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Highlights

• a novel method of shape deformation using discrete boundary smoothing

• geometry and domain coupled via a control nodes approach

• volume mesh is deformed via a Delaunay Graph Mapping technique

• Modified Cuckoo Search - an evolutionary optimisation algorithm - is employed

• Successfully applied to a range of geometries and objective functions
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Discrete Boundary Smoothing using Control Node Parameterisation for
Aerodynamic Shape OptimisationI

D. S. Naumanna,∗, B. Evansa, S. Waltonb, O. Hassana

aZienkiewicz Centre for Civil & Computaional Engineering, School of Engineering, Swansea University, Swansea SA1 8EN,
Wales, UK

bDepartment of Computer Science, College of Science, Swansea University, Swansea SA2 8PP, Wales, UK

Abstract

This paper presents an automated aerodynamic optimisation algorithm using a novel method of parameterising

the search domain and geometry by employing user–defined control nodes. The displacement of the control nodes

is coupled to the shape boundary movement via a ‘discrete boundary smoothing’. This is initiated by a linear

deformation followed by a discrete smoothing step to act on the boundary during the mesh movement based

on the change in its second derivative. Implementing the discrete boundary smoothing allows both linear and

non-linear shape deformation along the same boundary dependent on the preference of the user. The domain

mesh movement is coupled to the shape boundary movement via a Delaunay graph mapping. An optimisation

algorithm called Modified Cuckoo Search (MCS) is used acting within the prescribed design space defined by the

allowed range of control node displacement. In order to obtain the aerodynamic design fitness a finite volume

compressible Navier-Stokes solver is utilized. The resulting coupled algorithm is applied to a range of case studies

in two dimensional space including the optimisation of a RAE2822 aerofoil and the optimisation of an intake

duct under subsonic, transonic and supersonic flow conditions. The discrete mesh–based optimisation approach

outlined is shown to be effective in terms of its generalised applicability, intuitiveness and design space definition.

Keywords: mesh movement, Cuckoo search, computational fluid dynamics, aerodynamic shape optimization,

shape parameterisation

1. Introduction

In recent years, Computational Fluid Dynamics (CFD) has become a very mature field now being the primary

tool for aerodynamic design [1]. As such computational aerodynamic shape optimisation has emerged aiming to

replace the resource intensive manual optimisation process based on human expertise and intuition. At the same

time Computer Aided Design (CAD) has grown rapidly to become an integral part of the aerodynamic design

cycle [2] which can be observed in figure 1.

Recent innovations try to couple CAD systems, CFD tools and the mesh generation process. Examples

include Isogeometric Analysis [3, 4, 5] and NURBS Enhanced Finite Elements Methods [6, 7]. Despite all these

IThe intellectual property rights in the research data are asserted by the authors and their research partners.
∗Corresponding Author: Tel.: +447805243278
Email addresses: 717761@swansea.ac.uk (D. S. Naumann), b.j.evans@swansea.ac.uk (B. Evans), s.p.walton@swansea.ac.uk

(S. Walton), o.hassan@swansea.ac.uk (O. Hassan)
1Abbreviations: FDGD - Fast Dynamic Grid Deformation, DG - Delaunay Grid, CS - Cuckoo Search, MCS - Modified Cuckoo

Search
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Figure 1: A typical multi–disciplinary aerospace design cycle as prevalent in industry [1]. Particularly the inner design

cycle is still to date a resource intensive manual optimisation process. The aim is to automate the entire inner design

cycle.

advancements significant challenges remain particularly in the parameterisation approach [8], in the efficient

transfer between CAD and CFD systems and the improvement of the computationally expensive mesh re-

generation process[1, 9].

Selecting the appropriate parameterisation strategy is an essential part of the aerodynamic shape optimisation

process. Hicks and Henne [10] were first to explore parameterisation techniques particularly for aerodynamic

shape optimisation. A large number of different parameterisation techniques have been propoosed since then.

According to Samareh [8], implementations of parameterisation techniques in the literature can be separated

into eight categories: analytical, basis vector [11], free-form deformation (FFD) [12, 13], domain element [14],

discrete, partial differential equation (PDE), polynomial/spline and CAD-based representations [15, 16]. Other

methods include the control grid approach [17] and some parameterisation approaches are specific to a geometry

type such as the PARSEC method [18] for aerofoils. All of the methods mentioned above can be broken down into

two different classes [19]: mesh–based and mesh–free methods. Mesh–based methods include basis vector, domain

element, discrete, analytical and free-form deformation (FFD). Those are independent of any grid generation tool.

Polynomial/spline, PDE and CAD-based approaches on the other hand are usually linked to a mesh generation

tool hence requiring an automated mesh generation approach and it is not obvious on how to break that link.

Kulfan [20] and Samareh [8] have identified the following criteria for parameterisation approaches: local

and global control, robustness in terms of shape preservation, compactness, consistent to allow a wide range of

applications, intuitive in defining the design space and understanding the impact of parameters, directly linked

to mesh, allow large deformations and maintain smoothness. The last point has been redefined to smoothness

control, since the authors believe that it is rather desired to have control over the smoothness, not to inevitably
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obtain a smooth geometry.

A popular analytical approach introduced recently is Class-Shape-Transformation (CST) [21]. The method

proved very effective in terms of the number of design variables required even for three–dimensional problems

[22]. In a survey by Mousah it has been shown to be less effective when compared to mesh–based and spline–

based approaches [23]. FFD is a method adopted from the software animation industry. It does not act directly

on the geometry, instead a hull is covering the geometry and topology changes on the hull are mapped onto the

geometry. The topology of the deformation is highly dependent on the hull shape applied making it unsuitable

for general applications [24, 25]. Also it is generally limited to small deformations and local control is difficult to

achieve [26]. The domain element method is similar to FFD approaches [19]. PDEs allow for a compact set of

parameters, however it is rather computationally expensive [27]. Basis vectors employ a set of orthogonal basis

vectors as a mean to construct new shapes. With this methods only small changes can be obtained before errors

in the reconstruction occur [28].

More recently parameterisation schemes are dominated by CAD based methods [15, 16, 29, 30]. This allows

the designer to exploit the existing shape parameterisation in which the control points of the NURBS or spline

based representation are employed as the design parameters. However, the purpose of control points is to

accurately represent the shape of the geometry. This can prove impractical when used at the same time as the

design parameters for the optimisation problem, since the number, location and distribution of control points

may not be best suited for the purpose of optimisation limiting the explorable design space (i.e. range of potential

shapes) [30]. It has also been reported that a CAD based approach can produce undesirable wiggles along the

optimised shape [22]. Additionally, it is not possible to have a different order along a NURBS curve which poses

problems when wanting to control the smoothness and allow for linear and non-linear features developing along

the same curve.

Our approach

Aerodynamic designers have a clear preference towards tools that are intuitive, efficient and allow a wide–

ranging applicability. The optimisation and design approach demands an effective geometry parameterisation

to allow sufficient exploration of a design space. At the same time, the number of parameters defining a design

space should be minimal to reduce the dimensionality of the problem. This paper is a continuation of the

work in [31] in which the concept of control nodes in the mesh as a scheme for both defining the geometry

movements and as the design parameters for the optimisation process was presented. It can be classified as a

mesh-based discrete parameterisation technique. Control nodes are user–defined exploiting the expertise and

intuition of the designer. In contrast to CAD based approaches the control nodes may be arbitrarily positioned

without affecting the geometry. Also, the control node approach is generally applicable to any mesh–based

analysis problem. Control nodes are coupled to the rest of the discrete shape boundary via a discrete boundary

smoothing. This is the novel contribution presented in this paper. The proposed method allows control over the

smoothness with the ability to generate linear as well as non-linear shape deformation along the same boundary

in a simple, intuitive fashion. Such a feature is not obvious to achieve with currently dominating approaches in

the field of shape parameterisation (e.g. FFD, CAD-based). It preserves or generates edges along the geometry

whilst maintaining a smooth geometry for the remaining part.

In this work a mesh deformation scheme needs to be implemented to move the domain mesh. Boer et al.

separate mesh deformation methods into point-by-point schemes and schemes that exploit the mesh connectivity
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[32]. Point-by-point schemes are preferred since they are in principal applicable to any mesh type which is

favourable for a generally applicable optimisation framework. Amongst them the most popular approaches are

Fast Dynamic Grid Deformation (FDGD) [33] and Radial Basis Function (RBF) interpolation [34]. The latter

approach has to solve a system of equations of the size of the number of boundary nodes, hence increasing the

computational expense [35]. Consequently the authors implemented the FDGD approach to move the domain

mesh.

Implementing the FDGD approach results in a self-contained algorithm formulated to propagate the effect

of the control node displacement throughout the discrete shape boundary and computational mesh. There is

no need to re–mesh in between the different stages of the optimisation. Since all knowledge of the geometry is

‘stored’ in the discrete boundary, there is no requirement to convert the geometry definition stored in the mesh

into any other format during the optimisation process. This reduces the problem of translation of CAD-based

geometry definitions to CFD meshes.

2. Methodology

2.1. Geometry Shape Parameterisation

It has been pointed out in the introduction that the transfer of geometries from CAD systems into computa-

tional meshes for simulation is critical. This problem can be circumvented by a discrete shape parameterisation

method acting directly along the computational mesh. In contrast to CAD based parameterisation approaches

control nodes are selected for optimisation purposes by the designer at what he deems critical locations on the

discrete shape boundary. Note, that the driving factor during the optimisation is the change in the control node

location rather than the control nodes themselves. The number and position of these control nodes is crucial in

the evolution of the geometry. Figure 2 visualises the terms ‘control nodes’, ‘boundary nodes’ and ‘domain nodes’

as defined in this paper. An important feature of the parameterisation is the dimensionality of the explorable

design space which can be adjusted through the number of control nodes and the designers settings. It is possible

to adjust the degrees of freedom for each control node separately as well defining their range of motion. Control

nodes may also be linked together to have identical displacements. This can be beneficial in various instances,

e.g. maintaining the thickness of a geometry as shown in section 3.

The total degrees of freedom d within the system - a measure of the dimensionality of the design space - is

defined as

d =

NCN∑

k=1

fcn (1)

where fcn is the number of degrees of freedom per control node.

More details on the control node approach is provided in [31].

2.2. Mesh Movement

In a previous paper of the authors, a new mesh movement methodology has been proposed and successfully

tested to propagate the deformation of the control nodes throughout the boundary nodes and finally throughout

the domain nodes [31]. A methodology involving three steps has been defined starting with the displacement of

the control nodes based on the fitness that has been evaluated by the optimization algorithm. Consequently, the

control node displacement triggers a deformation of the discrete shape boundary. In the end the domain nodes
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- Boundary node

- Control node

- Domain node

Ω: volume domain

Γ:  boundary domain

r:  discrete boundary
points

Ω

Γ

r1r2r3

rNB

Figure 2: Definitions of control nodes, boundary nodes and domain nodes

are moved utilizing the Fast Dynamic Grid Deformation (FDGD) [33] for mesh deformation. This methodology

needs an addition as it previously led to aerodynamically unfavourable geometric features along the boundary

as illustrated in Figure 3 and in the results section.

As a result, a new scheme has been developed to propagate the deformation of control nodes throughout the

boundary nodes. The new scheme is termed ‘discrete boundary smoothing’ in this paper.
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Figure 3: Illustration of issues with linear deformation in part (a). Part (b) includes discrete boundary

smoothing and results in an aerodynamically more desirable shape.

2.2.1. Discrete Boundary Smoothing

Inspiration

At first, a range of criteria were identified for the development of the discrete boundary smoothing. As

mentioned by Samareh et al. [8], local control and shape preservation are important for applications such as
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optimum mounting of an engine below a wing [36]. Furthermore, for aerodynamic problems, it is in most cases

advantageous to have a smooth shape that avoids sharp geometric features along the boundary to maintain

attached flow, avoid turbulent flow and flow separation, all of which lead to increased drag and a loss of lift.

There are applications however, that require sharp features along the boundary e.g. at the trailing edge of a wing.

Those features need to be preserved or generated during shape optimization. The criteria can be summarized as

follows:

• Allow linear and non-linear shape deformation along the same boundary (smoothness control)

In most cases, a smooth boundary is desired using non-linear shape deformation. However, there are

moments where sharp geometric features are necessary for example at the trailing edge of a wing. This is

only achieved using a linear shape transformation technique.

• Allow local control

The optimization of only a part of the geometry e.g. the leading edge of a wing should be possible.

• Allow shape preservation

During optimization, there may be features that the designer wishes to preserve whilst optimising other

parts. This is closely linked to allowing local shape deformation.

• Allow coupling with control nodes displacement and the discrete boundary representation

Ultimately, the boundary shape deformation including the discrete boundary smoothing needs to be con-

trolled by the control nodes and their displacement.

The existing linear technique [31] addresses the final three criteria. Using a linear deformation alone, however,

inevitably induces sharp geometric features during boundary mesh deformation. Figure 3 and figure 19 (a) provide

two such examples.

Real Solution

Numerical Solution

Solution with 
Artificial Dissipation

Spatial Distribution

S
ol

u
ti
on

 F
ie

ld

Figure 4: Effect of Artificial Dissipation
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In conclusion, a flexible higher order method is necessary to allow smooth boundary shapes whilst also

maintaining linear characteristics in local regions of the boundary. A mathematical solution already existing in

the field of computational fluid dynamics to tackle a similar problem is called artificial dissipation, a numerical

method used to damp oscillations inherent in the solution of the unknowns [37].

By adding the artificial dissipation term, regions of high gradients are getting ‘smeared’ across the solution

field to achieve numerical stability. This is represented in figure 4 in which a sudden step in the solution as for

instance common across shock waves is being smoothed by applying artificial dissipation. Artificial Dissipation is

comprised of two components, a 3rd order dissipation term to ensure robustness of a numerical scheme and a 1st

order term to preserve monotonicity and smooth oscillations near strong gradients/discontinuities. Particularly

the effect of smoothing is a similar characteristic desired for the boundary shape deformation. On one hand,

sharp geometric features as a result of the boundary deformation shall be avoided to maintain aerodynamically

smooth surfaces. On the other hand, a scaling factor is required to control the level of smoothing, even to the

point of no smoothing to allow for sharp features when desired.

Numerical Description

The discrete boundary smoothing takes upon the idea of a damping term similar to artificial dissipation. Let

r ⊂ Γ be the discrete boundary nodes (r = (x, y)) of a geometry with boundary Γ, then the discrete smoothing

term for a number of smoothing iterations i = 2, 3, ..., Ns is set to

ri+1
j = rij + βλj

(
‖∇2rij‖ − ‖∇2ri=0

j ‖
)

(2)

with j = 1, 2, ..., NB . NB is the number of boundary nodes and Ns is the number of smoothing iterations.

‖ ‖ is defining the norm operator in this paper. β is both a scaling factor and stability factor and λ is the

smoothing factor. Their purpose will be demonstrated later in this chapter. The smoothing iterations propagate

the deformation of a boundary node and its respective change in ∇2r throughout the boundary. This principle

is illustrated in figure 5. Note, that i = 1 is excluded from the iteration scheme since the first step is necessary

to perform an initial linear deformation. Such linear deformation may be achieved by simple interpolation in

between each control node. In order to calculate ∇2r a central difference scheme for non-uniform mesh density

distribution has been employed in two dimensions.

Throughout the paper the index k = 1, 2, ..., NCN defines the control nodes rk and r∞k are the control nodes

in their final position as given by the optimisation algorithm.

Within the formulation the three parameters, β, Ns and λ are of great importance. All of them fulfil a

different purpose as will be outlined within the next paragraphs. For consistent results it is important that

the effect of the smoothing algorithm is independent of the mesh spacing (i.e. resolution and boundary node

distribution). Neither the number of boundary nodes (mesh resolution) nor the boundary node distribution

should influence the smoothing behaviour. Both problems have been addressed through appropriate selection of

β and NS as will be shown.
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Figure 5: The first four steps of the Discrete Boundary Smoothing for an example with a flat plane as a

starting point and a deformation of the central control node. β is given by equation 7 and λ was set to 0.1.

Principally any value could be prescribed for Ns and some level of smoothing would be obtained. However,

the number of iterations Ns is a parameter that can balance the effects of different mesh resolutions. Empirical

testing to find the number of iterations Ns providing mesh resolution independence has yielded

Ns =

(
NB

NCN

)2

(3)

where NB is the number of boundary nodes and NCN the number of control nodes. Sample results of this

study are shown in figure 6. In this figure, the behaviour of the boundary for four different numbers of smoothing

iterations Ns is compared when exposed to a deformation of the central control node. Each sub-figure contains

the initial boundary, in this case a flat plate, the result of the linear deformation during step i = 1 and the effect

of the smoothing. The effect of the smoothing is shown on three different meshes that differ in the number of

boundary nodes applied (NB = [20, 40, 80]). Only figure 6 (a) yields the exact same deformation disregarding

the number of boundary nodes NB .

β is introduced initially as a scaling factor. In equation 2 the second derivative is directly added to the

coordinate values r even though these parameters are of different magnitudes. A conversion is thus required in

form of a scaling. The scaling factor β is derived from a central difference approach used to determine ∇2r. Every

∇2rj is calculated on a reference element as illustrated in figure 7. On this reference element nj−1 = nj+1 = 0,

whereas s is the tangential coordinate along the boundary and n is the normal coordinate. Formulating the

central difference scheme ∇2nj may be derived as

∇2nj ≈
d2n

ds2

∣∣∣∣
j

=
nj−1 − 2nj + nj+1

∆s2
(4)

where ∆s is the distance between two consecutive boundary nodes in tangential direction. With nj−1 =

nj+1 = 0 Equation 4 becomes

nj =
∆s2

2

(
−∇2nj

)
(5)
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Figure 6: Mesh Resolution for different Ns: (a) Ns =

(
NB
NCN

)2

(b) Ns =

(
NB
NCN

)
(c)Ns =

(
NB
NCN

)3

(d) Ns = NB . Only (a) results in the same deformation even for different NB .

This equation illustrates the relation between ∇2n and the coordinate n, whereas a coefficient has appeared

as a result of the derivation of the form

β =
∆s2

2
(6)

Now it is obvious that β is a scaling factor that allows to directly relate ∇2r to r. However, Equation 4

assumes a uniform mesh density distribution in which β is the same for every boundary node. In order to account

for a non-uniform mesh density distribution (a varying ∆s) β is modified to

β =
∆s2

min

2
(7)

where ∆smin is the smallest tangential distance between two consecutive boundary nodes. By adding this

modification β ensures stability of the scheme. In this capacity β is comparable to the CFL condition. Both

identify the size of the smallest element as critical for stability.
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Figure 7: An example boundary given normal and tangential directions

During the conversion from equation 6 to 7 a coefficient c = ∆s2/∆s2
min has been neglected that should have

appeared as a result of the modification. In its current form equation 2 is dependent on the size of the smallest

element, thus the smoothing becomes dependent on the boundary node distribution. A uniform mesh would

deliver different results when compared to a non-uniform mesh. In order to maintain boundary node distribution

independence the coefficient needs to be considered and compensated in some form. Looking back at equation 2

it is apparent that there is a correlation between β and Ns. If β is reduced and hence the amount of smoothing

would be reduced this may be compensated by an increase in smoothing iterations Ns. Recall figure 6 in which

an increase in Ns results in more smoothing. This correlation may be formulated as

β ∼ 1

Ns
(8)

so that the coefficient c may be added to the number of smoothing iterations Ns = cNs. This way, boundary

node distribution independent smoothing is achieved as presented in figure 8.
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Figure 8: A comparison of the discrete boundary smoothing on the example of a circle for a uniform (left)

and non-uniform (right) boundary mesh. Both deformations overlaid (centre figure) present the exact same

deformation.

λ is the ‘smoothing factor’ selected by the designer dependent on the level of smoothing desired. It is a simple

constant added to the system and as such does not effect mesh independence. For a value of λ = 0 the boundary

deformation is purely linear. Any other value imposes a smoothing resulting in non-linear deformation. This
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parameter can be used to bridge the gap between linear and non-linear deformation. For a problem to behave

linear and non-linear along the same boundary λ needs to be variably definable such that linear features can be

preserved locally or different levels of smoothing are possible. Practically the user first defines the values of λk,

which is the λ at each control node. Then all values λj of all boundary nodes are linearly interpolated. In two

dimensions this is calculated by applying

λj = λk

(
1−

(
sj − sk
sk+1 − sk

))
+ λk+1

(
sj − sk
sk+1 − sk

)
(9)

whereas k and k + 1 are the indices of the control nodes enclosing the boundary node j. In summary Ns

is to prevent mesh resolution dependency of the scheme, β is introduced for stability and scaling so that ∇2r

can be added directly to the coordinates r and λ is added artificially to provide the user with a control over the

level of smoothing. β and Ns are mesh dependent parameters with β depending on the smallest tangential edge

length between consecutive boundary nodes ∆smin and Ns depending on the number of boundary nodes NB

and number of control nodes NCN . λ on the other hand is a user–defined constant.

Finally, the correct selection of λ values whilst maintaining a stable scheme is important. A value λ = 1 poses

a stability limit as otherwise the stability factor β would be exceeded. This is again much similar to the CFL

condition that cannot exceed 1. The ideal value for λ is subject to the required or desired level of smoothness and

hence case dependent. Figure 9 illustrates the effects of different λ values. Additionally figure 10 illustrates a

case in which two different λ values were applied. λ = 0 ensured that the smoothing remained local not affecting

the left half of the circle. This figure also shows the benefits that linear deformations may have. At the step

l = 1, i = 1 a trailing edge was generated resembling the shape of an aerofoil. This edge would be maintained

if λ = 0 at rk = (1, 0). It is a first small step towards a more general deformation approach allowing a more

flexible design space. Throughout the paper, the authors used a value of λ = 0.1 as it proved sufficient for small

to medium deformations.
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Figure 9: The effect of smoothing for different λ values. The stability limit is λ = 1.0

2.2.2. Convergence

A consequence of implementing the discrete boundary smoothing after the linear deformation is a new position

of the control nodes away from the originally prescribed r∞k as in figure 6. This is a conflicting characteristic
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to the idea of an intuitive algorithm that allows the designer direct control over his design space and the level

of deformation. As such an additional iterative step has been integrated to converge the control node position

towards the originally set location r∞k until the convergence criteria εl ≤ ε0 is met. ε0 is selected by the user and

l = 1, 2, ..., Nc is the index indicating the convergence iterations. In this article ε0 has been set to a value of -3.

A convergence ratio of -3 has been found sufficient, however, if the computational expense becomes prohibitive

it may be reduced to -2 or less. εl is

εl = log

( ∑NCN

k=1 ‖rlk − rl−1
k ‖

∑NCN

k=1 ‖rl=1
k − rl=0

k ‖

)
(10)

The additional convergence iterations are placed around the boundary mesh movement step and ensure that

the control nodes maintain their position r∞k . With every convergence iteration the discrete boundary smoothing

is performed again using the already smoothed geometry of the previous iteration as the starting point. Hence,

the smoothing iterations become sub-iterations that are repeated within each new convergence iteration l. The

total number of steps amount to Ns ∗Nc. To guarantee the control nodes to be placed exactly at r∞k smoothing

is suppressed for the last iteration during convergence. Figure 10 shows the outcome with all intermediate steps

until the boundary shape movement converges.

−1 −0.5 0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X [−]

Y
 [−

]

r

rk

r
r

∞rk

r

rk
i=Ns

i=0

r

λ=0.5

λ=0.0

λ=0.0

λ=0.5

l=1, i=Ns
l=3, i=Ns

l=0, i=0
l=0, i=1

l=NC, i=Ns

Figure 10: A final example illustrating all features of the discrete boundary smoothing. Shape preservation

is guaranteed through λ = 0. The boundary is smoothed for λ 6= 0. The final control node location r∞k is

maintained through convergence.

2.3. Optimisation Approach

‘Control nodes’ used to parameterise the problem are advantageous since they act as both the geometry

parameters as well as the design parameters for the optimisation process. The design space is defined by the

user through the components position vectors. Traditionally gradient based optimisers [15, 38, 39] have been

used in context of aerodynamic shape optimisation. The optimisation approach derived in this paper shall allow

the exploration of large design spaces with multiple degrees of freedom. Gradient based optimisation approaches
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are local in nature and as such do not suit the search of large design spaces. This lead to the conclusion to use

an evolutionary algorithm, a subclass of heuristic global optimisation algorithms. The optimisation algorithm

applied in this paper is called Modified Cuckoo Search (MCS) [40]. It was developed with the goal of reducing

the number of fitness evaluations required and has shown its effectiveness in various applications [41, 42]. The

MCS algorithm is a population-based algorithm and applies mutations and crossovers in every generation to

create a new set of agents, called Nests. It is based on the CS algorithm [43] which was used on a number of

occasions [44, 45, 46, 47, 48]. A comprehensive description of the optimisation algorithm as implemented in this

paper may be found in [31, 40].

2.3.1. Initial Sampling

Before the initiation of the MCS algorithm an initial population of size NP is required as a starting point

based on the initial geometry provided by the user. Latin Hypercube Sampling [49] was selected for its efficient

sampling of the entire design space. The design space is determined by the allowed range of control node

displacements. The dimensionality of the design space is defined by the degrees of freedom d. LHS divides every

dimension into NP equal intervals to create Nd
P cells. Afterwards a cell is selected at random. Any other cell

being part of the same interval of every dimension is now excluded. This process is repeated NP times until each

interval contains exactly one selected cell. Commonly used values for NP are related to the degrees of freedom

in the system by NP = 10d [41, 50].

2.4. Computational Fluid Dynamics

All case studies conducted in this work were two–dimensional in space, although all the techniques considered

(LHS [49], MCS [40], FDGD [33]) have natural three dimensional extensions. Since the algorithm utilizes the

CFD solver as a black box, the CFD approach will only be described in brief.

The Swansea University FLITE CFD system was used to generate two dimensional unstructured triangular

meshes [51]. The system applies the advancing layers technique for the boundary layer mesh with cell heights

defined by the user. An isotropic triangular mesh is then generated using the Delaunay technique with point

insertion governed by a pre-defined mesh cell size function across the computational domain.

The FLITE CFD system fluid solver is an edge–based, vertex–centred finite volume discretisation for solu-

tion of the compressible Reynolds Averaged Navier–Stokes equations [52]. The turbulence model applied for

the viscous example was the one equation Spallart-Allmaras [53]. Standard subsonic and supersonic far-field

boundary conditions were selected. For solid surfaces a no slip condition was imposed for viscous cases and for

inviscid cases, they were treated as slip walls. In case of the engine intake examples the mass flow was fixed on

the compressor intake. Its implementation approach for this is outlined in reference [54]. The results of the CFD

solver forms the input for the optimisation algorithm to determine the shape ‘fitness’ value.

3. Case Studies

In the following chapter two different 2D aerodynamic optimisation problems are considered to illustrate the

characteristics of the developed algorithm. The first problem contains two case studies on a widely recognised

reference case from NASA on supercritical aerofoils [55], the optimisation of the transonic RAE2822 aerofoil

[16, 50, 56, 57]. All other case studies are applied to subsonic, transonic and supersonic optimisation of an
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engine intake duct of a generic aerospace vehicle. However they differ in the optimisation set up to test its

effectiveness and flexibility regarding shape optimisation. The first aerospace vehicle case study is compared to

previous results [31] to demonstrate the improvement introduced by the discrete boundary smoothing. The cases

have been parallelised by taking advantage of the population-based optimisation algorithm such that all agents

per generation are solved simultaneously.

3.1. Problem Set Up: RAE2822 Aerofoil

The RAE2822 transonic aerofoil is a commonly used reference case for validation of CFD solvers as well as

aerodynamic optimisation problems. It is a very challenging case as even small changes in the geometry can have

large effects on the pressure distribution in the transonic regime.

Starting point was a NACA0012 aerofoil with the objective to match the pressure distribution of the RAE2822

aerofoil. The mesh utilized is illustrated in figure 12 and exhibits 32068 mesh nodes and 63672 mesh elements.

Solutions to the problem were sought at a Mach number of Ma = 0.729 with an angle of attack of α = 2.31 deg

using viscous CFD simulations with a Reynolds number of Re = 6, 500, 000. To capture viscosity effects, a

triangulated boundary layer mesh with 27 layers was integrated into the mesh. The Y+ value 1.0 for the first

layer and mesh layers growing linearly to meet the background volume mesh size by layer 27 were chosen. No

wall functions were used. The CFD results were compared to previous experimental data by AGARD (Case 6)

[55] as well as simulation data by NASA [58] and excellent agreement was found as visible in figure 11.
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Figure 11: Validation of CFD results on RAE2822 aerofoil

For Case 1 in Section 3.2 a range of different control node numbers and locations were tested. For Case 2 13

control nodes rk were employed. The control nodes at the leading and trailing edge of the aerofoil were fixed

in position. All other control nodes exhibited an explorable design space of xk ∈ [−0.025, 0.025]. Figure 12 (e)

visualises the location of all control nodes. A lambda value of λ = 0 was defined for the trailing edge control
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node in order to maintain the edge shape. All other control nodes had a lambda value of λ = 0.1. Considering

two control nodes to be fixed, the total number of degrees of freedom range from 4 to 18 using equation 1

resulting in up to 180 Nests according to the convention discussed in section 2.3.1. However, in order to reduce

the computational cost the number of Nests was reduced to 40 for all cases considered. Table 1 summarizes all

parameters and may be found in the conclusion section.

3.2. Case 1: Match Geometry

The first case is purely geometrical to demonstrate the new discrete boundary smoothing irrespective of any

aerodynamic considerations. As such, the CFD solver was decoupled from the system. In order to study the effects

of the number of control nodes on the system the solution was sought after at a range of NCN = [6, 10, 13, 14, 20].

This results in DoF = [4, 8, 11, 12, 18] degrees of freedom in the system considering the control nodes at the

leading and trailing edge were fixed. The control nodes were distributed evenly across the boundary Γ of the

aerofoil. Only in the case of 13 control nodes, the locations were selected based on the designers expertise. All

control node locations are shown in figure 12.

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

(a) (b) (c)

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

(d) (e)

Figure 12: Mesh of NACA0012 aerofoil (starting geometry) with (a) 6 NCN , 4 DoF (b) 10

NCN , 8 DoF (c) 14 NCN , 12 DoF (d) 20 NCN , 18 DoF (e) 13 NCN , 11 DoF

3.2.1. Fitness (objective function)

The fitness is the difference in the enclosed area between the current aerofoil and the RAE2822 aerofoil. This

has been mathematically defined as follows:

F = −A = −
∫∫

Ωn

dA (11)
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where Ωn = ΩRAE ∪Ωcurrent \ΩRAE ∩Ωcurrent is the domain enclosed between the reference RAE2822 aerofoil

domain ΩRAE and the current aerofoil domain Ωcurrent. The negative enclosed area −A is taken to transform

the system into a maximization problem with the theoretical maximum of zero.

3.2.2. Results

An overview of the fitness development for all number degrees of freedom is provided in figure 13. Shown is

the fitness value for all degrees of freedom whereas every line is all fitness values at a given generation. On one

hand, it can be observed that with increasing degrees of freedom the fitness improves considering the maximum

number of generations (500). On the other hand, if the number of generations is lower fewer degrees of freedom

seem advisable in order to maximise fitness meaning that the convergence rate is more rapid. Exemplary is the

line for 50 generations in which 8 degrees of freedom achieve the best result.

Another important consideration is the inclusion of the designers expertise since it can improve the effective-

ness of the optimisation process as it is the case with 13 user placed control nodes shown. In terms of convergence

rate, it competes with 4 and 8 degrees of freedom whilst the final maximum fitness is better than the fitness of

the case with 18 degrees of freedom. Here, one of the strengths of this method becomes apparent as it allows

to consider the designers expertise during the set up ultimately leading to fewer degrees of freedom. Also, the

ability of selecting the control node locations independent of the geometrical parameterisation allows to put

emphasis on specific areas of interest.
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Figure 13: Validation of CFD results on RAE2822 aerofoil. Every line depicts the fitness for a

given number of generations. The points in red are for the case with user placed control nodes.

After all, the final results are excellent when looking at the ultimate gains in figure 13. An improvement

of up to 96 % (100 % being the maximum) has been achieved. The starting shape (NACA0012), target shape

(RAE2822) and optimum result of the algorithm are depicted in figure 14. Particularly figures 14 (d) and (e)
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show an excellent match of the final shape. The parameterisation with individually chosen control nodes has

been selected for the subsequent case aiming to match the pressure distribution.
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Figure 14: Optimized geometry in comparison with the starting geometry (NACA0012) and the

target geometry (RAE2822) using (a) 6 NCN , 4 DoF (b) 10 NCN , 8 DoF (c) 14 NCN , 12

DoF (d) 20 NCN , 18 DoF (e) 13 NCN , 11 DoF

3.3. Case 2: Match Pressure Distribution

After having demonstrated the new discrete boundary smoothing in itself it has been applied to an aerody-

namic optimisation case. The aim is to match the pressure distribution of the RAE2822 aerofoil. The set up

uses 13 control nodes of section 3.2 has been selected for this study.

3.3.1. Fitness (objective function)

The fitness is the difference of the pressure distribution between the RAE2822 aerofoil and the current aerofoil.

In mathematical terms this is expressed as

F = −ACp
= −

∫∫

Ωn

dACp
(12)
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where Cp is the pressure coefficient and Ωn = ΩCp,RAE
∪ΩCpcurrent \ΩCp,RAE

∩ΩCpcurrent is the domain enclosed

between the reference RAE2822 aerofoil pressure distribution ΩCp,RAE
and the current aerofoil pressure distri-

bution ΩCp,current . The negative integral is taken to transform the system into a maximization problem with the

theoretical maximum of zero.

3.3.2. Results

The results are illustrated in two figures. Figure 16 contains the pressure distribution, its related flow field

and the geometric change of the aerofoil at selected generations. The respective improvement in fitness over the

generations is visualised in figure 15. It is well known that it is difficult to define a convergence/stopping criteria

for an evolutionary optimisation algorithm other than identifying a tendency to stagnate. In this case study a

stopping criteria was initially set to 500 generations. Due to the sudden jump in generation 486 the run has

been extended to 700 generations at which point the algorithm seems to have reached near convergence.

If the theoretical optimum of F = 0 is considered to be 100 % the MCS algorithm has achieved a significant

improvement of more than 90 % and very accurately matches the pressure distribution in figure 16 (b) as well as

the shape of the RAE2822 aerofoil. The pressure fields in figure 16 (c) illustrate the challenge of this optimisation

task to match the shock wave accordingly. Ultimately, it captured the shock formation of the RAE2822 aerofoil.

However, a small shock wave at the leading edge occurred. This is attributed to the small geometric deviation

possible in that location. Both, in Figure 14 (e) and in figure 16 (a) the shape is not entirely matched at that

point and even such a slight geometric deviation can cause a shock wave given the sensitivity in the transonic

regime. In order to alleviate this problem, another control node may be inserted or the smoothing parameter λ

adjusted.
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Figure 15: Fitness development over cuckoo generations
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Figure 16: Snapshots of the (a) Geometry deformation (b) −Cp distribution (c) Cp field

at Generation 1, 60, 250, 450 and 700
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3.3.3. Comparison

In order to judge the compactness and efficiency of the approach a brief comparison to more classical ap-

proaches is useful. One of the most compact approaches is the PARSEC method, a geometric approach specifically

designed for optimizing aerofoils [18]. It applies a total of 11 physical parameters directly related to the geom-

etry, e.g. aerofoil thickness. An increasingly common method of the class of analytical parameterisation is the

CST method. It applies analytical shape functions to represent geometries and is known for its compactness

[22]. It also requires 11 parameters to represent an aerofoil shape [21]. CAD-based approaches usually require

around 32 control points to accurately represent an aerofoil and even then it is sometimes considered premature

[59]. Martin et. al have used 14 control points to represent a RAE 2822 aerofoil and still obtained a significant

difference in lift and drag values compared to an exact geometry representation [16]. The method presented

here has applied 11 degrees of freedom obtaining very good results with the potential of obtaining near optimal

results by adding another couple of control nodes (degrees of freedom). As such it can be described as a compact

and efficient parameterisation approach with good control over the smoothness and local control over the design

space.

3.4. Problem Set Up: Intake Duct Optimisation

In the aerodynamic design community the optimisation of a jet engine intake duct[60] tailored to a specific

aircraft configuration is a common problem [61]. In order to ensure efficient performance and avoid stall or

surge two conditions need to be usually satisfied. First, the flow pattern at the engine’s compressor face must

be satisfactory and secondly, the loss of energy in the flow must be kept minimal across the entire speed range

and flight conditions that the vehicle will experience [61, 62]. In most instances, the design process is driven

manually by the designers expertise and engineering intuition[51, 54]. The developed algorithm aims to automate

this process.

The starting geometry was an engine intake duct of a generic aerospace vehicle. The mesh utilized is illustrated

in figure 17 and exhibits 82868 mesh nodes and 163419 mesh elements. Solutions to the problem were sought

at a range of Mach numbers Ma = [0.5, 0.8, 1.1, 1.4] using viscous CFD simulations with a Reynolds number of

Re = 6, 500, 000. To capture viscosity effects, a triangulated boundary layer mesh with 7 layers was integrated

into the mesh. The Y+ value 1.0 for the first layer and mesh layers growing exponentially to meet the background

volume mesh size by layer 7 were chosen. No wall functions were used. Instead, a Spalart-Allmaras turbulence

model was applied at a temperature T = 288.15K and zero angle of attack. Note, that the emphasis of this

optimisation concept proof study was in the understanding of the optimiser characteristics over generating highly

accurate CFD simulations. As such, results are not analysed and compared for their error even though the test

set up should produce sufficient accuracy.

A total number of 10 control nodes C were selected for the problem with either a fixed position or an

explorable design space of xC ∈ [−0.3, 0.3] and yC ∈ [−0.3, 0.3]. For every control node on the lower surface

a control node on the upper surface was selected and the displacements were coupled to ensure the thickness

of the engine intake lip is maintained. The first pair of control nodes at position x = 0 are fixed and have a

lambda value of λ = 0. This allows local control of only the upper lip of the engine intake whilst the remaining

geometry is preserved in its shape. The pair of control nodes at position x = 8.01 have a lambda value λ = 0

as well. All other control nodes exhibit a lambda value of λ = 0.1. Considering one pair of control nodes to be

fixed, the total number of degrees of freedom amounts to 8 using equation 1 resulting in 80 Nests according to
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the convention discussed in section 2.3.1. The design space has been normalized in relation to L of equation 13.

Figure 17 (b) visualises the location of all control nodes including the specified explorable design space. Table 1

summarizes all parameters and may be found in the conclusion section.
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Figure 17: Mesh of supersonic vehicle with engine intake duct (a) total mesh (b) detailed

mesh including the control node locations and their range of motion

3.5. Case 3: Distortion

The first case is a validation case applying the equivalent set up of purely linear geometry deformation example

in [31]. This allows a direct comparison of the effect of the discrete boundary smoothing method proposed in

this paper.

3.5.1. Fitness (objective function)

One of two main flow parameters considered most crucial in the design of a jet engine intake is distortion.

It provides a measure of standard deviation of the total pressure across a plane of interest, in this case the jet

engine compressor face. The deviation across the plane should be minimized for an optimum flow pattern into

the engine. In the context of optimization, fitness is always maximized, thus, in order to minimize distortion,

fitness is a product of the negative distortion σ.

F1 = −σ = −
L∫

0

∣∣Pt − P̄t

∣∣
P̄tL

dl (13)

where Pt is the total pressure and P̄t is the mean total pressure. l is a coordinate moving along a line in 2D,

both of which are defined along the engine inlet. The equation is normalized against L, which is the length of

the engine inlet.

3.5.2. Results

An overview of the fitness development for all Mach numbers Ma = [0.5, 0.8, 1.1, 1.4] compared with a

previous case without smoothing are illustrated below in figure 18. The fitness development shows the expected
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improvement particularly in the first generations. When compared to the previous case without smoothing, a

faster convergence rate is detectable whereas the overall improvement is similar with a better mean outcome of

1.54 % with smoothing. Details of the fitness values are shown in Table 1 and the table may be found in the

conclusion section.

Figure 19 visualises the resulting flow pattern across all Mach numbers compared with the original flow

field and the flow results without smoothing applied. The emphasis was put on the engine inlet to analyse the

distortion. As a general observation for both cases a more homogeneous pressure pattern was obtained across

the engine inlet leading to a reduction in pressure distortion (fitness). The level of improvement is similar as the

fitness plot already suggested. Also, the displacement of the control nodes is comparable as the resulting shapes

have similar features giving confidence in the algorithm providing consistent results.

Having used non–zero lambda values, non–linear shape deformation was achieved resulting in shapes without

sharp geometric features along the deformed boundary. All final shapes utilized the converging/diverging nozzle

effect by which a more consistent flow pattern is obtained throughout the expansion phase.

Nonetheless, the final geometries obtained seem impractical which may be due to the single–objective nature

of the fitness function. A weighted objective optimisation approach including other important factors in the

design such as pressure recovery would most likely result in more practical shapes. This will be investigated in

the following case study.
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Figure 18: Fitness development over cuckoo generations of case (a) linear deformation (b)

discrete boundary smoothing
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(a) (b) (c)

Figure 19: Pressure Coefficient Fields of the supersonic vehicle with engine intake duct: (a)

initial geometry (b) linear deformation (c) discrete boundary smoothing for Ma 0.5, 0.8,

1.1, 1.4

3.6. Case 4: Distortion and Pressure Recovery

For the second case, the complexity of the case study was increased by integrating another objective into the

fitness function. This ultimately led to a constrained optimisation and a weighted objective optimisation case.

The study was conducted at Mach numbers Ma = 0.5 and Ma = 1.4. In contrast to the previous case study the

number of generations was limited to 50 as previously convergence has been reached well below 100 generations.

3.6.1. Fitness (objective function)

Besides distortion, pressure recovery is another crucial factor in the design of a jet intake duct. Pressure

recovery Prec is a measure of the energy losses in the flow and defined as the ratio of ambient total pressure P̄ t∞
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to the mean total pressure P̄t across the engine compressor face Prec = P̄t

Pt∞
. One option is to define pressure

recovery as a constraint added to the existing fitness function:

F1 = −σ = −
L∫

0

∣∣Pt − P̄t

∣∣
P̄tL

dl

subject to the constraint

S = Prec ≥ 0.90 (14)

As a second option pressure recovery may be incorporated directly into equation 14 to perform a weighted

objective optimisation. The maximum value for pressure recovery is max(Prec) = 1 so by setting ( P̄t

Pt∞
− 1) both

distortion and pressure recovery share the same theoretical minimum of 0 and the fitness function becomes

F2 = −
L∫

0

∣∣Pt − P̄t

∣∣
P̄tL

dl + (
P̄t

Pt∞
− 1) (15)

3.6.2. Results

Figure 20 shows the fitness development of both options at Mach numbersMa = [0.5, 1.4] and Table 1 provides

details of all values including start and end values of the fitness. It is clear to see that a great improvement has

been achievement in all cases. Note, that the improvement in the first generation is due to the Latin Hypercube

Sampling. As such for F2 a second version of the graphs were generated excluding the first step to highlight the

working of the MCS itself. Also, the fitness function was separated into its components distortion and pressure

recovery to illustrate the conflict between these two contradicting objectives.

The first fitness option F1 shows a great improvement of the distortion of about 33 % at a Mach number of

0.5 whilst the pressure recovery value drops from 91.49 % to 90.45 %. For a Mach number of 1.4 an improvement

of about 16 % was achieved with an increase in the pressure recovery value from 86.87 % to 90.91 %. Whilst

for both Mach numbers the constraint S is fulfilled, the upper figure 20 outlines the conflict occurring at a

Mach number of 0.5 between both objectives. Distortion aims at maintaining homogeneous flow whilst pressure

recovery only targets a maximum intake of energy and hence the fitness (distortion) increases whilst pressure

recovery Prec decreases. For a Mach number of 1.4, supersonic flow causes an opposite reaction. In order to

obtain more homogeneous flow, the duct needs to open up which at the same time cancels the shock wave on the

engine inlet. This in turns reduces pressure losses so in total an increase in distortion coincides with an increase

in pressure recovery.

The second fitness option F2 proves, that both objectives can be improved at the same time, however, it again

remains a compromise between both objectives and distortion is sacrificed for gains in pressure recovery. Hence,

the overall improvement in distortion by 9.3 % is smaller compared to the first fitness option. The improvement

is mainly achieved in Prec stepping from a value 91.4 % to 94.6 % for a Mach number of 0.5 and from 86.87 %

to 90.72 % for a Mach number of 1.4, a great improvement in jet engine intake design [62].
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Figure 20: Fitness development over cuckoo generations for (a) Ma = 0.5 (b) Ma = 1.4

using fitness (upper) F1 with constraint S (lower) F2 including the evolution of the separate

components of the fitness function and a version of each graph excluding the first step of the

initial sampling

All these findings are supported by figure 21. For a Mach number of 0.5, a great reduction in distortion in

figure 21 (b) (upper) is apparent according to the reduced number of pressure contours towards the engine inlet

face. In figure 21 (c) (upper) the total pressure in the engine intake is increased whilst the distortion has not

changed noticeably. Note, that here total pressure is plotted as opposed to the pressure coefficient of previous

examples. When comparing both options with the previous case study 3.2 it can be observed, that the upper

lip was kept straight, in fact, the curvature has reduced compared to the original geometry. For fitness option

F1 the leading edge of the lip was slightly closed to again use the converging/diverging nozzle effect whereas for

the fitness option F2 the leading edge of the lip was opened up to reduce disturbance and hence pressure losses

in the flow.

For a Mach number of 1.4, the results are very similar between F1 and F2 since the outcome is dominated
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by the effect of the vanished shock wave.

Given the same degrees of freedom and location of control nodes compared to 3.2 it has generated a more

practical aerodynamic shape only due to a change in the objective function. This illustrates, that the developed

algorithm provides a very flexible explorable design space for shape optimisation being capable of generating a

wide range of shapes with only few degrees of freedom.

(a) (b) (c)

Figure 21: Total Pressure fields of the supersonic vehicle with engine intake duct: (a) initial

geometry (b) using F1 with constraint S (c) using F2 (for (upper) Ma = 0.5 (lower)

Ma = 1.4)

4. Conclusions

An automated aerodynamic optimisation algorithm has been presented using the novel concept of control

nodes [31] for parameterising a computational mesh. The discrete boundary smoothing has been developed

to enhance the parameterisation and boundary deformation approach allowing for control over the smoothness

with linear and non-linear deformation along the same boundary as well as local control over the geometry.

Since the parameterisation is directly applied onto the computational mesh, no re-meshing step is required and

CAD to CFD transfer issues are reduced. The approach is coupled with the FDGD mesh movement technique

to propagate the boundary deformation throughout the domain mesh. The algorithm is driven by Modified

Cuckoo Search, an evolutionary optimisation method that links the CFD solver with the parameterisation. The

resulting algorithm was successfully applied to match the pressure distribution of a RAE2822 aerofoil and the

optimisation of an intake duct at subsonic, transonic and supersonic flow conditions for a range of different

optimisation configurations including constrained and weighted objective optimisation. It has demonstrated

to be effective in terms of its intuitive yet efficient parameterisation that exhibits great flexibility. It has also

demonstrated to be effective for a range of different applications both in terms of geometries as well as number

of objectives and constraints. Future work will look into extending it to three dimensions and adding a Reduced

Order Model to accelerate the CFD solution procedure. It has also been recognized that control node locations

itself could be optimized and this will be investigated in the future.
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Case DoF Generations Ma Re λ
Fitness

Start After LHS End

3.2 4 500 N/A N/A 0.1 & 0 -0.0141 -0.0085 -0.0057

3.2 8 500 N/A N/A 0.1 & 0 -0.0141 -0.0121 -0.0021

3.2 12 500 N/A N/A 0.1 & 0 -0.0141 -0.0141 -0.0011

3.2 18 500 N/A N/A 0.1 & 0 -0.0141 -0.0141 -0.0010

3.2 11 500 N/A N/A 0.1 & 0 -0.0141 -0.0140 -0.0006

3.3 11 700 0.729 6.5e5 0.1 & 0 -0.429 -0.429 -0.078

[31] 8 100 0.5 6.5e5 0 -0.089 -0.027 -0.025

[31] 8 100 0.8 6.5e5 0 -0.082 -0.027 -0.024

[31] 8 100 1.1 6.5e5 0 -0.087 -0.035 -0.026

[31] 8 100 1.4 6.5e5 0 -0.085 -0.021 -0.020

3.5 8 100 0.5 6.5e5 0.1 & 0 -0.089 -0.027 -0.022

3.5 8 100 0.8 6.5e5 0.1 & 0 -0.082 -0.023 -0.022

3.5 8 100 1.1 6.5e5 0.1 & 0 -0.087 -0.024 -0.022

3.5 8 100 1.4 6.5e5 0.1 & 0 -0.085 -0.023 -0.022

3.6 F1 8 50 0.5 6.5e5 0.1 & 0 -0.045 -0.033 -0.030

3.6 F2 8 50 0.5 6.5e5 0.1 & 0 -0.130 -0.097 -0.094

3.6 F1 8 50 1.4 6.5e5 0.1 & 0 -0.052 -0.045 -0.043

3.6 F2 8 50 1.4 6.5e5 0.1 & 0 -0.183 -0.141 -0.135

Table 1: Summary table of all input parameters and results. Included are the fitness values after the

Latin Hypercube Sampling of generation 1 to extract the effect of the MCS algorithm.
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