4,2, 0, 0].

• The number of basis functions attached to a face σi is (4 − 3)2 = 1.
The basis function associated to σ1 is

[b2,2, 0, 0]

and the two other ones are obtained by cyclic permutation.

7.3. A pruned octahedron

We consider a mesh M with 6 triangular faces AEF, CEF, ABE, BCE,
ADF, CDF and one rectangular face ABCD, depicted in Figure 6 as the
Schlegel diagram of a convex polyhedron in R3. It is an octahedron where an
edge BD is removed and two triangular faces are merged into a rectangular
face (see [29] for the complete octahedron, which involves only triangular
faces).

We are going to use the following notation for the variables on the faces
of M. For X, Y ∈ R2 two vertices defining an edge XY of a face σ, let uYX :
R2 → R be the linear function with uYX(X) = 0, uYX(Y ) = 1 and uYX(Z) = 0
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B C

E

D

F

Figure 6: A pruned octahedron

for all the points Z on the edge of σ through X and distinct from XY . We
will use these linear functions uBE , uAF , etc., as variables on the different faces.
As the restriction on a share edge XY of the two functions defined on the
faces adjacent to XY coincide, there is no ambiguity in evaluating these linear
functions onM. For a triangular face XYZ, we have uYX+uZY +uXZ = 1. For a
rectangular face XYZW, we have uYX = uZW and uWX = uZY . We denote by ∂XY
the derivative with respect to the variable uYX . It is such that ∂XY (uYX) = 1.
On a triangular face XYZ, we have ∂XY + ∂Y Z + ∂ZX = 0.

We use a symmetric gluing at all the vertices and therefore the vertices
A,C,E, F are crossing vertices. Let us describe how we construct the gluing
data on the edges by interpolation at the vertices, in a smaller degree than
the degree associated to the gluing (14) proposed in [12].

In terms of differentials (see relation (5)), the symmetric gluing at the
vertices translates as

∂EA + ∂EC = 0, ∂EB + ∂EF = 0 at E,

∂FA + ∂FC = 0, ∂FD + ∂FE = 0 at F,

∂AB + ∂AF = 0, ∂AE + ∂AD = 0 at A, (28)

∂CB + ∂CF = 0, ∂CE + ∂CD = 0 at C,

and around the vertices of order 3:

∂BA + ∂BC + ∂BE = 0 at B, ∂DA + ∂DC + ∂DF = 0 at D.

For gluing the triangles EFA and EFC along EF , we interpolate the following
relations between the derivatives:

∂EA + ∂EC = 0 at E, ∂EA + ∂EC = 2 ∂EF at F,
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where the second expression is ∂FA + ∂FC = 0 rewritten using ∂FA = ∂EA −
∂EF , ∂FC = ∂EC − ∂EF . We choose the linear interpolation

∂EA + ∂EC = 2uFE ∂EF .

Thereby we have aEF = 2uFE, bEF = −1 and the gluing data for the edge EF
is [2uFE,−1, 1].

For the edge EB between the triangles EBA and EBC, we interpolate the
following relations:

∂EA + ∂EC = 0 at E, ∂EA + ∂EC = 3 ∂EB at B,

where the latter relation is ∂BA + ∂BC + ∂BE = 0 rewritten using ∂BA =
∂EA−∂EB, ∂BC = ∂EC−∂EB, ∂BE = −∂EB. Additionally, we have to take into
account the compatibility conditions (9)-(10) since E is a crossing vertex. It
translates as ∂EB(aEB) = ∂EF (aEF ) and ∂EC(aEC) = ∂EA(aEA) at the vertex
E. This leads to the following gluing data on the edge EB:

EB : [2uBE + (uBE)2,−1, 1].

Similarly, the gluing data of the edge FD is

FD : [2uDF + (uDF )2,−1, 1].

The edges EA, EC, FA, FC connect cross vertices just as EF and yield
linear gluing data

EF : [2uAE,−1, 1], EC : [2uCE,−1, 1],

FA : [2uAF ,−1, 1], FC : [2uCF ,−1, 1]

We check that the compatibility conditions (9)-(10) are satisfied across EA,EC
and FA, FC. The gluing data along AB, AD, CB, CD looks the same:

AB : [2uBA,−1, 1], AD : [2uDA ,−1, 1],

CB : [2uBC ,−1, 1], CD : [2uDC ,−1, 1].

We have linear gluing data everywhere except on the edges EB and FD. Let
us analyze the syzygies associated this data.
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• For the edges EB and FD with one crossing vertex, the gluing data
is of the form [2u + u2,−1, 1]. We have n = 2 and m = 1 since the
edge is connecting two triangles, µ = 0 and ν = 2 and d(k) = 2k − 2.
The µ-basis is [0, 1, 1], [−1,−2u − u2, 0]. The separability is achieved
in degree k > 6 and not 5 as it could be expected (d(5) > 8).

• For the edges EA, EA, FA, FC, EF between triangular faces, with two
crossing vertices, the linear gluing data is of the form [2u, 1,−1]. We
have n = 1 and m = 1, µ = 0, ν = 1 and d(k) = 2k− 1. The µ-basis is
[0, 1, 1], [−1,−2u, 0]. The separability is achieved in degree k > 4.

• For the edges AB, AD, CB, CD between a triangular face and a rect-
angular face, with one crossing vertices, the linear gluing data is of
the form [2u, 1,−1]. We have n = 1 and m = 0, µ = 1 since the de-
gree of the homogeneization [da, db, dc] (see Definition 4.1) is [3, 2, 1] or
[3, 1, 2], ν = 1 and d(k) = 2k. The µ-basis is [0, 1, 1], [−1,−2u, 0]. The
separability is also achieved in degree k > 4.

Now we count how many splines do we have in degree k > 6:

• For the four crossing vertices A,C,E, F we have 1+2+1 = 4 dimensions
and 1 + 2 + 3 = 6 dimensions for B and for D. In total we have
4 · 4 + 2 · 6 = 28 degrees of freedom around the vertices of M.

• For the edges EB and FD, we have 2(k− 2)− 8 = 2k− 12 dimensions.
For the edges EA, EA, FA, FC, EF, we have 2k − 1 − 7 = 2k − 8
dimensions. For the edges AB, AD, CB, CD, we have 2k − 8.

• For the 6 triangular faces, we have
(
k−4

2

)
dimensions and for the rect-

angular face (k − 3)2.

The dimension formula in degree k > 6 is then

28− 4 + 11 · 2 (k − 4) + 6

(
k − 4

2

)
+ (k − 3)2 = (2k − 3)2 + k − 4.

For k = 6, the dimension is 83. It turns out that this formula also holds for
degree k = 4, k = 5.

The construction of basis functions can be done as described in Section
6.4. Let us give the basis functions associated to the value and first derivatives
at the point A. Here are the Bernstein coefficients in degree 4 of the basis
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function for the value at A with the vertex A represented in the center and
the edges represented by horizontal and vertical central lines (in bold):

0

. .
.

0 1
2

0
. . .

0 1 1 1 0

0 0 1 1 1 1
2

0

0 −1 1 1 1 0
... 0 −1 0 0 . .

.

· · · 0 0

-�

6

?

A F

E

B

D

This gives the following specializations to the polygons ABE, AEF, AFD,
ABCD (respectively), selectively de-homogenized:

(uAE)2 (1 + 3uBA)(1 + 2uEA − uBA),

(uAE)2 (1 + 2uFA + 2uEA + 6uFAu
E
A),

(uAF )2 (1 + 3uDA)(1 + 2uFA − uDA),

(uABu
A
D)2

(
uABu

A
D(1 + 3uDA)(1 + 3uBA)− 24uDAu

B
A(uDABu

A
B + uBAu

A
D)
)
,

and 0 on the other faces. The basis function associated to the first derivative
in one of the directions at the cross vertices is:

0

. .
.

0 1
6

0
. . .

0 1
3

1
4

1
3

0

0 0 0 0 0 0 0

0 7
24
− 5

16
−1

4
−1

3
0

... 0 −1
6

0 0 . .
.

· · · 0 0

(29)

The non-zero specializations to ABE, AEF, AFD, ABCD are, respectively:

(uAE)2 uEA (1 + 3uBA), (uAE)2 uEA (1 + 3uFA), −(uAF )2 uDA (uAF + 4uFA),

(uABu
A
D)2 uDA

(
−uAD(1 + 3uBA) + 7uBAu

A
Bu

D
A

)
.

The basis function for the derivative in the other direction is obtained by a
mirror image of (29).
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The basis function corresponding to the cross derivatives is realized by

0

. .
.

0 0 0
. . .

0 − 1
12

0 1
12

0

0 0 0 0 0 0 0

0 1
24

1
16

0 − 1
12

0
... 0 1

24
0 0 . .

.

· · · 0 0

In this spline, we could modify the 0 entry next to two 1
24

entries to 1
36

, so to
lower the degree of the specialization to the rectangle. After the modification,
the 4 non-zero specializations would be

−(uAE)2 uEA u
B
A, (uAE)2 uEA u

F
A, −(uAF )2 uDA u

F
A, (uABu

A
D)2 uDA u

B
A.

The local splines around C look the same. The local splines around other
vertices involve the edges EB and FD, and we would need degree 6 splines.
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[4] F. Buchegger, B. Jüttler, and A. Mantzaflaris. Adaptively refined multi-
patch B-splines with enhanced smoothness. NFN report No. 26, 2015.

[5] E. Catmull and J. Clark. Seminal graphics. chapter Recursively Gener-
ated B-spline Surfaces on Arbitrary Topological Meshes, pages 183–188.
ACM, New York, NY, USA, 1998.

[6] D. Cox, J. Little, and D. O’Shea. Using algebraic geometry, volume 185
of Graduate Texts in Mathematics. Springer, 2 edition, 2005.

43



[7] T. DeRose. Geometric continuity: a parametrization independent mea-
sure of continuity for computer aided geometric design. PhD Thesis,
University of California at Berkeley, 1985.

[8] M. Eck and H. Hoppe. Automatic reconstruction of b-spline surfaces
of arbitrary topological type. In Proceedings of the 23rd Annual Con-
ference on Computer Graphics and Interactive Techniques, SIGGRAPH
’96, pages 325–334, New York, NY, USA, 1996. ACM.

[9] J. Gregory. Geometric continuity. In L. Schumaker T. Lyche, editors,
Mathematical models in Computer Aided Geometric Design, pages 353–
371. Academic Press, 1989.

[10] X. Gu, Y. He, M. Jin, F. Luo, H. Qin, and S. Yau. Manifold splines
with a single extraordinary point. Comput. Aided Des., 40(6):676–690,
2008.

[11] X. Gu, Y. He, and H. Qin. Manifold splines. In Graph. Models, pages
27–38, 2005.

[12] J. Hahn. Geometric continuous patch complexes. Comput. Aided Geom.
Des., 6(1):55–67, 1989.

[13] Y. He, K. Wang, H. Wang, X. Gu, and H. Qin. Manifold t-spline. In
In Proceedings of Geometric Modeling and Processing, pages 409–422,
2006.
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[27] G. Della Vecchia, B. Jüttler, and M.-S. Kim. A construction of rational
manifold surfaces of arbitrary topology and smoothness from triangular
meshes. Comput. Aided Geom. Des., 25(9):801–815, 2008.

[28] R. Vidunas. Aspects of algorithmic algebra: Differential equations and
splines. PhD Thesis, Rijksuniversiteit Groningen, pages 103–150, 1999.
Chapter 6: Geometrically continuous surface complexes, available at
http://irs.ub.rug.nl/ppn/185863523.

[29] R. Vidunas. Geometrically continuous octahedron. In R. Krasauskas
R. Goldman, editor, Topics in Algebraic Geometry and Geometric Mod-
eling, volume 334 of Contemporary Mathematics, pages 37–52. AMS,
2003.

[30] F. Warner. Foundations of Differentiable Manifolds and Lie Groups.
Number 94 in Graduate Texts in Mathematics. Springer Verlag, 1983.

45



[31] M. Wu, B. Mourrain, A. Galligo, and B. Nkonga. Spline Spaces
over Quadrangle Meshes with Complex Topologies, available at
https://hal.inria.fr/hal-00952455, February 2014.

[32] L. Ying and D. Zorin. A simple manifold-based construction of surfaces
of arbitrary smoothness. ACM Trans. Graph., 23(3):271–275, 2004.

Appendix A. Algorithms for the basis construction

Our input data is the topological surface M and the gluing data. For
each edge τ of M, we are given the µτ -basis of Zk:

Sτ1 = [Aτ1, B
τ
1 , C

τ
1 ], Sτ2 = [Aτ2, B

τ
2 , C

τ
2 ].

The rational map is then described by

aτ =
aτ
cτ
, bτ =

bτ
cτ

with aτ = Bτ
1C

τ
2 −Bτ

2C
τ
1 , bτ = Aτ2C

τ
1 − Aτ1Cτ

2 , and cτ = Aτ1B
τ
2 − Aτ2Bτ

1 .
The spline basis functions f = (fσ) are represented on each face σ by

their coefficients in the Bernstein basis of the face in degree k:

fi =
∑
l,m

cil,mb
σ
l,m(ui, vi)

Let eσ(k) = k2 if σ is a rectangular face and eσ(k) = k (k − 1) if σ is a
triangular face.

Appendix A.1. Vertex basis functions

Let γ be a vertex of M shared by the faces σ1, . . . , σF and such that σi
and σi+1 share the edge τi+1. We compute the Bernstein coefficients ci =
[ci0,0, c

i
1,0, c

i
0,1, c

i
1,1, . . .] of the basis functions attached to a vertex σi, using the

equations (26), (27) and the relation between the Bernstein coefficients and
the Taylor coefficients of the function at (0, 0), see (16), (17).

If ci0,0 corresponds to the point γ, with coordinates (0, 0) in the face
σi and fσi = p + qiui + qi+1vi + siuivi + · · · are ci, we use the relations
p = ci0,0, qi = k ci1,0, qi+1 = k ci0,1, si = ek (ci1,1 − ci1,0 − ci0,1).
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Basis function for the value at vertex γ

for i in [1,F] do
let ci0,0 := 1, ci1,0 := 1, ci0,1 := 1, ci0,1 := 1 and cil,m := 0 for

(l,m) 6∈ {(0, 0), (1, 0), (0, 1), (1, 1)};
end

Basis functions for the derivatives at vertex γ

for [c1
0,0, c

1
0,1] in {[1, 0], [0, 1]} do

for i in [2,F] do[
ci1,0
ci0,1

]
=

(
0 1

bτi(0) aτi(0)

)[
ci−1

1,0

ci−1
0,1

]
end
if all edges τi are crossing edges at γ then

let c1
1,1 := 0;

end
for i in [2,F] do

if τi is a crossing edge at γ then
ci1,1 = ci1,0 + ci0,1

+ 1
eσi (k)

(
eσi−1

(k)bτi(0) (ci−1
1,1 − ci−1

1,0 − ci−1
0,1 )

+k a′τi(0) ci−1
0,1 + k b′τi(0) ci−1

1,0

)
else

ci1,1 := 0;

end

end
for i in [1,F’] do

lift(ci−1, ci, τi)
end

end
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Basis functions for the cross derivatives around γ

for i in [1,F] do
let ci0,0 := 0, ci1,0 := 0, ci0,1 := 0;

end
if all edges τi are crossing edges at γ then

let c1
1,1 := 1;

for i in [2,F] do

ci1,1 =
eσi−1

eσi (k)
bτi(0) ci−1

1,1 ;

end
for i in [1,L] do

lift(ci, ci−1, τi);
end

else
for j in [1,F] such that τj is not a crossing edge at γ do

let cj1,1 = 1 and cl1,1 = 0 for l 6= j;

for i in [1,F’] do
if τi is a crossing edge then

ci1,1 =
eσi−1

eσi (k)
bτi(0) ci−1

1,1

end

end
for i in [1,L] do

lift(ci, ci−1, τi);
end

end

end

The function lift(ci, ci−1, τi) used in the algorithm consists in computing the
coefficient of a spline function with support along the edge τi, from its first
Taylor coefficients on the faces σi−1, σi.
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lift(ci, ci−1, τi)

for i in [1,F] do
solve the systems:[

k ci1,0
k ci−1

1,0

]
=

[
A1(0) A2(0)
B1(0) B2(0)

] [
pi0
qi0

]
and [

eσi−1
(k) (ci−1

1,1 − ci−1
1,0 − ci−1

0,1 )
−eσi(k) (ci1,1 − ci1,0 − ci0,1)

]
−
[
B′1(0) B′2(0)
C ′1(0) C ′2(0)

] [
pi0
qi0

]
=

[
B1(0) B2(0)
C1(0) C2(0)

] [
pi1
qi1

]
.

compute P i := pi0(1− 3u2
i + 2u3

i ) + pi1(u− 2u2
i + u2

i ),
Qi := qi0(1− 3u2

i + 2u3
i ) + qi1(u− 2u2

i + u2
i );

compute the image (gi, g̃i) of P iSi1 +QiSi2 by Θτi and update the
coefficients of ci−1, ci;

end

As A1(0)B2(0) − A2(0)B1(0) = c(0) 6= 0, the first system has a unique
solution. When B1(0)C2(0) − B2(0)C1(0) = a(0) 6= 0 (i.e. when τi is not a
crossing edge at γ), the second system has a unique solution. When a(0) = 0
(i.e. when τi is a crossing edge at γ), the second system is degenerate, but it
still has a (least square) solution.

The polynomials P i (resp. Qi) are constructed so that P i(0) = pi0, P
i′(0) =

pi1, P i(1) = 0, P i′(1) = 0 (resp. Qi(0) = qi0, Q
i′(0) = qi1, Qi(1) = 0, Qi′(1) =

0).
By construction, the Taylor expansions of their image by Θτi vanish at

γ′ and coincide with [ci−1
0,0 , c

i−1
1,0 , c

i−1
0,1 , eσi−1

(k)(ci−1
1,1 −ci−1

1,0 −ci−1
0,1 )], [ci0,0, c

i
1,0, c

i
0,1,

eσi(k)(ci1,1 − ci1,0 − ci0,1)] at γ respectively on σi−1 and σi.
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Appendix A.2. Edge basis functions

Basis functions for the edge τ

Input: [Aτ1, B
τ
1 , C

τ
1 ], [Aτ2, B

τ
2 , C

τ
2 ] the µ-basis of the syzygy module

Z(τ);
if cτ (γ) = 1 then

compute the image by Θτ of
u(1− u)2 (Cτ

2 (0) [Aτ1, B
τ
1 , C

τ
1 ]− Cτ

1 (0) [Aτ2, B
τ
2 , C

τ
2 ])

end
if cτ (γ

′) = 1 then
compute the image by Θτ of
u2(1− u) (Cτ

2 (1) [Aτ1, B
τ
1 , C

τ
1 ]− Cτ

1 (1) [Aτ2, B
τ
2 , C

τ
2 ])

end
Let ∆ = u2(1− u)2;
for i in [0,k − µ−m− 4] do

compute the image by Θτ of ui∆ [Aτ1, B
τ
1 , C

τ
1 ].

end
for i in [0,k − ν −m− 4] do

compute the image by Θτ of ui∆ [Aτ2, B
τ
2 , C

τ
2 ].

end

Appendix A.3. Face basis functions

Basis functions for the face σ

for 2 6 i 6 k − 2, 2 6 j 6 k − 2 (and i+ j 6 k − 2 if σ is a triangle)
do

let ci,j := 1 and ci′,j′ = 0 for i′ 6= i or j′ 6= j.
end
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