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SUMMARY 

For a Mindlin-Reissner plate subjected to transverse loadings, the distributions of the rotations and 

some resultant forces may vary very sharply within a narrow district near certain boundaries. This 

edge effect is indeed a great challenge for conventional finite element analysis. Recently, an 

effective hybrid displacement function (HDF) finite element method was successfully developed 

for solving such difficulty [1, 2]. Although good performances can be obtained in most cases, the 

distribution continuity of some resulting resultants is destroyed when coarse meshes are employed. 

Moreover, an additional local coordinate system must be used for avoiding singular problem in 

matrix inversion, which makes the derivations more complicated. Based on a modified 

complementary energy functional containing Lagrangian multipliers, an improved HDF (IHDF) 

element scheme is proposed in this work. And two new special IHDF elements, named by 

IHDF-P4-Free and IHDF-P4-SS1, are constructed for modeling plate behaviors near free and soft 

simply-supported (SS1) boundaries, respectively. The present modeling scheme not only greatly 

improves the precision of the numerical results, but also avoids usage of the additional local 

Coordinate system. The numerical tests demonstrate that the new IHDF element scheme is an 

effective way for solving the challenging edge effect problem in Mindlin-Reissner plates. 
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1. INTRODUCTION 

When solving the Mindlin-Reissner plate bending problem, how to effectively capture the edge 

effect is a great challenge for theoretical and numerical analyses. The edge effect (or the boundary 

layer effect) is the phenomenon that the rotations and some resultant forces may vary very sharply 

within a narrow district (boundary layer) near free or soft simply-supported (SS1) boundaries. 

Babuška and Li [3] proved that such phenomenon indeed exists in 3D solutions. Rao et al. [4] also 

drew the same conclusions. Therefore, the existence of the edge effect reflects the real physical 

law. During past years, many scholars have analyzed this problem through semi-analytical 

methods, including the segmentation method [5, 6], the finite strip method [7], the asymptotic 

expansion method [8, 9], and so on [10-12]. But most of these semi-analytical methods can only 

handle the plates with rectangular shape. On the other hand, the finite element method (FEM) is 

generally recognized as the most efficient and convenient tool for analysis of plate/shell structures. 

However, the edge effect is also an obstacle for the FEM and few element models can easily deal 

with it. In order to obtain acceptable results in the boundary layers, a very refined mesh or an 

adaptive mesh refinement technique must be employed [13, 14]. Unfortunately, since the range of 

boundary layer is about the order of plate’s thickness, the convergence rate will be very low while 

the computational cost is greatly increased. Therefore, such treatment is still uneconomical and 

unacceptable for practice applications. In addition, some other numerical methods, such as the 

p-Ritz method [15], have also been proposed for solving this problem. But they cannot perfectly 

overcome above difficulties, either.  

In fact, for some real engineering applications, the edge effect may have great influences on the 

products, which means it cannot be ignored or even is of great interest. For instance, when 

designing a very large floating structure (VLFS), exact prediction for the resultants near the free 

boundaries is crucial [16]. Furthermore, similar phenomena also exist in folded plate structures 

[17] and composited plate structures [18, 19]. Therefore, how to efficiently handle such problems 

remains as an open and important topic. 

Recently, Shang et al. [1] proposed a special finite element scheme based on the Hybrid 

Displacement Function (HDF) method, which is a simple version of Hybrid-Trefftz method 

[20-24], to solve the edge effect of the Mindlin-Reissner plate. Two special 4-node quadrilateral 

elements, HDF-P4-Free and HDF-P4-SS1, are successfully developed for modeling the boundary 
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layers, while the other regions are modeled by the conventional HDF plate element HDF-P4-11 

[2]. During the construction procedures, the analytical solutions of two displacement functions, F 

and f [24, 25], are employed to determine the trial functions for the resultant fields within the 

special elements, in which f is related to the edge effect. Thus, they possess the ability to simulate 

the very steep gradients of resultants in the boundary layers. Furthermore, related zero-value 

resultant boundary conditions at free/SS1 edges are used as constraints to modify the assumed 

resultant fields, so that these boundary conditions can be exactly satisfied at element nodes. 

However, although this approach shows its efficiency and validity in solving the edge effect 

problem, it still experiences some obvious shortages. For example, a local Cartesian coordinate 

system must be used to avoid singular problem in matrix inversion when imposing related 

constraints on the resultant fields, which makes the derivations more complicated. In addition, 

when a relatively coarse mesh is used, improper discontinuity for the distribution of certain shear 

force may appear at interface where the special element HDF-P4-Free/HDF-P4-SS1 and the 

conventional element HDF-P4-11 connect.  

To overcome above deficiencies, an improved scheme is proposed in this paper. Two new 

special elements, named by IHDF-P4-Free and IHDF-P4-SS1, are developed for simulating the 

plate behaviors in boundary layers of free and soft simply supported (SS1) boundaries, 

respectively. Different with the previous HDF method, these two IHDF elements are derived from 

a modified complementary energy functional containing the Lagrangian multipliers. Then, the 

constraints of related zero-value resultant boundary conditions at free/SS1 edges are imposed by 

the Lagrangian multiplier method. Therefore, the assumed resultant fields derived from the 

analytical solutions of the displacement functions F and f can be directly applied as the final trial 

functions, which means those complicated modifications and derivations brought by the additional 

local Coordinate system in developing HDF-P4-Free/HDF-P4-SS1 [1] can be avoided.  

The content of this work is organized as follows: In Section 2, the detailed formulations of the 

new IHDF elements are presented. In Section 3, some numerical benchmark tests are operated to 

assess the validities of the present scheme. In these tests, these two IHDF elements will be 

allocated along free/SS1 edges for modeling the boundary layers, while the other regions are still 

modeled by HDF-P4-11 [2], as the original scheme [1] does. For comprehensive comparison, the 

results obtained by the original approach [1] are also provided. Finally, some conclusions are 
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drawn in Section 4. The present scheme effectively solves the edge effect problem. Compared 

with the original scheme [1], its derivations are more straightforward, and the resulting 

distributions of resultants are more smoothed. 

 

2. THE IMPROVED HYBRID DISPLACEMENT FUNCTION (IHDF) ELEMENT 

METHOD 

2.1. General formulations  

As mentioned above, the derivations of the present IHDF elements are based on a modified 

complementary energy functional of Mindlin-Reissner plate: 

T T T

12

1
d d d d

2
e e

e

MC cons
A S

x y s s     R CR R d λ R               (1) 

in which R  is the element resultant vector and assumed as: 
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where S is the trial function matrix; β  is the unknown coefficient vector; and R
* is the particular 

solution vector related to a distributed transverse loading q; C is the flexibility matrix of 

Mindlin-Reissner plate: 
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in which D and C are the bending and shear stiffness of the plate: 

 

3

212 1

Eh
D





, 

5

6
C Gh ;                      (4) 

μ is Poisson’ s ratio; E, Young’s modulus; G = E /[2(1+)], the shear modulus; h, the plate 

thickness; R  is the resultant vector along the boundary, and can be obtained by: 
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R LR , with 

2 2

2 2

2 0 0

0 0

0 0 0

l m lm

lm lm l m

l m

 
 

   
   

L ,               (5) 

where l and m denote the direction cosines of outer normal of the boundary; d  is the element’s 

boundary displacement vector and can be interpolated by the element’s nodal displacement vector

e
q : 

 
e


d N q ;                               (6) 

in which 


N  is the interpolation matrix and will be discussed in details in Section 2.2. The last 

term in Equation (1) provides certain constraints on the assumed resultant fields, in which 
consR  

represents the related resultant boundary conditions at free/SS1 edges; and λ  is the Lagrangian 

multiplier vector. 
consR  can be expressed by: 

*

cons cons cons cons  R L R L Sβ L R .                     (7) 

For different constraints, 
consR

 
and 

consL  will have different expressions. These will also be 

discussed in Section 2.2. 

  By substituting Equations (2-7) into Equation (1), the modified functional e

MC  can be written 

as: 

TT T * * T T T

1 2

1 1 1 1

2 2 2 2

e e e

MC        β Mβ β M M β Q β Hq Vq λ Γ β λ Γ ,   (8) 

with 

T d d
eA

x y M S CS ,                             (9) 

* T *d d
eA

x y M S CR ,                           (10) 

T T d
eS

s


 H S L N ,                           (11) 

T* *d d
eA

x y Q R CR ,                           (12) 

T* T d
eS

s


 V R L N ,                          (13) 

1
12

dcons s Γ L S ,                             (14) 
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*

2
12

dcons s Γ L R ,                            (15) 

where 12 denotes the free/SS1 boundary edge of a special element. Then, applying the stationary 

condition of functional e

MC  with respect to the variables λ  and β  yields 

1 2

e

MC
  


Γ β Γ 0

λ
,                          (16) 

* T

1

e

eMC
    


Mβ M Hq Γ λ 0

β
.                   (17) 

From above two equations, we can obtain 

e   λ H q V ,                             (18) 

with 

 
1

1 T 1

1 1 1

 
 H Γ M Γ Γ M H ,                      (19) 

   
1

1 T 1 *

1 1 2 1

 
  V Γ M Γ Γ Γ M M .                  (20) 

Next, by substituting Equation (18) into Equation (17), β  can also be expressed by e
q : 

 1 *ˆ ˆe  β M Hq M ,                         (21) 

with  

T

1
ˆ  H H Γ H ,                           (22) 

* * T

1
ˆ  M M Γ V .                          (23) 

Finally, by substituting Equations (18) and (21) into Equation (8) and applying the stationary 

condition of functional e

MC  with respect to e
q , the final equations to be solved are obtained: 

e e e

qK q P ,                              (24) 

in which e
K  is the element stiffness matrix:  

TT 1 T 1 T 1 1 T 1 T

1 1
ˆ ˆ ˆ ˆ ˆ ˆe           K H M H H M H H M H H Γ M H H M Γ H ,     (25) 

and 
e

qP  is the element equivalent load vector caused by the distributed transverse loading q: 

   
T TT 1 * T 1 * T 1 * T T 1 T 1 *

1 1 2
ˆ ˆ ˆ ˆ ˆ ˆe

q

            P H M M H M M H M M V H M Γ V H Γ M M H Γ . (26) 

After e
q  in Equation (24) is solved, β  can be obtained by Equation (21). Thus, the resultants at 

arbitrarily point within an element can be derived using Equation (2). 
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2.2. Formulations of new elements 

  As defined in Figure 1, the quadrilateral element IHDF-P4-Free/IHDF-P4-SS1 is represented by 

its mid-surface 1234, in which edge 12 is a segment of the free/SS1 boundary. Its nodal 

displacement (DOF) vector is  

T

1 1 1 2 2 2 3 3 3 4 4 4

e

x y x y x y x yw w w w          q .    (27) 

 

2.2.1 The displacement functions F and f 

As discussed in [1, 2], Hu [25] proposed that the displacement components of Mindlin-Reissner 

plate can be derived from two displacement functions: 

2, ,x y

F f F f D
w F F

x y y x C
 

   
      
   

,           (28) 

in which F and f should satisfy 

2 2D F q   ,                          (29) 

  21
1 0

2
D f Cf    .                     (30) 

Similar works were also presented in form of the Trefftz functions [21-24]. Then, by substituting 

Equation (28) into related governing equations, all the strain and stress components of a 

Mindlin-Reissner plate can be obtained.  

 

2.2.2 The trial functions for resultant fields of new elements 

Same as the original HDF method [1], the trial functions for resultant fields of new IHDF 

elements are also derived from the displacement functions F and f. Thus, Equation (2) can be 

specifically rewritten as  

    *, ,F f F f  R R S β R ;                  (31) 

with 

  0 0 0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 1 2, f fF f    S R R R R R R R R R R R R R , (32) 

 
T

1 2 3 4 13    β .                 (33) 

Since the analytical solutions of displacement functions and the corresponding resulting resultant 

solutions have already been proposed in [1], the detailed expressions of Equation (32) are directly 
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listed in Appendix A.  

 

2.2.3 The boundary displacement modes of new elements 

  To determine the new hybrid element’s boundary displacement modes, the locking-free 

Timoshenko’s beam is employed, as the original HDF method [1, 2] does. Furthermore, the 

normal rotation of each edge is assumed as a linear variation. Related contents are also available 

in references [1, 2]. Thus for simplicity, the detailed components of 


N  in Equation (6) are 

directly presented in Appendix B.  

  

2.2.4 Related constraints on the resultant fields of new elements 

  For the free edge 12, as shown in Figure 1, the boundary resultant field should satisfy the 

following conditions: 

n

free ns

n free

M

M

T

 
 

  
  

R 0 .                        (34) 

Thus, 
consR  and 

consL  in Equation (7) can be written as:  

cons freeR R ,                          (35) 

*2 *2 * *

* * * * *2 *2

* *

2 0 0

0 0

0 0 0

x y x y

free

cons cons x y x y x y

x y

l l l l

l l l l l l

l l

 
 

    
   

L L ,             (36) 

where *

xl  and 
*

yl  denote the direction cosines of outer normal of the free edge 12.  

Then, by substituting Equations (35) and (36) into those equations in previous sections, the final 

formulations of the element IHDF-P4-Free can be obtained. This element will be specially used 

for modeling the boundary layers near free edges. 

For the SS1 edge 12, the related resultant boundary conditions are: 

SS1

SS1

n

ns

M

M

 
  
 

R 0 .                        (37) 

Correspondingly, the specific expressions of 
consR  and 

consL  in Equation (7) are:  
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SS1cons R R ,                             (38) 

*2 *2 * *

1

* * * * *2 *2

2 0 0

0 0

x y x ySS

cons cons

x y x y x y

l l l l

l l l l l l

 
   

   

L L ,             (39) 

where *

xl  and 
*

yl  denote the direction cosines of outer normal of the SS1 edge 12. Similarly, 

substitution of Equations (38) and (39) into equations in previous sections yields the final 

formulations of the element IHDF-P4-SS1. This element will be employed to simulate the 

behaviors in boundary layers near SS1 edges. 

  In fact, Equation (7) can also be used to handle constrained problems of other types. Related 

works will be presented in our future work. 

 

3. NUMERICAL TESTS 

  Several numerical tests are investigated to assess the present scheme’s validity. In these tests, 

the new elements IHDF-P4-Free and IHDF-P4-SS1 are allocated along the free and SS1 edges, 

respectively, to capture the plate behaviors in the boundary layers, while HDF-P4-11 [2] are used 

for modeling other domains. For comprehensive comparison, results obtained by both the present 

and original schemes [1] are provided.  

Remarks: In this section, “F” means the free edge; “S
*
” means soft simply-supported (SS1) 

edge and “S” means hard simply-supported edge (SS2).  

 

3.1. The soft simply-supported (SS1) thick square plate 

  Figure 2 depicts a quarter of the SS1 thick square plate subjected to a uniformly distributed 

transverse loading, with Poisson’s ratio μ=0.3. For simplicity, it is denoted as S
*
S

*
S

*
S

*
 plate. 

Figure 2(a) shows the regular mesh commonly used for most quadrilateral elements. When solving 

thin S
*
S

*
S

*
S

* 
plate, many Mindlin-Reissner plate elements can provide satisfactory results of 

central displacement/stress, in which HDF-P4-11 [2] seems to be the most outstanding one. 

However, when handling the thick S
*
S

*
S

*
S

*
 case, their performances will more or less deteriorate. 

The reason may be related to the existence of the edge effect, whose domain of influence is about 

the order of plate thickness. Here, to verify the influences of the edge effect on the computation 

convergence of elements, the boundary layers will be designedly modeled by the special element 
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IHDF-P4-SS1. That is to say, element IHDF-P4-SS1 is allocated along the SS1 edges, and the 

other regions are still modeled by HDF-P4-11. Note that, since there are two SS1 edges connect 

at the corners of the plate, the peculiar mesh shown in Figure 2(b) is employed, in which the 

square grid near the corner splits into two degenerated triangles. As IHDF-P4-SS1 possesses the 

significant advantage of the HDF elements, i.e. insensitive to severe mesh distortion, its 

performance in such distorted mesh can still be guaranteed.  

For the plate with span-thickness ratio a/h=10, the convergence plots of normalized central 

deflections and bending moments are given by Figures 3 and 4. For comparison, the results 

obtained by the original scheme [1] and other well-known elements, including ARS-Q12 [26], 

Q4BL [27], S4R [28], AC-MQ4 [29], and PQI [30], are also given. Table I also lists the results 

calculated by the presented method and the original schemes with and without the influence of the 

edge effect [1, 2]. Furthermore, for the cases with larger span-thickness ratios a/h=100, 1000 and 

10000, the convergence tests are performed, and the normalized central deflections are provided in 

Tables II to IV with the results proposed by Santos et al. [31]. Note that the order of the Gaussian 

integration in the new elements should be adjusted by following the rules proposed in [1]. It can 

be seen that the present method, in which the influences of edge effect are particularly considered, 

converges more rapidly to the reference Mindlin-Reissner plate solutions [31]. 

This test shows that the existences of the boundary layers may have significant influences on 

the convergence rate, especially for thick plate cases. Therefore engineers and scholars should pay 

enough attention to the edge effect problem. 

 

3.2. The square plate with two opposite edges hard simply-supported 

  As shown in Figure 5, a square plate with two opposite edges hard simply-supported is 

subjected to a uniformly distributed loading q. The other two edges are free or soft 

simply-supported. For simplicity, they are denoted as SFSF case and SS
*
SS

*
 case, respectively. 

Owing to symmetry, only a quarter is modeled. And Poisson’s ratio =0.3. Two different 

span-thickness ratio cases, a/h=50 and 100, are considered. For the case a/h=50, Kant and his 

coauthors [5, 6] have derived the semi-analytical solutions by the segmentation method. And for 

the case a/h=100, results obtained by using a refined 100×100 mesh are adopted as the reference 

solutions.  
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To effectively capture the behaviors in the boundary layers, the following typical mesh shown 

in Figure 5 is employed: the new special elements will be allocated along the special free/SS1 

edges, while the other regions are still modeled by the conventional element HDF-P4-11 [2]. As 

described in the Section 4.3 in [1], the width of the boundary layer is approximately of the order of 

plate’s thickness. Thus, the characteristic sizes of the special elements should be restrained. For 

comparison, the results obtained by the original scheme [1] and Abaqus elements [28] are also 

provided here. 

 

3.2.1. The SFSF case 

In this case, the element IHDF-P4-Free will be used for modeling the boundary layers near the 

free edges.  

For the case a/h=50, Table V lists the results of displacements and resultants calculated at some 

specified positions. It can be seen that, both the present and original schemes can give satisfactory 

results, performing much better than the Abaqus elements S4 and S4R [28]. Figures 6 and 8 

respectively give the distributions of the twisting moment Mxy and shear force Ty, obtained in 

coarse mesh 44 and fine mesh 3232, along the edge AB. The corresponding contour plots are 

given in Figures 7 and 9. Figures 10 and 11 respectively depict the distribution of the shear force 

Tx along the symmetric edge DC and the contour plot.  

It can be seen that, if the Abaqus element S4 was employed to solve the edge effect problem, 

only poor results can be obtained, neither capturing the very steep gradients nor satisfying the 

related resultant boundary conditions, see the red boxes over Abaqus results in these figures. 

When predicting the distributions of Mxy and Tx, the peak values wrongly occur at the free edges. 

In fact, these values at the free edges should be zero. Even though the results can be improved by 

refining the mesh, the related resultant boundary conditions still cannot be satisfied. On the 

contrary, the present IHDF and original HDF schemes can provide excellent performances, even 

when only the coarse mesh 44 is used.  

It should be emphasized that in Figures 10 and 11, when using the original HDF scheme [1], the 

results of shear force Tx show certain discontinuities at the conjunctive areas between the special 

and conventional elements. In contrast, the results obtained by the new IHDF scheme are much 

more smoothed, especially in the coarse mesh. Furthermore, with the refinement of the mesh, the 
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results of both new and old schemes will agree well with the reference solutions, as shown in 

Figure 12.  

For the case a/h=100, resultant distributions and corresponding contour plots calculated in 

coarse mesh 88 and fine mesh 3232 are shown in Figures 13 to 18. Same conclusions with the 

previous case a/h=50 can be obtained. 

 

3.2.2. The SS
*
SS

*
 case 

In this case, the element IHDF-P4-SS1 will be allocated along the SS1 edges.  

For the case a/h=50, results of some displacements and resultants are listed in Table VI. Figures 

19 to 22 give the distributions of the twisting moment Mxy and shear force Ty along the edge AB 

and the corresponding contour plots. The distribution along the symmetric edge DC and the 

contour plot of shear force Tx are respectively shown in Figures 23 and 24. It can be seen that, 

although the peak value of the shear force Tx at the boundary exhibits some oscillations, the results 

will finally converge to the reference solutions once the mesh is refined (see Figure 25). The 

results of the case a/h=100 are also provided in Figures 26-31. From this test, it can be concluded 

again that, the present IHDF scheme can efficiently simulate the behaviors in the boundary layers 

even in a coarse mesh, while the Abaqus elements fail [28]. 

 

3.2.3. Computation efficiency test 

To compare the computation efficiencies of the new and previous schemes, the mean 

computation time of the plate with span-thickness ratio a/h=50 are provided in Table VII. Besides, 

the case that all elements are the conventional HDF elements is considered. It can be seen that, the 

schemes with the edge effect will not obviously bring extra computational costs, while excellent 

results can be obtained even when only a coarse mesh is used.  

A standard front method solver is used and the program is executed by a personal computer 

with an ‘Intel Core i7-3770’ (Intel Corp., Mountain View, CA, USA) CPU and 4 GB of memory.  

 

3.3. The 60 skew plate with two opposite edges hard simply-supported 

As shown in Figure 32, a 60 skew plate with two opposite edges hard simply-supported (SS2), 

is subjected to a uniformly transverse load q. The other two edges are both free, or both soft 
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simply-supported (SS1). For simplicity, they are respectively denoted as the SFSF case and the 

SS
*
SS

*
 case. The plate’s thickness h=0.1, span a=5 and Poisson’s ratio  = 0.3.  

Two typical meshes, the regular mesh (a) and distorted mesh (b), are also illustrated in Figure 

32. The boundary layers near free/SS1 edges will be modeled by the special IHDF elements. In 

this benchmark, the elements are also rhombic due to the shape of the plate. Thus, it is to assess 

the abilities of the present IHDF elements in oblique meshes.  

In Figures 33 to 36, the distributions of twist moment Mxy, shear forces Tx and Ty along the 

supported edge AB for the SFSF case and SS
*
SS

* 
case, which are calculated by the regular mesh 

(a) and the distorted mesh (b), are respectively presented. The results obtained by using a very fine 

mesh 200×200 are taken as the reference solutions. It is well-known that, the obtuse corner B is a 

singular point, where stress concentrations take place [32]. In Figures 37 to 40, the resultant 

distributions along the path EF are also provided. It can be observed that the results of IHDF 

scheme are in good agreement with the reference solutions in the regions far away from the obtuse 

corner B, no matter the regular or the distorted mesh is employed. 

 

3.4. The 30 Morley skew plate 

As shown in Figure 41, a 30 skew plate [33] with all edges soft simply-supported (SS1) is 

subjected to a uniformly transverse load q. The span-thickness ratio a/h= 100, Young modulus E = 

10.92 and Poisson’s ratio  = 0.3. Along the SS1 edges, special element IHDF-P4-SS1 are 

allocated for modeling the boundary layers, while the other regions are modeled by element 

HDF-P4-11. Note that there are two SS1 edges connect at the plate vertex, one quadrilateral 

corner element will be divided into two degenerated triangular IHDF elements. Since the shapes 

of the IHDF and HDF elements are quite free, such distortion will not deteriorate the performance 

of the present scheme. 

In Table VIII, the dimensionless central deflections and principal bending moments are listed 

for comparing the capabilities of the proposed IHDF formulations with other finite elements [29, 

31, 34, 35]. It can be seen that the present method converges very rapidly and agrees with the 

reference 3D solution [36] much better than others. 

Figures 42 and 43 depict the distributions of dimensionless resultants along the path AB and EF, 

respectively. The results obtained in refine mesh 200×200 are also presented as the reference 
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solutions. This test proves again that the IHDF scheme can provide satisfactory resultant 

distributions in the regions far away from the singular obtuse corners, efficiently modeling the 

behaviors in the boundary layers. 

 

3.5. The Circular plate 

As shown in Figure 44, a circular plate is subjected to a uniform transverse load q, with all 

edges soft simply-supported (SS1). Owing to the symmetry, only a quarter is modeled. The radius 

is R= 5, Young modulus E = 10.92 and Poisson’s ratio  = 0.3. Two different thicknesses h = 0.1 

and 1 are considered. 

Tables IX and X give the normalized central deflections and bending moments calculated by 

different element models [26, 29, 34, 35, 37]. It can be seen that the results obtained by the 

presented IHDF scheme and the conventional HDF plate element HDF-P4-11 [2] both converge 

rapidly into the reference solutions [38, 39]. 

 

4. CONCLUSIONS 

Due to the shortage of effective method, the edge effect problem of Mindlin-Reissner plate is 

often ignored. However, the existences of boundary layers may have significant effects on the 

convergences and bring about great difficulties for exactly capturing the resultant distributions. In 

this work, an improved version based on the original HDF scheme [1] for analysis of the edge 

effect problem of Mindlin-Reissner plate is presented. According to the new scheme, two new 

special elements, IHDF-P4-Free and IHDF-P4-SS1, are constructed for modeling the boundary 

layers near free and SS1 edges, respectively. Different with the models proposed in Ref. [1], the 

constructions of these new elements are based on a modified complementary energy functional 

including Lagrangian multipliers. Through this way, the influences of related resultant boundary 

conditions at the free/SS1 edge on the resultant field are considered in a weak form. Thus, the 

resultant solutions derived from the analytical solutions of displacement functions F and f can be 

directly employed as the final resultant trial functions within the element without further 

modification. Besides, the boundary displacement modes of the elements are also determined by 

the locking-free Timoshenko’s beam, as the treatments given by Refs. [1] and [2]. Similar to the 

original scheme, the new IHDF elements are allocated along the plate boundaries for modeling the 
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boundary layers, while other regions are still modeled by element HDF-P4-11 [2].  

Numerical tests prove that this present scheme can also effectively solve the edge effect 

problem, exactly capturing the behavior in the boundary layers and providing satisfactory results 

for both displacements and resultants. Moreover, compared with the previous HDF scheme [1], 

the new scheme exhibits two distinct advantages: (i) the distributions of shear forces in a coarse 

mesh calculated by the new scheme are much more smoothed; and (ii) the usage of the additional 

local Cartesian coordinate system in HDF scheme [1] for imposing boundary constraints is 

avoided. Therefore, the formulations of the present IHDF elements are more straightforward and 

much simpler.   

 

APPENDIX A 

The solution of the displacement function F in Equation (28) can be divided into the general 

part F
0
 and the particular part F

*
: 

2 2 0 0D F   ,                            (A1)
 

2 2 *D F q   .                            (A2)
 

The analytical solutions of F
0
 in polynomial form and the resulting resultant solutions have 

already obtained in [1]. Here, they are only listed in Table AI. For a uniformly distributed 

transverse loading q, F
*
 can be written as 

 * 4 4

48

q
F x y

D
  .                        (A3)

 

Correspondingly, the resultants are 
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 

2 2
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M q
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T q
x

T

q
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



 
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  
    
  

   
    
   
   
    

 
 

 

R .                     (A4) 

For an element along the free or SS1 edge, as shown in Figure 1, edge 12 is a segment of the 

special boundary. Two solutions of the displacement function f in Equation (29) are given by [1]: 
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0

1

1
=

mx ny a
f e

D

 
 ,                          (A5) 

  0

2

1
=

mx ny a
f nx my e

D

 
  ,                     (A6) 

with  

2 1 1 2

12 12

10 10
= ,

y y x x
m n

h l h l

 
 ,                  (A7) 

0 1 1 2 2a mx ny mx ny    .                      (A8) 

h is the plate’s thickness; (x1, y1), (x2, y2) are the Cartesian coordinates of nodes 1 and 2; and l12 is 

the length of edge 12. Figure A1 plots the distributions of these two solutions over a square 

domain, and Table AII lists the resulting resultant solutions. 

 

APPENDIX B 

For the new elements, the boundary displacement modes are determined by the locking-free 

Timoshenko’s beam [1, 2], as shown in Figure B1. 


N
 
in Equation (5) is a 3×12 matrix. For 

simplicity, its detailed components are directly proposed. 

For the edge ij ( 1,2,3,4i  ; 2,3,4,1j  ), the following labels are defined: 

   Lab1 3 1 1, Lab2 3 1 1i j        .               (B1) 

Then, the non-zero components of 


N  are: 

   1,lab1 1 1
ij

ij

y
s

l
   N ,    1,lab1 2 1

ij

ij

x
s

l
  N ,  

 1,lab2 1
ij

ij

y
s

l
  N ,  1,lab2 2

ij

ij

x
s

l
 N ,  

    2

6
2,lab1 1 2 ij

ij

Z
l




  N ,     22,lab1 1 1 3 1 2
ij

ij

ij

x
s Z

l



      
 

N , 

    22,lab1 2 1 3 1 2
ij

ij

ij

y
s Z

l



      
 

N ,     2

6
2,lab2 1 2 ij

ij

Z
l




 N , 

    22,lab2 1 3 1 2
ij

ij

ij

x
s Z

l



     
 

N ,      22,lab2 2 3 1 2
ij

ij

ij

y
s Z

l



     
 

N , 

    33,lab1 1 1 2 ijs Z


   N ,    2 33,lab1 1 1 2
2

ij

ij

x
Z Z


     
 

N , 
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   2 33,lab1 2 1 2
2

ij

ij

y
Z Z


     
 

N ,     33,lab2 1 2 ijs Z


  N , 

   2 33,lab2 1 1 2
2

ij

ij

x
Z Z


    
 

N ,    2 33,lab2 2 1 2
2

ij

ij

y
Z Z


    
 

N , 

(B2) 

with 

 2 3(1 ), (1 ) 1 2Z s s Z s s s     ,   26 1 12 ,ij ij ij ij ijD Cl      ,                (B3) 

where D and C are given in Equation (30); 
1

,
2

s


  1 1     is the one-dimension 

isoparametric coordinate along the edge ij; 
2 2 2

ij ij ijl x y   with
ij i jx x x  ,

ij i jy y y  . 
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Table I. The normalized central deflections and moments of S
*
S

*
S

*
S

*
 square plate, with a/h=10 

Mesh 22 44 88 1616 3232 Reference [2] 

Normalized central deflection wc/wref 

HDF-P4-11 [2] 0.9455 0.9675 0.9899 0.9974 0.9993 

1.0000* HDF-P4-SS1+HDF-P4-11 [1] 0.9855 0.9964 0.9999 0.9999 0.9998 

IHDF-P4-SS1+HDF-P4-11 0.9962 0.9999 0.9995 0.9994 0.9997 

Normalized central moment Mc/Mref 

HDF-P4-11 [2] 0.9976 0.9681 0.9906 0.9976 0.9994 

1.0000** HDF-P4-SS1+HDF-P4-11 [1] 0.9805 0.9934 0.9990 0.9996 0.9997 

IHDF-P4-SS1+HDF-P4-11 0.9780 0.9954 0.9986 0.9993 0.9996 

* the dimensionless reference deflection wref /(qL4 /100D) is 0.4617 

** the dimensionless reference moment Mref /(qL2 /10) is 0.5096 
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Table II. The normalized central deflections of S
*
S

*
S

*
S

*
 square plates, with a/h=100 

Mesh 44 88 1616 3232 Reference [31] 

HDF-P4-11 [2] 0.9916 0.9916 0.9922 0.9949 

1.0000* Santos et al. [31] 0.9967 0.9930 0.9916 0.9913 

IHDF-P4-SS1+HDF-P4-11 1.0000 1.0000 1.0000 0.9999 

* the dimensionless reference deflection wref /(qL4 /100D) is 0.40993 
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Table III. The normalized central deflections of S
*
S

*
S

*
S

*
 square plates, with a/h=1000 

Mesh 44 88 1616 3232 Reference [31] 

HDF-P4-11 [2] 0.9991 0.9991 0.9991 0.9991 

1.0000* Santos et al. [31] 1.0046 1.0009 0.9996 0.9992 

IHDF-P4-SS1+HDF-P4-11 1.0000 1.0000 1.0000 1.0000 

* the dimensionless reference deflection wref /(qL4 /100D) is 0.40659 
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Table IV. The normalized central deflections of S
*
S

*
S

*
S

*
 square plates, with a/h=10000 

Mesh 44 88 1616 3232 Reference [31] 

HDF-P4-11 [2] 0.9999 0.9999 0.9999 0.9999 

1.0000* Santos [31] 1.0054 1.0017 1.0004 1.0000 

IHDF-P4-SS1+HDF-P4-11 1.0000 1.0000 1.0000 1.0000 

* the dimensionless reference deflection wref /(qL4 /100D) is 0.40627 
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Table V. The dimensionless deflections and resultants at certain positions for SFSF case, a/h=50 

 Mesh NN 44 88 1616 3232 100100 Kant [5,6] 

4

Cw D

qa


 

S4 [28] 0.01274 0.01302 0.01309 0.01310 0.01311 

0.0131 
S4R [28] 0.01274 0.01302 0.01309 0.01310 0.01311 

HDF-P4-Free+HDF-P4-11 [1] 0.01311 0.01311 0.01311 0.01311 0.01311 

IHDF-P4-Free+HDF-P4-11  0.01311 0.01311 0.01311 0.01311 0.01311 

        

4

Dw D

qa


 

S4 [28] 0.01464 0.01495 0.01504 0.01506 0.01507 

0.0150 
S4R [28] 0.01467 0.01496 0.01504 0.01506 0.01507 

HDF-P4-Free+HDF-P4-11 [1] 0.01507 0.01507 0.01507 0.01507 0.01507 

IHDF-P4-Free+HDF-P4-11 0.01507 0.01507 0.01507 0.01507 0.01507 

        

2

xCM

qa
 

S4 [28] 0.02577 0.02663 0.02680 0.02682 0.02683 

0.0268 
S4R [28] 0.02622 0.02674 0.02683 0.02683 0.02683 

HDF-P4-Free+HDF-P4-11 [1] 0.02650 0.02675 0.02681 0.02682 0.02683 

IHDF-P4-Free+HDF-P4-11 0.02649 0.02675 0.02681 0.02683 0.02683 

        

2

yCM

qa
 

S4 [28] 0.1181 0.1214 0.1222 0.1224 0.1225 

0.122 
S4R [28] 0.1187 0.1216 0.1223 0.1224 0.1225 

HDF-P4-Free+HDF-P4-11 [1] 0.1228 0.1226 0.1225 0.1225 0.1225 

IHDF-P4-Free+HDF-P4-11 0.1229 0.1226 0.1225 0.1225 0.1225 

        

2

yDM

qa
 

S4 [28] 0.1286 0.1308 0.1308 0.1306 0.1304 

0.130 
S4R [28] 0.1248 0.1288 0.1300 0.1304 0.1305 

HDF-P4-Free+ HDF-P4-11 [1] 0.1304 0.1304 0.1304 0.1305 0.1304 

IHDF-P4-Free+HDF-P4-11 0.1305 0.1302 0.1302 0.1303 0.1304 

        

yBT

qa
 

S4 [28] 0.3862 0.4354 0.4525 0.4602 0.4654 

0.463 
S4R [28] 0.3866 0.4355 0.4525 0.4602 0.4654 

HDF-P4-Free+HDF-P4-11 [1] 0.4381 0.4552 0.4634 0.4656 0.4669 

IHDF-P4-Free+HDF-P4-11 0.4385 0.4552 0.4634 0.4657 0.4669 
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Table VI. The dimensionless deflections and resultants at certain positions for SS
*
SS

*
 case, a/h=50 

 Mesh NN 44 88 1616 3232 100100 Kant [5,6] 

4

Cw D

qa


 

S4 [28] 0.00406 0.00409 0.00410 0.00410 0.00411 

0.0041 
S4R [28] 0.00409 0.00409 0.00410 0.00410 0.00411 

HDF-P4-SS1+HDF-P4-11 [1] 0.00410 0.00410 0.00411 0.00411 0.00411 

IHDF-P4-SS1+HDF-P4-11  0.00411 0.00411 0.00411 0.00411 0.00411 

        

2

xCM

qa
 

S4 [28] 0.04802 0.04803 0.04808 0.04812 0.04813 

0.0481 
S4R [28] 0.04658 0.04768 0.04800 0.04809 0.04813 

HDF-P4-SS1+HDF-P4-11 [1] 0.04806 0.04809 0.04811 0.04812 0.04813 

IHDF-P4-SS1+HDF-P4-11  0.04807 0.4809 0.04811 0.04812 0.04813 

        

2

yCM

qa
 

S4 [28] 0.04812 0.04811 0.04820 0.04825 0.04827 

0.0482 
S4R [28] 0.04661 0.04776 0.04811 0.04822 0.04826 

HDF-P4-SS1+HDF-P4-11 [1] 0.04821 0.04822 0.04825 0.04827 0.04827 

IHDF-P4-SS1+HDF-P4-11  0.04822 0.04823 0.04825 0.04826 0.04827 

        

yAT

qa
 

S4 [28] –0.2987 –0.7059 –1.3600 –2.2399 –3.7097 

–5.214 
S4R [28] –0.2895 –0.7004 –1.3574 –2.2391 –3.7097 

HDF-P4-SS1+HDF-P4-11 [1] –5.0873 –5.0741 –5.0394 –5.0738 –5.1447 

IHDF-P4-SS1+HDF-P4-11  –5.3109 –5.2051 –5.1155 –5.0429 –5.0869 

        

yBT

qa
 

S4 [28] 0.3056 0.3104 0.3235 0.3314 0.3367 

0.333 
S4R [28] 0.3050 0.3104 0.3235 0.3314 0.3367 

HDF-P4-SS1+HDF-P4-11 [1] 0.3076 0.3154 0.3208 0.3299 0.3372 

IHDF-P4-SS1+HDF-P4-11  0.3067 0.3154 0.3208 0.3299 0.3372 

        

xDT

qa
 

S4 [28] 0.2624 0.2988 0.3296 0.3578 0.3916 

0.419 
S4R [28] 0.2625 0.2987 0.3295 0.3578 0.3916 

HDF-P4-SS1+HDF-P4-11 [1] 0.4226 0.4095 0.3697 0.3563 0.3925 

IHDF-P4-SS1+HDF-P4-11  0.4152 0.3906 0.3418 0.3505 0.3929 
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Table VII. The mean computing time (second) for the square plate with two opposite SS2 edges, a/h=50 

Mesh 44 88 1616 3232 100100 

SFSF case 

All HDF-P4-11 0.0624 0.2090 0.8986 5.0700 215.6402 

HDF-P4-Free+HDF-P4-11 [1] 0.1030 0.2808 1.0608 5.5193 217.1378 

IHDF-P4-Free +HDF-P4-11 0.1030 0.2714 1.0390 5.3290 216.7166 

 SS*SS* case 

All HDF-P4-11 0.0624 0.2184 0.9048 5.0950 215.9834 

HDF-P4-SS1+HDF-P4-11 [1] 0.1030 0.2870 1.0452 5.2884 216.2018 

IHDF-P4-SS1+HDF-P4-11 0.1030 0.2839 1.0390 5.2822 216.0458 

* 1616 Gauss integration is used for IHDF-P4-Free and IHDF-P4-SS1 
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Table VIII. Central deflections and principal bending moments of 30 Morley plate (a/h=100) 

Mesh NN 44 88 1616 3232 
Morley’s thin  

plate solutions [33] 
3D Solution [34] 

(a) Central deflection  wo/(qL4/1000D)  

MITC4 [34] 0.359 0.357 0.383 0.404   

DKMQ [35] 0.757 0.504 0.441 0.423   

AC-MQ4 [29] 0.431 0.410 0.407 0.409   

Santos et al. [31] 0.435 0.437 0.421 0.418   

HDF-P4-11 0.463 0.427 0.421 0.420   

IHDF-P4-SS1+HDF-P4-11 0.462 0.430 0.424 0.423 0.408 0.423 

(b) Central max principal moment Mmax/(qL2/100) 

MITC4 [34] 1.670 1.782 1.844 1.894   

DKMQ [35] 2.330 2.073 1.984 1.945   

AC-MQ4 [29] 2.157 2.121 1.990 1.933   

Santos et al. [31] 1.678 1.931 1.945 1.930   

HDF-P4-11 2.198 1.882 1.942 1.937   

IHDF-P4-SS1+HDF-P4-11 2.183 1.895 1.953 1.949 1.910  

(c) Central min principal moment Mmin/(qL2/100)  

MITC4 [34] 0.921 0.999 1.046 1.076   

DKMQ [35] 1.740 1.267 1.166 1.135   

AC-MQ4 [29] 1.379 1.328 1.170 1.105   

Santos et al. [31] 0.477 0.767 0.970 1.109   

HDF-P4-11 1.400 1.108 1.157 1.130   

IHDF-P4-SS1+HDF-P4-11 1.482 1.114 1.163 1.140 1.080  
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Table IX. Normalized central deflections and bending moments of the circular plate, h=0.1 

Number of elements 12 48 192 Reference 

Normalized central deflection 

MITC4 [34] 0.980 0.995 —  

DKMQ [35] 0.990 0.998 —  

ARS-Q12 [26] 0.990 0.997 0.999 1.000* 

CHRM [37] 0.967 0.992 0.998 

 AC-MQ4 [29] 1.006 1.001 1.000 

HDF-P4-11 1.007 1.002 1.000  

IHDF-P4-SS1+HDF-P4-11 1.007 1.002 1.000  

Normalized central moment 

MITC4 [34] 0.989 0.997 —  

DKMQ [35] 1.009 1.003 —  

ARS-Q12 [26] 1.009 1.003 1.001 1.000** 

CHRM [37] 1.001 1.008 1.000 

AC-MQ4 [29] 1.021 1.006 1.001 

HDF-P4-11 1.005 1.001 1.000  

IHDF-P4-SS1+HDF-P4-11 1.005 1.001 1.000  

*normalized by the reference solution 39831.5 

** normalized by the reference solution 5.15625 
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Table X. Normalized central deflections and bending moments of the circular plate, h=1 

Number of elements 12 48 192 Reference 

Normalized central deflection 

MITC4 [34] 0.980 0.995 —  

DKMQ [35] 0.988 0.997 —  

ARS-Q12 [26] 0.988 0.997 0.999 1.000* 

CHRM [37] 0.970 0.993 0.998 

 AC-MQ4 [29] 0.996 0.998 1.000 

HDF-P4-11 1.005 1.001 1.000  

IHDF-P4-SS1+HDF-P4-11 1.005 1.001 1.000  

Normalized central moment 

MITC4 [34] 0.987 0.997 —  

DKMQ [35] 1.014 1.005 —  

ARS-Q12 [26] 1.015 1.004 1.001 1.000** 

CHRM [37] 0.993 0.998 1.000 

AC-MQ4 [29] 1.025 1.007 1.002 

HDF-P4-11 1.003 1.001 1.000  

IHDF-P4-SS1+HDF-P4-11 1.003 1.001 1.000  

*normalized by the reference solution 41.5994 

** normalized by the reference solution 5.15625 
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Table AI. Eleven items of analytical solutions of F
0
 and the resulting resultant solutions 

i 1 2 3 4 5 6 7 

0

iDF  x
2 

xy
 

y
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x
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x
2
y xy

2 
y
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0

iR
 

0

xiM  2 0 2 6x 2y 2x 6y 

0

yiM  2 0 2 6x 2y 2x 6y 

0

xyiM  0 1 0 0 2(1)x 2(1)y 0 

0

xiT  0 0 0 6 0 2 0 

0
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Table AII. Two items of analytical solutions of f and the resulting resultant solutions 

j
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Figure 1. The definitions of the special element along the free/SS1 edge 12 
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Special element  

Figure 2. A quarter of the square SS1 plate with a/h=10 
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Figure 3. The convergence plot of the dimensionless central deflection of the 

thick S
*
S

*
S

*
S

*
 square plate 



 

 

 

 

 

  

Figure 4. The convergence plot of the dimensionless central moment of the 

thick S
*
S

*
S

*
S

*
 square plate 



 

 

 

 

 

 

 

  

Figure 5. The square plate with two opposite edges hard simply-supported (SS2) 

and the typical mesh  
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Figure 6. The distribution along the edge AB of twisting moment Mxy/qa
2
 for SFSF case with 

a/h=50, calculated by Abaqus S4 (top), the old scheme (middle) and the present scheme (bottom), in 

coarse mesh and fine mesh 



 

 

 

 

 

 

 

 

  

IHDF-P4-Free+HDF-P4-11 Left-mesh 4×4   Right-mesh 32×32 

 

HDF-P4-Free+HDF-P4-11 Left-mesh 4×4   Right-mesh 32×32 

Figure 7. The contour plot of twisting moment Mxy/qa
2
 for SFSF case with a/h=50, calculated 

by Abaqus S4 (top), the old scheme (middle) and the present scheme (bottom), in coarse 

mesh and fine mesh 

Abaqus S4:  Left-mesh 4×4   Right-mesh 32×32 



 

 

 

 

  

Figure 8. The distribution along the edge AB of shear force Ty/qa for SFSF case with a/h=50, 

calculated by Abaqus S4 (top), the old scheme (middle) and the present scheme (bottom), in 

coarse mesh and fine mesh 

 



 

 

 

 

 

 

 

  

IHDF-P4-Free+HDF-P4-11: Left-mesh 4×4   Right-mesh 32×32 

 

HDF-P4-Free+HDF-P4-11: Left-mesh 4×4   Right-mesh 32×32 

Figure 9. The contour plot of shear force Ty/qa for SFSF case with a/h=50, calculated by 

Abaqus S4 (top), the old scheme (middle) and the present scheme (bottom), in coarse mesh 

and fine mesh 

Abaqus S4: Left-mesh 4×4   Right-mesh 32×32 



 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 10. The distribution along the edge DC of shear force Tx/qa for SFSF case with a/h=50, 

calculated by Abaqus S4 (top), the old scheme (middle) and the present scheme (bottom), in coarse 

mesh and fine mesh 



 

 

 

  

IHDF-P4-Free+HDF-P4-11: Left- mesh 4×4   Right- mesh 32×32 

 

HDF-P4-Free+HDF-P4-11: Left- mesh 4×4   Right- mesh 32×32 

Figure 11. The contour plot of shear force Tx/qa for SFSF case with a/h=50, calculated by 

Abaqus S4 (top), the old scheme (middle) and the present scheme (bottom), in coarse mesh 

and fine mesh 

Abaqus S4: Left-mesh 4×4   Right-mesh 32×32 



 

 

 

 

 

 

  

Figure 12. The distribution along the edge DC of shear force Tx/qa for SFSF case with a/h=50, 

calculated by the old scheme (left) and the present scheme (right), in a very fine mesh 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. The distribution along the edge AB of twisting moment Mxy/qa
2
 for SFSF case with 

a/h=100, calculated by Abaqus S4 (top), the old scheme (middle) and the present scheme (bottom), in 

coarse mesh and fine mesh 



 

 

 

 

 

 

  

Figure 14. The contour plot of twisting moment Mxy/qa
2
 for SFSF case with a/h=100, calculated 

by Abaqus S4 (top), the old scheme (middle) and the present scheme (bottom), in coarse mesh 

and fine mesh 

IHDF-P4-Free+HDF-P4-11 Left-mesh 8×8   Right-mesh 32×32 

 

HDF-P4-Free+HDF-P4-11 Left-mesh 8×8   Right-mesh 32×32 

Abaqus S4:  Left-mesh 8×8   Right-mesh 32×32 



 

 

 

 

 

 

  

Figure 15. The distribution along the edge AB of shear force Ty/qa for SFSF case with a/h=100, 

calculated by Abaqus S4 (top), the old scheme (middle) and the present scheme (bottom), in coarse 

mesh and fine mesh 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 16. The contour plot of shear force Ty/qa for SFSF case with a/h=100, calculated by 

Abaqus S4 (top), the old scheme (middle) and the present scheme (bottom), in coarse mesh and 

fine mesh 

IHDF-P4-Free+HDF-P4-11: Left-mesh 8×8   Right-mesh 32×32 

 

HDF-P4-Free+HDF-P4-11: Left-mesh 8×8   Right-mesh 32×32 

Abaqus S4: Left-mesh 8×8   Right-mesh 32×32 



 

 

 

 

 

 

 

 

 

  

Figure 17. The distribution along the edge DC of shear force Tx/qa for SFSF case with a/h=100, 

calculated by Abaqus S4 (top), the old scheme (middle) and the present scheme (bottom), in coarse 

mesh and fine mesh 



 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 18. The contour plot of shear force Tx/qa for SFSF case with a/h=100, calculated by 

Abaqus S4 (top), the old scheme (middle) and the present scheme (bottom), in coarse mesh and 

fine mesh 

IHDF-P4-Free+HDF-P4-11: Left- mesh 8×8   Right- mesh 32×32 

 

HDF-P4-Free+HDF-P4-11: Left- mesh 8×8   Right- mesh 32×32 

Abaqus S4: Left-mesh 8×8   Right-mesh 32×32 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 19. The distribution along the edge AB of twisting moment Mxy/qa
2

 for SS
*
SS

*
 case with 

a/h=50, calculated by Abaqus S4 (top), the old scheme (middle) and the present scheme (bottom), in 

coarse mesh and fine mesh 



 

 

 

 

 

 

 

  

Figure 20. The contour plot of twisting moment Mxy/qa
2
 for SS

*
SS

*
 case with a/h=50, calculated 

by Abaqus S4 (top), the old scheme (middle) and the present scheme (bottom), in coarse mesh 

and fine mesh 

IHDF-P4-SS1+ HDF-P4-11 Left- mesh 4×4   Right- mesh 32×32 

 

HDF-P4-SS1+ HDF-P4-11 Left- mesh 4×4   Right- mesh 32×32 

Abaqus S4:  Left- mesh 4×4   Right- mesh 32×32 



 

 

 

  

Figure 21. The distribution along the edge AB of shear force Ty/qa for SS
*
SS

*
 case with a/h=50, 

calculated by Abaqus S4 (top), the old scheme (middle) and the present scheme (bottom), in coarse 

mesh and fine mesh 



 

 

 

 

 

 

 

 

 

 

 

 

  

IHDF-P4-SS1+HDF-P4-11 Left- mesh 4×4   Right- mesh 32×32 

 

HDF-P4-SS1+HDF-P4-11 Left- mesh 4×4   Right- mesh 32×32 

Figure 22. The contour plot of shear force Ty/qa for SS
*
SS

*
 case with a/h=50, calculated by 

Abaqus S4 (top), the old scheme (middle) and the present scheme (bottom), in coarse mesh 

and fine mesh 

Abaqus S4:  Left- mesh 4×4   Right- mesh 32×32 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 23. The distribution along the edge DC of shear force Tx/qa for SS
*
SS

*
 case with a/h=50, 

calculated by Abaqus S4 (top), the old scheme (middle) and the present scheme (bottom), in coarse 

mesh and fine mesh 



 

 

 

 

 

 

 

  

IHDF-P4-SS1+HDF-P4-11 Left-mesh 4×4   Right-mesh 32×32 

 

HDF-P4-SS1+HDF-P4-11 Left-mesh 4×4  Right-mesh 32×32 

Figure 24. The contour plot of shear force Tx/qa for SS
*
SS

*
 case with a/h=50, calculated by 

Abaqus S4 (top), the old scheme (middle) and the present scheme (bottom), in coarse mesh 

and fine mesh 

Abaqus S4:  Left-mesh 4×4   Right-mesh 32×32 



 

 

 

 

 

 

 

 

 

 

  

Figure 25. The distribution along the edge DC of shear force Tx/qa for SS
*
SS

*
 case with a/h=50, 

calculated by the old scheme (left) and the present scheme (right), in a very fine mesh 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. The distribution along the edge AB of twisting moment Mxy/qa
2

 for SS
*
SS

*
 case with 

a/h=100, calculated by Abaqus S4 (top), the old scheme (middle) and the present scheme (bottom), in 

coarse mesh and fine mesh 



 

 

 

 

 

  

Figure 27. The contour plot of twisting moment Mxy/qa
2
 for SS

*
SS

*
 case with a/h=100, 

calculated by Abaqus S4 (top), the old scheme (middle) and the present scheme (bottom), in 

coarse mesh and fine mesh 

IHDF-P4-SS1+ HDF-P4-11 Left- mesh 8×8   Right- mesh 32×32 

 

HDF-P4-SS1+ HDF-P4-11 Left- mesh 8×8   Right- mesh 32×32 

Abaqus S4:  Left- mesh 8×8   Right- mesh 32×32 



 

 

 

 

  

Figure 28. The distribution along the edge AB of shear force Ty/qa for SS
*
SS

*
 case with a/h=100, 

calculated by Abaqus S4 (top), the old scheme (middle) and the present scheme (bottom), in coarse 

mesh and fine mesh 



 

 

 

 

 

 

 

  

Figure 29. The contour plot of shear force Ty/qa for SS
*
SS

*
 case with a/h=100, calculated by 

Abaqus S4 (top), the old scheme (middle) and the present scheme (bottom), in coarse mesh 

and fine mesh 

IHDF-P4-SS1+HDF-P4-11 Left- mesh 8×8   Right- mesh 32×32 

 

HDF-P4-SS1+HDF-P4-11 Left- mesh 8×8   Right- mesh 32×32 

Abaqus S4:  Left- mesh 8×8   Right- mesh 32×32 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 30. The distribution along the edge DC of shear force Tx/qa for SS
*
SS

*
 case with a/h=100, 

calculated by Abaqus S4 (top), the old scheme (middle) and the present scheme (bottom), in coarse 

mesh and fine mesh 



 

 

 

 

 

 

 

 

  

Figure 31. The contour plot of shear force Tx/qa for SS
*
SS

*
 case with a/h=100, calculated by 

Abaqus S4 (top), the old scheme (middle) and the present scheme (bottom), in coarse mesh and 

fine mesh 

IHDF-P4-SS1+HDF-P4-11 Left-mesh 8×8   Right-mesh 32×32 

 

HDF-P4-SS1+HDF-P4-11 Left-mesh 8×8  Right-mesh 32×32 

Abaqus S4:  Left-mesh 8×8   Right-mesh 32×32 



 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 32. The 60 skew plate with two opposite edges hard simply-supported 

and the typical meshes 
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Figure 33. Distributions of twist moment Mxy, shear forces Tx and Ty along the path AB of 

the 60 skew plate in regular mesh (SFSF case)  



 

 

 

 

 

 

 

  

Figure 34. Distributions of twist moment Mxy, shear forces Tx and Ty along the path AB of 

the 60 skew plate in regular mesh (SS
*
SS

*
 case)  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 35. Distributions of twist moment Mxy, shear forces Tx and Ty along the path AB of 

the 60 skew plate in distorted mesh (SFSF case)  



 

 

 

 

 

 

  

Figure 36. Distributions of twist moment Mxy, shear forces Tx and Ty along the path AB of 

the 60 skew plate in distorted mesh (SS
*
SS

*
 case)  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37. Distributions of twist moment Mxy, shear forces Tx and Ty along the path EF of 

the 60 skew plate in regular mesh (SFSF case)  



 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 38. Distributions of twist moment Mxy, shear forces Tx and Ty along the path EF of 

the 60 skew plate in regular mesh (SS
*
SS

*
 case)  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39. Distributions of twist moment Mxy, shear forces Tx and Ty along the path EF of 

the 60 skew plate in distorted mesh (SFSF case)  



 

 

 

 

 

  

Figure 40. Distributions of twist moment Mxy, shear forces Tx and Ty along the path EF of 

the 60 skew plate in distorted mesh (SS
*
SS

*
 case)  
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Figure 41. The 30 skew plate with all edges soft simply-supported and 

the typical mesh 
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Figure 42. Distributions of twist moment Mxy, shear forces Tx and Ty along the path AB of 

the 30 skew plate  



 

 

 

 

 

 

  

Figure 43. Distributions of twist moment Mxy, shear forces Tx and Ty along the path EF of 

the 30 skew plate  



 

 

 

 

 

 

 

 

  

Figure 44. The circular plate with all edges soft simply-supported and 

the typical mesh 
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Figure A1. The distributions of f1 and f2 over a square domain  

The edge 12 is free/SS1 edge. 
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Figure B1. Timoshenko’s beam element 


