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1 Introduction

The Polyakov/Wilson loop operators are fundamental, gauge invariant, order parameters

for confinement in Yang-Mills theories. They correspond to heavy quark probes of the

gauge theory transforming in a given representation of the gauge group. Such probes can

be viewed as impurities or point-like defects in the gauge theory. In the case of Yang-Mills

theories with classical, holographic gravity/string theory duals [1–3], a single heavy quark

impurity in the fundamental representation maps to the end-point of a macroscopic string

at the conformal boundary of the dual geometry [4, 5]. One may also consider a collection

of several such fundamental probes or, alternatively, probes transforming in various higher

rank representations of the gauge group. At finite temperature, in theories with dual

string/gravity descriptions, the Polyakov loops associated to such sources are given by

string worldsheets and wrapped branes wound around the thermal cigar in a Euclidean

black hole geometry [6–11].

Our focus will be on specific D3- and D5-brane embeddings in AdS5× S5 which inter-

polate between a heavy quark probe in a higher rank symmetric or antisymmetric tensor
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representation on the one hand, and multiple heavy quarks in the fundamental represen-

tation on the other. Such ‘flows’ are controlled by the 0 + 1 dimensional impurity theory

on the heavy quark probe, interacting with the degrees of freedom of the SU(N), N = 4

supersymmetric Yang-Mills (SYM) theory at large-N and strong ’t Hooft coupling.

The impurity theories for quark probes in generic tensor representations in N = 4 SYM

were clarified in [12], and the 0+1 dimensional theory for the antisymmetric representation

at finite temperature was solved in [13].1 The D3- and D5-brane embeddings we study

in this paper, can be viewed as flows (in the renormalisation group sense) induced by an

appropriate deformation of the impurity theories for symmetric and antisymmetric tensor

representations. We summarise our main findings below:

• We obtain non-extremal generalisations in global AdS5 spacetime, of the zero tem-

perature, supersymmetric D5-brane embeddings found originally in [16]. These in-

terpolate between a D5-brane wrapped on a four-sphere inside the S5 in AdS5×S5

and a bundle or spike of fundamental strings approaching the boundary of AdS5. We

interpret the interpolating configuration as the infrared screening of a collection of k

quarks in the fundamental representation, into the anti-symmetric tensor representa-

tion with the same N -ality. We confirm this interpretation by matching the UV and

IR regimes of the flow with deformations of holographic Wilson lines in fundamental

and antisymmetric representations, and by calculating the profile of the one-point

function of the Lagrangian density sourced by the non-conformal impurity in the

boundary CFT.

• Working in the global AdS5-Schwarzschild black hole background, we identify four

distinct branches (see figure 1) of D5-brane embeddings. Three of these, labelled

branches II, III and III′ in figure 1, represent flows from k coincident heavy quarks to

a source in the rank k antisymmetric tensor representation. Branch I, which refers to

the “constant embedding” yields the Polyakov loop in the antisymmetric representa-

tion and has been described in [9, 10, 17]. Branches III and III′ are exchanged under

a reversal of the string orientation and k → N − k . On the other hand, branch II

embeddings labelled by k and N − k have the same action and are thermodynami-

cally degenerate with the constant embedding which has the lowest free energy (for

non-collapsed solutions) for all temperatures.

• The non-constant thermal D5-brane embeddings for a given k exist below a critical

temperature Tc(κ) where κ ≡ k
N . At this temperature (for a given κ) branches II

and III merge and disappear (figures 4 and 5). Beyond a limiting high temperature,

Tc(κ = 1) no non-constant finite temperature D5-brane embeddings appear to exist

and the constant D5-brane embedding (branch I) remains the only nontrivial solution.

• We find a new (BPS) D3-brane solution describing a flow from the Wilson line in the

rank k symmetric tensor representation in the UV to k quarks in the fundamental

representation in the IR. From the AdS2 asymptotics of the embedding we find that

1See closely related discussions in [14, 15] within the context of holographic Kondo models.
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Figure 1. The Euclidean actions for multiple branches of finite temperature D5-brane embeddings
(at T = 3

2π ) corresponding in the infrared to a heavy quark impurity in the antisymmetric tensor
representation, labelled by κ ≡ k

N . Branches II, III and III′ represent finite temperature flows
from coincident quarks in the UV to the antisymmetric representation in the IR with N -ality k.
The action for branch II is numerically indistinguishable from branch I — the constant D5-brane
embedding which computes the Polyakov loop in the antisymmetric representation.

the flow is triggered by a VEV for a dimension one operator in the UV. Interestingly,

the same interpretation appears for the D5-brane solution which interpolates between

k strings in the UV, and the antisymmetric representation in the IR. For both the D3-

and D5-brane embeddings, the strength of static fields radiated by the corresponding

impurity on the boundary decreases towards the IR, suggestive of a screening-like

behaviour (figures 2 and 6). The non-extremal or finite temperature generalisation

of this embedding does not exist (for both planar and spherical horizon), which is

consistent with the fact that the expanded D3-brane solution of [8] also appears not

to exist in the AdS5 Schwarzschild black hole background, as discussed in [9].

The paper is organised as follows: in section 2 we review the D5-brane action, its regu-

larisation, the expanded D5-brane solutions related to holographic Wilson/Polyakov loops

in the antisymmetric representation, and the interpretation of the interpolating D5-brane

embedding as a flow. In section 3, the one-point function of the dimension four operator

dual to the bulk dilaton sourced by the nonconformal D5-brane embedding. Section 4

discusses the results of the numerical analysis of non-extremal D5-brane flow embeddings,

multiple branches and resulting thermodynamics. In section 5, we review the D3-brane con-

figurations that compute symmetric representation Wilson lines, and we present a different

BPS solution and clarify its interpretation as an interpolating flow.

2 Holographic Wilson/Polyakov loops

Gauge theories with sufficient supersymmetries permit locally supersymmetric generali-

sations of Wilson loop observables. In the case of N = 4 SUSY Yang-Mills theory, the
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resulting Maldacena-Wilson loop [4, 5] along some contour C, in a representation R, in-

volves a coupling to the six adjoint scalars of the N = 4 theory:

W (C) =
1

dim[R]
TrRP exp

[
i

∮

C
(Aα ẋ

α + iΦI |ẋ|nI(s)) ds

]
, I = 1, . . . 6 . (2.1)

Here nI is a unit vector in R6, picking out a direction locally in the internal space of the

six adjoint scalars ΦI . We will be interested in operators that preserve an SO(5) subgroup

of the full SO(6) global symmetry acting on the six scalars, which is achieved by taking nI

to be a constant along the contour C. Furthermore, we will take the contour C to lie along

the time direction, so that the Wilson line can be thought of as the world line of a heavy

quark impurity. In the Euclidean formulation of the finite temperature theory, the contour

winds around the thermal circle and yields the Polyakov loop in the representation R.

The thermal state of the N = 4 theory on a spatial three-sphere, at large-N and

strong ’t Hooft coupling, is given by string theory on the AdS5-Schwarzschild black

hole background. This assumes a temperature T above the Hawking-Page transition,

when the finite volume theory is in the deconfined phase [7]. In the (Euclidean) AdS-

Schwarzschild background,

ds2 =

[
dv2

f(v)
+ f(v)dt2 + v2dΣ 2

3 + dΩ2
5

]
, (2.2)

f(v) = 1−
v2+(1 + v2+)

v2
+ v2 , v+ =

1

2

(
πT +

√
π2T 2 − 2

)
,

the Polyakov loop is computed by the regularized action of string/brane embeddings which

wrap the black hole cigar spanned by the (t, v) subspace.

2.1 Antisymmetric Wilson loops from D5-branes

Wilson loops in the fundamental representation are computed by minimal area embeddings

of open, fundamental string worldsheets in the dual geometry with the worldsheet boundary

anchored to the contour C on the conformal boundary of the dual gravity background.

Multiple coincident strings describe the insertion of a number k of fundamental quarks.

When the number of strings becomes large, the interactions between them can cause the

configuration to expand into suitably wrapped brane configurations with world-volume

electric fields proportional to the number of quarks, or the N -ality of the representation in

question [8–10, 12].

2.1.1 Action and equations of motion

In order to compute the supersymmetric Wilson loop in the antisymmetric representation

we consider a D5-brane wrapping an S4 inside the S5 in AdS5×S5, thus preserving an SO(5)

subgroup of the full SO(6) R-symmetry, whilst extending along the radial and temporal

directions of the AdS5 geometry. The symmetries of the configuration are those preserved

by a point on the boundary three-sphere, simultaneously picking an orientation on the

internal S5. The Dirac-Born-Infeld (DBI) action for the D5-brane is governed by the

pullback of the background metric onto the worldvolume of the D5-brane embedding. As

– 4 –
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usual, we can use reparametrizations to pick the five world-volume coordinates to coincide

with the spacetime coordinates (t, v,Ω4), where Ω4 represents the coordinates of a four-

sphere inside the S5 in the geometry (2.2). Consistent with the SO(5) symmetry of the

configuration we can allow the polar angle θ specifying the location of the S4 ⊂ S5, to

depend on the radial coordinate v. Therefore, defining

dΩ2
5 = dθ2 + sin2 θ dΩ2

4 , (2.3)

the induced metric on the D5-brane worldvolume is

⋆ds2 =

[
1

f(v)

(
∂ v

∂ σ

)2

+

(
∂ θ

∂ σ

)2
]
dσ2 + f(v)dt2 + sin2 θ dΩ2

4 , (2.4)

where σ is a worldsheet coordinate which will eventually be set equal to v. Formally, the

DBI action along with the relevant Wess-Zumino term is given by (in Euclidean signature)

SD5 = TD5

∫
dτ d5σ e−φ

√
det (∗g + 2πα′F )− igsTD5

∫
(2πα′F ) ∧ ∗C4 + Sc.t.,

where φ is the background dilaton which can be set to zero in the AdS5×S5 background

dual to the conformal N = 4 theory. We have also indicated the presence of counterterms

Sc.t., required to regulate the formally divergent action. The D5-brane tension in terms of

N and the ’t Hooft coupling λ of N = 4 theory is:

TD5 =
N
√
λ

8π4
, λ ≡ 4πgsN . (2.5)

The embedding includes a non-vanishing worldvolume electric field along the radial direc-

tion which endows the configuration with k units of string charge. In Euclidean signature

this is a purely imaginary quantity

iG ≡ 2πα′ Ftv . (2.6)

We will also need the pullback of the four-form potential, which is determined by the five

form flux F5, the latter being proportional to the volume-form on AdS5× S5:

C4 =
1

gs

[
3

2
(θ − π)− sin3 θ cos θ − 3

2
sin θ cos θ

]
Vol(S4) , F5 =

4

gs
sin4 θVol(S5) .

Here Vol(S4) is the volume-form of the unit four-sphere.

The counterterms Sc.t. implement boundary conditions on the D-brane action such

that it is compatible with a Wilson loop in the boundary gauge theory. An open string

describing a holographic Wilson loop in 4D gauge theory must be subject to six Neumann

transverse to the gauge theory directions and four Dirichlet boundary conditions along the

gauge theory directions. The basic DBI action is a functional of the embedding coordinates

and conjugate momenta assuming we have Dirichlet boundary conditions for the variational

problem. The fluctuations transverse to the four gauge theory directions must be exchanged

for Neumann boundary conditions [8, 18]. This is implemented by performing a Legendre
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transform with respect to the boundary values of the coordinates and conjugate momenta

excited in the brane embedding. In conjunction with this, we will also introduce a Lagrange

multiplier constraint on the abelian field which fixes the number of units of string charge

carried by the configuration to k, so that

Sc.t. = SUV + SU(1) , (2.7)

where,

SUV = −
∫ β

0
dt

[
v

δS

δ(∂σv)
+ (θ − π)

δS

δ(∂σθ)

]

AdSboundary

(2.8)

and

SU(1) = i

∫
dt dσAµ

δS

δAµ
= −i

∫
dt dσ Fµν

δS

δFµν
= ik

∫
dt dσ Ftσ . (2.9)

In the final step we have used Lagrange’s equations for the gauge potential and performed

an integration by parts. The factor of i is once again necessary to obtain the correct

equations of motion in Euclidean spacetime. A byproduct of this treatment of boundary

conditions is that it renders the on-shell action finite, providing a cut-off independent

method of divergence regularisation.

It is useful to define the quantity D(θ):

D(θ) ≡ sin3 θ cos θ +
3

2
(sin θ cos θ − θ + π(1− κ)) , κ ≡ k

N
, (2.10)

where, we are focussing on the limit k,N → ∞ with κ = k/N fixed. Finally, taking

σ = v, we obtain an effective one-dimensional action for the D5-brane embedding in the

(Euclidean) AdS-Schwarzschild background:

S = TD5
8π2

3

∫ β

0
dt

∫ Λ

v+

dv
[
sin4 θ

√
1 + f(v)(∂vθ)2 −G2 −D(θ)G

]
+ SUV . (2.11)

The equation of motion for G is algebraic whilst that for θ is a nonlinear second or-

der system:

G = −
D(θ)

√
1 + f(v)(∂vθ)2√

D(θ)2 + sin8 θ
, (2.12)

4 sin4 θ

(
sin3 θ cos θ

D(θ)
− 1

)
G =

d

dv

(
D(θ)f(v)∂vθ

G

)
.

The equations are satisfied by two types of constant solutions, as explained in detail in [9].

The first of these is a collapsed solution, where the angle θ(v) = π (or 0), and the D5-brane

wraps a vanishing S4. However, the presence of the electric flux, G = +1, renders this

solution with a finite action which is naturally interpreted as the action for k fundamental

strings wound around the black hole cigar,

Scollapsed = −k
√
λ

2π
v+ β . (2.13)
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In addition to these we also have non-trivial constant-θ solutions whose field theoretic

interpretation is in terms of Polyakov loops in the antisymmetric tensor representation Ak:

SAk = −β v+
N
√
λ

3π2
sin3 θk , π(κ− 1) = sin θκ cos θκ − θκ . (2.14)

The solution is invariant under the simultaneous transformation, κ → 1 − κ and θk →
π − θk, reflecting the charge conjugation property of the totally antisymmetric tensor

representation.

2.2 BPS flow from k quarks to the antisymmetric representation

In [16], a non-constant BPS solution for the DBI embedding action was found at zero

temperature and in Poincaré patch of AdS5 (planar conformal boundary) wherein f(v) =

v2. We will interpret that BPS solution as a flow between k heavy quarks in the UV and

an IR description given by the antisymmetric representation Ak.

Let us first consider a small perturbation about the collapsed solution, θ = π, discussed

above and interpreted as a k-wound Polyakov loop:

θ(v) = π + δθ(v) . (2.15)

Linearising the equation of motion for the perturbation, we obtain,

v2 δθ′′(v) + 2 v δθ′(v) = 0 . (2.16)

This can be interpreted as the equation for a massless scalar in AdS2, and the general

solution is a linear combination

δθ(v) = B −Av−1 , (2.17)

where the coefficients B and A have the usual interpretation as the source and a VEV for an

operator with conformal dimension ∆ = 1 in a dual conformal quantum mechanical system.

For the constant solution which yields the Polyakov line in the antisymmetric repre-

sentation Ak, linearising the equation for a small fluctuation,

θ(v) = θk + δθk(v) , (2.18)

the fluctuation satisfies the equation for a scalar with mass squared, m2 = 12 in AdS2:

f(v) δθ′′k(v) + f ′(v) δθ′k(v)− 12 δθk(v) = 0 , f(v) = v2 + . . . (2.19)

A scalar in AdS2 is dual to an operator of conformal dimension ∆ = 1
2 +

√
1
4 +m2 which,

in this case yields ∆ = 4, an irrelevant deformation. The asymptotic solutions to this

equation of motion take the form,

θ(v) = B̃ v3 +
Ã

v4
, (2.20)

where, as usual, B̃ and Ã represent the source and VEV respectively, for the dual operator.

A deformation of the constant solution by this irrelevant mode will take the solution away

– 7 –
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from the antisymmetric representation in the UV i.e. as v → ∞. In particular, turning

on a non-zero B̃ (but with Ã = 0 so as to preserve the constant solution in the IR),

and integrating outwards from the IR regime of small v, the equations of motion yield a

power series

θ(v → 0) = θκ + B̃ v3 + 2B̃2 cot θκ v
6 + . . . (2.21)

A complete flow solution with this IR behaviour and the UV asymptotics of eq. (2.17)

is captured by the zero temperature solution presented in [16]:

v(θ) =
A

sin θ

(
θ − sin θ cos θ − π(1− κ)

πκ

)1/3

, (2.22)

satisfying a first order BPS equation [16, 17, 23]. In the limit v(θ) → 0, the numerator

on the right hand side vanishes so that θ → θk, whilst the UV limit v → ∞ corresponds

to θ → π or 0 when the denominator of the right hand side vanishes. The BPS solution

describes a deformation of a collapsed UV solution with θ = π, induced by a non-zero

VEV, A, for an operator of scaling dimension ∆ = 1, with no non-normalizable mode or

source. Its expansion in the IR matches (2.21) with

B̃ =
πκ

2 sin θk A3
, (2.23)

in line with the presence of an irrelevant deformation of the IR conformal impurity theory

by a ∆ = 4 operator.

One of our aims is to find numerical, finite temperature generalisations of the above

flow and explore their thermodynamics. It will be useful to understand the computation of

the regularised action for the flow solution. The second order equation of motion at zero

temperature, in the Poincaré patch, is satisfied by solutions to the first order equation,

∂θv

v
=

sin5 θ +D(θ) cos θ

∂θ(sin
5 θ +D(θ) cos θ)

. (2.24)

This BPS condition will allow us to analytically determine the action for the zero tempe-

rature flow configuration. We first rewrite the action as a functional of v(θ) and v′(θ):

S =
N
√
λ

3π2

∫
dt

∫ π

θk

dθ
[
sin4 θ

√
v2 + (∂θv)2(1−G2)− ∂θv D(θ)G

]
+ SUV . (2.25)

Using the expression for G in (2.12) and the first order condition (2.24), the first term

above (the unregulated action) can be expressed as the integral over a total derivative,

S =
N
√
λ

3π2

∫
dt

∫ π−A/Λ

θk

dθ ∂θ[v (sin
5 θ +D(θ) cos θ)] + SUV . (2.26)

The UV counterterm is determined by the Legendre transformed boundary condi-

tion (2.8) as2

SUV = −N
√
λ

3π2

∫
dt v (sin5 θ +D(θ) cos θ) |θ→π . (2.27)

2We drop the term ∼ (π − θ) δS
δ(∂σθ) which trivially vanishes at the boundary when θ approaches π.
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This cancels off the divergent contribution from the UV, so the action of the flow solution is

completely determined by the value of the boundary term in the IR, as v approaches zero,

and θ → θk. For the zero temperature embedding, this is also zero so the BPS solution has

vanishing action as would be expected.

3 Gauge theory VEV from interpolating D5-brane

Static probes in the gauge theory are sources for Yang-Mills fields. A gauge-invariant de-

scription of these static fields is naturally provided by the IIB supergravity dual. A heavy

quark source or a Wilson line in the gauge theory induces a spatially varying expectation

value for various Yang-Mills operators which can be inferred using bulk-to-boundary propa-

gators in the AdS/CFT framework [20, 21]. The simplest of these is the Lagrangian density

∼ 1
NTrFµνFµν + . . . which is dual to the dilaton field in the IIB supergravity dual [19].

We will apply the results of [20] to the non-constant D5-brane embedding which, as we

have argued above, can be viewed as a flow within the 0 + 1 dimensional impurity CFT.

For a conformal probe the falloff of the expectation value of the static field sourced by it

is a power law dictated by the conformal dimension of the field. In the presence of the

deformation discussed in the previous section however, the expectation value will acquire

non-trivial scale dependence which determines the length scale at which the k heavy quarks

get screened into the antisymmetric representation.

3.1 The dilaton mode from the bulk

In terms of gauge theory parameters, the relevant pieces in the 5D bulk supergravity action

for the dilaton (φ) in Einstein frame, are:

Sφ = −N2

8π5

∫
d10x

√
−g 1

2g
µν∂µφ∂νφ+

∫
d10xJD5(x) e

φ/2 . (3.1)

Here JD5(x) is the effective Lagrangian density for the probe where the dependence on the

dilaton has been factored out for later convenience. Explicitly, in Einstein frame,

eφ/2 JD5 ≡ N
√
λ

8π4
δ(3)(x⃗) δ(θ − θ(v))

[
sin4 θ

√
eφ (1 + f(v) (∂vθ)2)−G2 −DG

]
. (3.2)

Notice that in order to identify the correct D5-brane action to which the dilaton couples,

we have also included the term implementing the Legendre transform with respect to the

auxiliary world-volume gauge field. The source is localized at the spatial coordinate x⃗ = 0

in the gauge theory directions, and located at some internal polar angle θ(v) for any fixed

v. Using the algebraic equation of motion for G we rewrite the D5-brane action as,

eφ/2JD5 =
N
√
λ

8π4
δ(3)(x⃗) δ(θ − θ(v)) eφ/2

√
1 + f(v) θ′2

√
D2 + sin8 θ . (3.3)

The form of the right hand side shows that it is natural to factor out the dependence

on the dilaton as we have done in eq. (3.1). It also shows that in Einstein frame the

dilaton couples to the wrapped D5-brane configuration in the same way as it does to the

fundamental string.
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In the classical supergravity limit N → ∞, the self-interactions of the dilaton are

suppressed by powers of N−1, and it therefore suffices to focus on its linearized equation of

motion. We further restrict attention to the zero mode of the dilaton on the S5 to obtain

the linearized 5D equation of motion, after integrating over the S5 coordinates:

− N2

8π2
∂I

(√
−ggIJ∂Jφ(x⃗, v)

)
=

N
√
λ

6π2
δ(3)(x⃗)

√
1 + f(v) θ′2

√
D2 + sin8 θ . (3.4)

The indices I, J represent the four spatial coordinates in AdS5. This equation is readily

solved via the 5D scalar retarded Green function GAdS(x, x′) in the AdS5 geometry. For

the situation without a black hole and in the Poincaré patch, the retarded propagator in

empty AdS5 was found in [21]. We will restrict attention to this situation, so that

f(v) = v2 . (3.5)

The scalar Green’s function is most compactly expressed in terms of the invariant timelike

geodesic distance s(x, x′) in AdS5 spacetime, defined as

cos s(x, x′) = 1 +
(z − z′)2 + (x⃗− x⃗ ′)2 − (t− t′)2

2 z z′
, z ≡ 1

v
. (3.6)

The retarded propagator for a massless scalar in AdS5 is then given by,

GAdS(x, x
′) = − 1

4π2 sin s

d

ds

(
cos 2s

sin s
Θ (1− | cos s|)

)
, (3.7)

and the solution to the linearized equation eq. (3.4) is formally,

− N2

8π2
φ(x⃗, v) =

4π2

3

∫
d5x′GAdS(x, x

′) JD5(x
′) . (3.8)

In order to extract the one-point function of the operator dual to the dilaton in the bound-

ary gauge theory, we only need the leading term in the large-v expansion of φ(x⃗, v). Plug-

ging in the expression for GAdS(x, x′) the leading term in the large-v expansion can be

found following the steps outlined in [20, 21]. We further rescale the dilaton so that its

kinetic term is canonically normalized:

φ̃ ≡
√
8π2

N
φ ≃ 1

v4
5
√
2
√
λ

16π2

∫ ∞

0

dṽ

ṽ4

√
1 + v2 θ′(ṽ)2

√
D2 + sin8 θ

(
1
ṽ2 + |x⃗|2

)7/2 . (3.9)

Now we use the BPS D5-brane flow solution,

v(θ) =
A

sin θ

(
θ − sin θ cos θ − π(1− κ)

πκ

)1/3

, (3.10)

which interpolates between θ = π as v → ∞ and θ → θκ as v → 0. The dilaton is dual to

the Lagrangian density of the boundary field theory. Correspondingly, we should see that

the VEV of the dimension four operator

OF 2 ≡ 1
N

(
TrF 2 + . . .

)
, (3.11)

sourced by the non-conformal impurity, exhibits a non-trivial interpolation on the boundary

between two qualitatively distinct behaviours.
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3.2 One-point function for OF 2 ∼ 1
NTrF 2 + . . .

The expectation value of the marginal operator OF 2 is given by the coefficient of the v−4

term in the expansion of φ(v) above near the boundary. Accounting for the difference in

normalization between φ̃ and φ, we obtain

⟨OF 2⟩ = 5
√
2
√
λ

16π2

∫ ∞

0

dṽ

ṽ4

√
1 + v2 θ′(ṽ)2

√
D2 + sin8 θ

(ṽ−2 + |x⃗|2)7/2
. (3.12)

This expression encodes the complete position dependence of the VEV of the scalar glueball

operator sourced by the impurity. It interpolates between the short distance behaviour

expected from k heavy quarks in the fundamental representation, and for length scales

larger than a critical value determined by A−1, it matches onto the antisymmetric tensor

representation with N -ality k.

The integral above is not analytically tractable, and can be evaluated numerically.

However we can analytically obtain its asymptotics, both for small and large |x⃗| in the zero

temperature BPS situation. We first define a dimensionless integration variable α = v|x⃗|,
in terms of which the one-point function is,

⟨OF 2(x⃗)⟩ = 5
√
2

16π2

√
λ

|x⃗|4

∫ ∞

0
dα

α3

(1 + α2)7/2

√
1 + α2

(
dθ
dα

)2√
D2 + sin8 θ (3.13)

where θ is a function of v = α/|x⃗|, defined implicitly in eq. (3.10). For any fixed α, we

therefore have:

θ(α/|x⃗|) → π for |x⃗| → 0 , (3.14)

θ(α/|x⃗|) → θκ for |x⃗| → ∞ .

This means that for large and small |x⃗| the internal angle θ approaches constant values.

Importantly, in each of these limits, the scalar glueball VEV is proportional to |x⃗|−4, as

expected from dimensional analysis for a conformal probe, but with a different normalisa-

tion constant. In both the asymptotic regimes of small and large |x⃗| when θ approaches a

constant, the integral simplifies considerably. The integration over α yields,
∫ ∞

0
dα

α3

(1 + α2)7/2
=

2

15
. (3.15)

This is multiplied by
√
D2 + sin8 θ evaluated at θ = π or θ = θk and we obtain,

⟨OF 2⟩ =
√
2

24π2

(
3πκ

2

) √
λ

|x⃗|4 , |x⃗| small , (3.16)

=

√
2

24π2
(
sin3 θk

)
√
λ

|x⃗|4 , |x⃗| large .

Using κ = k/N , we conclude that the one-point function of the glueball operator interpo-

lates between that corresponding to a bundle of k coincident quarks each in the fundamental

representation, and that for a collection of k quarks transforming in the antisymmetric ten-

sor representation. The full interpolating function is plotted numerically in figure 2. Since
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Figure 2. The one-point function of OF 2 ∼ 1
NTrF 2 for the nonconformal D5-brane embedding,

plotted (solid blue) as a function of |x⃗|, for κ = k
N = 0.2 and a VEV in the UV impurity theory,

A = 2.0. Dividing by the one-point function for k fundamental quarks, the resulting curve interpo-
lates between unity (dotted black) for k fundamental quarks and 2

3πκ sin3 θk (dashed red) for the
antisymmetric representation of rank k.

sin3 θκ < 3π
2 κ for all κ, the figure displays the “screening” of k coincident quarks into

the rank-k antisymmetric tensor representation. The screening is induced by a VEV, or

normalizable mode in the effective AdS2 geometry induced on the D5-brane embedding in

the UV regime.

4 Finite temperature D5-brane embeddings

It is remarkable that at zero temperature there exist non-constant D5-brane embeddings

(preserving SO(5) global symmetry) which are BPS and therefore degenerate with the

constant embeddings with θ = θk or θ = π. We would like to know what happens to

such embeddings away from extremality, i.e. when the dual gauge theory is in a thermal

state. In this section we perform a numerical investigation of the thermodynamics of non-

constant solutions. In order to explore both high and low temperatures we will work in

the global AdS-Schwarzschild background which corresponds to the thermal N = 4 theory

on a spatial three-sphere.

We will first search for non-extremal D5-brane flow embeddings, and the correspond-

ing value of the deformation in the UV regime, given by the integration constant A

(see eq. (2.17)), for which the embeddings exist at a given temperature. Once such em-

beddings are identified we will investigate their thermodynamics and how they compete in

the thermal ensemble with the collapsed k-quark solution and the constant antisymmetric

tensor embedding.

Our main result is that we find three classes of non-constant embeddings interpolating

between k-quarks and the rank k antisymmetric representation. The actions of two of these

categories are exchanged under the action k → N − k, whilst the third is symmetric under
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this operation which acts as charge conjugation. The free energy of this latter class of solu-

tions is numerically indistinguishable from the constant antisymmetric tensor embedding,

for any temperature. It is curious that expectation value of the short screening length

flow coincides with that of the antisymmetric Polyakov loop, suggesting some underlying

analytic method for its evaluation, despite the fact that conformal invariance is broken.

The different classes of solutions also merge with each other at some critical temperature

for a given value of the parameter κ = k
N .

4.1 Numerical solutions

At finite temperature conformal invariance and supersymmetry are broken, and therefore

no BPS condition exists. The full second order equation of motion for the polar angle θ(v),

characterising our D5-brane embedding in the AdS-Schwarzschild background is,

4 sin4 θ

(
sin3 θ cos θ

D(θ)
− 1

)
G =

d

dv

(
D(θ)∂vθ

G

(
1−

v2+(1 + v2+)

v2
+ v2

))
. (4.1)

The auxiliary field G and the function D(θ) are defined as before in eqs. (2.10) and (2.12).

The resulting nonlinear differential equation is solved with the UV boundary conditions

appropriate for describing the collapsed solution (2.17) with k coincident fundamental

strings (quarks). Specifically, we build the large v expansion for some deformation A, with

fixed κ and temperature T (or v+):

θ(v) |v→∞ = π − A

v
+

A(2−A2)

6 v3
+

2A4

9πκv4
−

A(3A4 − 8A2 + 8(1 + v2+ + v4+))

40v5
+ . . . (4.2)

Using this expansion, we solve the equation of motion numerically, integrating in towards

the horizon. Acceptable solutions are those which extend all the way to the horizon,

remaining smooth and finite for v+ ≤ v < ∞. Once a solution is found by integrating in

from the UV, we check the same by integrating outwards from the horizon towards the

UV. For the latter procedure, we begin with a general near horizon expansion of the form,

θ(v) |v→v+
= θ+ + g1(θ+,κ, v+) (v − v+) + g2(θ+,κ, v+)(v − v+)

2 + . . . (4.3)

and the full solution is determined numerically. The numerical solutions and their actions

presented here were evaluated using a (large) radial UV cutoff Λ ∼ 109, and the results

were found to be stable against changes in Λ (for large enough Λ).

At generic temperatures below a critical value (for fixed κ), which we refer to as Tc(κ),

we find three non-constant embeddings. Together with the two constant embeddings — the

collapsed k-quark solution and the expanded antisymmetric tensor embedding, we therefore

have five branches of solutions. The branches are each distinguished by the values of the UV

deformation parameter A associated to each of them, and by their (regulated) Euclidean

action/free energy. We label the constant solution for the antisymmetric representation as

“branch I” and classify the non-constant embeddings as follows (see figure 3):

1. The solutions labelled as branch II in figure 3 start off near θ = π at the conformal

boundary (v → ∞) and approach the value θk at the horizon v = v+. The value

– 13 –



J
H
E
P
0
3
(
2
0
1
7
)
1
0
7

Branch I

Branch II

Branch III

Collapsed D5

5000 10 000 15 000 20 000v

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Θ!v"

Branches I, II

Branch III

100 200 300 400 500 v

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Θ!v"

Figure 3. The polar angle θ(v) of the S4 ⊂ S5 wrapped by the D5-brane, as a function of the
radial coordinate, for different branches of D5-brane embeddings, with κ = 0.25 and T ≈ 1.313 (or
v+ = 4). Upon zooming in near the horizon (right) we see that Branch III approaches the black
hole horizon smoothly.

of the angle θk (eq. (2.14)) at the horizon characterises the constant antisymmetric

tensor embedding Ak. We find numerically that the action for this family of solutions

is symmetric under the exchange κ→ 1−κ, as displayed in figure 1 and in addition, is

numerically indistinguishable from the action (2.14) for the constant embeddings [9].

2. We find another qualitatively distinct family of non-constant solutions which we

label branch III. These solutions approach θ = θ+ ≈ θk at the horizon, with the

transition scale (screening length) to the antisymmetric representation deeper in the

infrared relative to a branch II solution for the same value of κ, as evident in figure 3.

Furthermore, the action for this family of embeddings is not symmetric under κ →
1− κ.

3. For a given value of κ, we define a third family branch IÍI, of non-constant embeddings

obtained by taking a solution from branch III with κ′ = 1 − κ and G → −G (or

θ → π − θ). This operation reverses the string orientation and describes N − k anti-

quarks being screened to a rank N − k antisymmetric tensor representation ĀN−k of

anti-quarks. The latter has the same N -ality as k-quarks in the antisymmetric tensor

representation Ak.

The actions for all non-constant embeddings are evaluated using the UV counterterms (2.8).

We find that the non-constant flow solutions display nontrivial thermodynamics as a func-

tion of temperature. As the temperature of the AdS-Schwarzschild background is increased,

we find that branches III and IÍI merge with branch II as displayed in figure 4. The critical

temperature at which this merger occurs depends on κ, and appears to increase monoton-

ically with κ (figure 5). Beyond the critical temperature Tc(κ) for any given κ, integrating

in from the UV with θ(v → ∞) = π we have been unable to unambiguously identify

non-constant solutions that smoothly approach the horizon. We conclude that D5-brane

embeddings interpolating between k coincident strings in the UV and the antisymmetric

representation in the IR, cease to exist for temperatures above Tc(κ).
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Figure 4. Branches II and III merge at a critical temperature Tc(κ) (for a given κ), beyond which
interpolating embeddings do not appear to exist. Left: the value of the UV deformation (VEV) as
a function horizon size (temperature) for the two branches for κ = 0.25. Right: actions for the two
interpolating solutions merging as a function of temperature (horizon size).
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Figure 5. Critical temperature Tc(κ) at which branches II and III of interpolating D5-brane
solutions merge.

5 Symmetric Wilson loops and D3 branes

Wilson loops in the totally symmetric representation of rank k are computed by D3-branes

with worldvolume AdS2 × S2 ⊂ AdS5 [8, 11, 12]. The induced metric on the D3-brane

worldvolume yields a constant size S2 with radius given by κ̃ = k
√
λ

4N . In this section we

will describe a (BPS) solution which generalises the D3-brane solution of [8] so that the

embedding represents a flow from a source in the symmetric representation in the UV to

a collection of k quarks (coincident strings) in the IR. We will confirm this interpretation

by computing the VEV of the glueball operator in the gauge theory, and we will again find

an interpretation indicative of a screening effect.

5.1 D3-brane flow solution

A point in R3 preserves an SO(3) rotational symmetry, while a choice of internal orientation

of the BPS Wilson loop breaks the global SO(6) R-symmetry to SO(5). The D3-brane

embedding preserves the same symmetries, and whilst sitting at a point on the S5 of the

dual background, wraps an S2 centred at the origin along the spatial R3 slices of AdS5.

– 15 –



J
H
E
P
0
3
(
2
0
1
7
)
1
0
7

Writing the AdS5 metric in Poincaré patch as:

ds2 =
dz2

z2
+

1

z2
(
−dt2 + dρ2 + ρ2 dΩ2

2

)
, (5.1)

the pullback metric on the D3-brane worldvolume is,

∗ds2 =
dσ2

z2

[(
∂ρ

∂σ

)2

+

(
∂z

∂σ

)2
]
+

1

z2
(
−dt2 + ρ2dΩ2

2

)
. (5.2)

As in the case of the D5-brane solution, a worldvolume electric field Ftσ is also switched on

to generate k units of fundamental string charge. The Wess-Zumino term on the D3-brane

worldvolume is determined by the pullback of the RR four-form potential which follows

directly from the five-form flux proportional to the volume form of AdS5:

∗C4 = − i

gs

ρ2

z4
∂σρ dt ∧ dσ ∧Vol

(
S2
)
. (5.3)

The DBI and WZ terms of the D3-brane action together yield:

SD3 = 4πTD3

∫
dt dσ

ρ2

z4

(√
(∂σρ)2 + (∂σz)2 −G 2 z 4 − ∂σρ

)
+ Sc.t. . (5.4)

The D3-brane tension TD3 =
N
2π2 and G ≡ 2πα′ Ftσ, while the counterterms are determined

by the Legendre transform procedure described in [8, 9] and in section 2.1.1. In particu-

lar, the counterterms enforce the condition that the D3-brane is endowed with k units of

string charge:

Sc.t. = SU(1) + SUV , SU(1) = −k

∫
dt dσ Ftσ , (5.5)

and exchanging Dirichlet for Neumann boundary conditions generates boundary counter-

terms,

SUV = −
∫

dt

[
ρ

δ S

δ (∂σρ)
+ z

δ S

δ (∂σz)

]

UV

. (5.6)

Analogous to the D5-brane case the equations of motion yield a nonlinear system, with the

electric field being determined algebraically,

G = κ̃

√
(∂σρ)2 + (∂σz)2√
ρ4 + κ̃2 z4

, κ̃ ≡ k
√
λ

4N
. (5.7)

Picking the gauge σ = z, the equation of motion for ρ(z) becomes:

2 ρ

z4

(
ρ2G

κ̃
− ∂zρ

)
=

d

dz

(
κ̃ ∂zρ− ρ2G

z4G

)
. (5.8)

The equations of motion are satisfied by configurations that solve the first order equation

∂ ρ

∂ z
= G

ρ2

κ̃
, (5.9)
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which we can view as a BPS condition. The most general solution to the first order equation

of motion is,

G =
1

z2
, ρ =

z κ̃

1 + a z κ̃
, (5.10)

where a is the constant of integration. We will only consider the case a > 0 in this paper.

Interestingly, the same solution with a < 0 has appeared in [24] in a different context

relevant for describing solitonic lumps on probe D3-branes.3 The AdS2 × S2 embedding

of [8] describing the straight BPS Wilson line in the symmetric representation is obtained

by setting a = 0. On the other hand, taking the limit of large a we obtain the trivial or

collapsed embedding:

lim
a→∞

ρ(z) = 0 . (5.11)

The collapsed D3-brane solution represents a bundle of k coincident strings, since the action

(omitting the boundary counterterms) is then simply

SD3 |collapsed =

∫
dt

∫
d(z−1)

k

2πα′ , (5.12)

representing the tension of k strings oriented along the radial direction of the AdS geome-

try. As we will explain in more detail below, the solution (5.10) interpolates between the

symmetric representation D3-brane and k strings.

5.2 Regularized action

The general solution (5.10) satisfies a first order equation and therefore, as is generally

the case for (straight) BPS Wilson lines, we expect that it has vanishing action. For the

BPS solution with G = z−2 (in the gauge σ = z), the DBI and Wess-Zumino terms cancel

each other off, leaving only the counterterms. Evaluating these separately with a boundary

cutoff z = ε ≪ 1, we find,

SU(1) = −2N

π

∫
dt

∫ ε

∞
dz κ̃G =

2N

π

∫
dt
κ̃

ε
, (5.13)

SUV = −2N

π

∫
dt

[
ρ

(
∂zρ κ̃− ρ2G

z4G

)
+

κ̃

z3G

]

z=ε

= −2N

π

∫
dt
κ̃

ε
.

Therefore, the counterterms also sum to zero and the worldvolume action vanishes. It is

curious to note that despite the scale dependence of the flow solution, neither the world

sheet U(1) field nor the action depends upon the scale a.

5.3 Interpretation as a flow

For positive values a > 0, we may interpret the solution (5.10) as a flow, interpolating

between the symmetric representation Wilson loop in the UV,

ρ(z) |z→0 = κ̃ z − a κ̃2 z2 + . . . (5.14)

3When a < 0, ρ diverges at some fixed z = 1/|κ̃a|, and therefore the configuration describes the Coulomb

phase of N = 4 theory with U(N + 1) → U(1) × U(N), with a solitonic lump dual to the funnel-shaped

spike in the D3-brane probe representing the U(1) factor.
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and a “spike” or bundle of k strings in the IR regime (large z):

ρ(z) |z≫1 =
1

a
− 1

a2 z κ̃
+ . . . . (5.15)

The interpretation of the IR spike as a bundle of k fundamental strings is not automatically

clear from the solution itself or from the Lagrangian density (5.4) since the DBI and

Wess-Zumino terms cancel each other out for any value of z. In order to arrive at the

correct physical picture we first examine the induced metric on the D3-brane embedding,

the behaviour of fluctuations about the symmetric and collapsed embeddings, and finally

the behaviour of the scalar glueball operator sourced by the impurity in the boundary

N = 4 theory. The induced metric on the D3-brane worldvolume for any non-vanishing

deformation a is,

⋆ds2 =
1

z2

[(
1 +

κ2

(1 + a z κ) 4

)
dz2 + dt2

]
+

κ2

(1 + a z κ) 2
dΩ 2

2 . (5.16)

When a = 0 this reduces to AdS2 × S2 where the AdS2 has radius
√
1 + κ2 and the S2

radius is κ. In the limit a → ∞ (which can also be viewed as a large-z or IR limit) we have,

∗ds2 |a≫1 =
1

z2
[{
1 +O

(
(az)−4

)}
dz2 + dt2

]
+

1

a2z2
dΩ2

2 . (5.17)

In this limit, the S2 shrinks and we may view this as the approach towards the collapsed

D3-brane solution which describes a bundle or spike of k fundamental strings.

5.4 Fluctuations about UV and IR regimes

The only mode excited in our D3-brane flow solution is the radius of the S2 wrapped by the

brane, which is a scalar from the point of view of the induced AdS2 on the worldvolume of

the embedding.4 Let us separately consider the linearised fluctuation of this radial mode

about the expanded D3-brane solution with a = 0 and the collapsed embedding. Therefore,

we write
ρ

z
= κ̃+ δ(z) , (5.18)

for the solution corresponding to the symmetric representation Wilson line, and

ρ

z
= δ(z) , (5.19)

for the collapsed D3-brane embedding. The linearised equation of motion for δ(z) in each

case is then:

Symmetric : δ′′(z) = 0 , δ(z) = B −Az . (5.20)

Collapsed : z2δ′′(z)− 2δ(z) = 0 , δ(z) = Ã z2 +
B̃

z
.

4For a general analysis of the spectrum of fluctuations about D3- and D5-brane embeddings computing

higher rank Wilson loops, we refer the reader to the works [25–27].
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The first is the equation of motion for a massless scalar in AdS2, dual to a ∆ = 1 operator

in the dual conformal quantum mechanics describing the impurity. The second equation

corresponds to an AdS2 scalar of mass m2 = 2 which in turn is dual to an (irrelevant)

operator of dimension ∆ = 2 using the standard relation ∆ = 1
2 +

√
m2 + 1

4 .

Let us now compare the expansions (5.14) and (5.15) for ρ(z) in the UV and IR with

the linearized fluctuations in (5.20). Noting that fluctuation in ρ(z) is actually given by

z δ(z), we immediately infer that,

Ã = B = 0, A = a κ̃2 , B̃ =
1

a
. (5.21)

Therefore the UV regime corresponds to the expanded D3-brane deformed by a VEV,

A ̸= 0 for a ∆ = 1 operator, whilst the IR regime can be viewed as a deformation of the

collapsed configuration by a source B̃ = κ̃2/A for an irrelevant operator. The resulting

physical picture is therefore remarkably similar to what we found for the D5-brane flow

between k strings in the UV and the expanded D5-brane in the IR and which could be

interpreted as a screening effect in the dual gauge theory. In order to understand whether

the symmetric representation source is really “screened” to yield k coincident quarks, we

now turn to the computation of the scalar glueball VEV in the N = 4 theory.

5.5 One-point function for OF 2 ∼ 1
NTrF 2 + . . .

As in the D5-brane case, we will now deduce the one-point function for the marginal

operator OF 2 dual to the dilaton in the bulk AdS5 geometry sourced by our D3-brane

flow solution. The details of the analysis proceed similarly to the D5-brane example, with

the one key difference that the D3-brane embedding resides entirely in the non-compact

AdS5 directions and is point-like on the internal S5. The corresponding calculation for the

expanded, conformal D3-brane solution was performed in [22]. With the non-conformal

BPS flow solution, we find that the source term for the dilaton provided by the D3-brane

evaluates to:

JD3 =
N

2π2
κ̃

z2
sinψ δ

(
ρ− κ̃ z

1+aκ̃z

)
. (5.22)

Here ψ is the polar angle of the spatial two-sphere along the gauge theory directions,

wrapped by the D3-brane worldvolume. Retracing the steps outlined in [22], but now

applied to BPS flow embedding, we find that the leading term in the expansion of the

rescaled dilaton (3.9) near the boundary z → 0 is:

φ̃(ρ, z) ≃ 15
√
2κ̃

16π
z4

∫ ∞

0
dρ′

∫ π

0
dθ′ sin θ′

∫ ∞

0
dz′ z′ 2

δ
(
ρ′ − κ̃ z′

1+aκ̃ z′

)

(z′2 + (x⃗ − x⃗′)2)
7
2

. (5.23)

The expectation value of OF 2 is given by the coefficient of z4. Performing the angular

integral, we obtain

⟨OF 2(ρ)⟩ = 3
√
2κ̃

8π

∫ ∞

0
dz′

1 + aκ̃z′

2ρκ̃z′
z′ 2 (5.24)

×
[(

z′ 2 +
(
ρ− κ̃z′

1+aκ̃z′

)2
)− 5

2

−
(
z′ 2 +

(
ρ+ κ̃z′

1+aκ̃z′

)2
)− 5

2

]
.
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Figure 6. One-point function of OF 2 ∼ 1
NTrF 2 for the nonconformal D3-brane embedding, plotted

(solid blue) as a function of ρ = |x⃗|, for κ̃ =
√
λ k

4N = 2.0 and deformation parameter/VEV in the
UV impurity theory, a = 0.3. Normalizing with respect to the one-point function for k fundamental
quarks, the curve interpolates between

√
1 + κ2 = 2.236 in the UV corresponding to the symmetric

representation, and the fundamental representation in the IR.

The integral cannot be evaluated analytically. The limiting cases of a = 0 and a = ∞,

corresponding to the symmetric representation and k coincident strings, respectively, are

easily computed and yield,

⟨OF 2⟩ =
√
2

4π

κ̃
√
1 + κ̃2

ρ4
for a = 0 , (5.25)

=

√
2

4π

κ̃

ρ4
for a → ∞ .

The two limits respectively control the small ρ and large ρ asymptotics of ⟨OF 2⟩. We note

that our normalisations reproduce the result for k strings obtained from the BPS D5-brane

spike (3.16). Figure 6 shows the complete flow for fixed a, and confirms that ⟨OF 2⟩ interpo-
lates between the symmetric representation at short distances and k fundamental quarks in

the IR. Both limits yield conformal behaviour ⟨OF 2⟩ ∼ 1/ρ4, whilst the magnitude of the

coefficient actually decreases towards the IR. For this reason, analogously to the D5-brane

case, we refer to this as a screening of the source in the symmetric representation.

5.6 Finite temperature D3-brane embeddings

Thermal corrections to straight Wilson lines are computed by considering appropriate dual

objects embedded in the (Euclidean) AdS-Schwarzschild geometry. Extensive investiga-

tions of the D3-brane embedding equations in global AdS5-Schwarzschild geometry (dual

to thermal N = 4 theory on the three-sphere) were performed in [9] and no nontrivial, ex-

panded D3-brane configurations could be found with one end-point on the boundary. The

– 20 –



J
H
E
P
0
3
(
2
0
1
7
)
1
0
7

only allowed solution is the collapsed embedding representing k coincident strings. One

may therefore be tempted to argue that any finite temperature (at strong coupling) has the

effect of “dissociating” the symmetric representation into fundamental quarks. A similar

statement also applies to the D5-branes and the antisymmetric representation above the

critical temperature Tc(κ), beyond which non-constant D5-brane embeddings appear not

to exist for the gauge theory on the three-sphere.

Below we outline the result of our numerical investigation of non-constant, finite tem-

perature D3-brane embeddings in the planar AdS-Schwarzschild geometry, describing the

thermal CFT on R4. For the planar black hole with metric:

ds2 =
1

z2

[
dz2

f̃(z)
+ f̃(z) dt2 + dρ2 + ρ2 dΩ 2

2

]
, (5.26)

f̃(z) = 1−
(

z

z+

)4

, T =
1

z+ π
,

at temperature T , the action for the D3-brane embedding is,

SD3 =
2N

π

∫
dt dσ

ρ2

z4

(√
(∂σz)2 + f̃(z)(∂σρ)2 −G 2 z4 − ∂σρ

)
+ Sc.t. . (5.27)

In this case we work in the gauge σ = ρ, and solve the full second order equations for z(ρ).

In terms of the electric field G on the brane,

G =
κ̃
√
(∂σz)2 + f̃(z) (∂σρ)2
√
ρ4 + κ̃2 z4

(5.28)

the equation of motion for z(ρ) is,

2 κ̃G

z
+

4 ρ2

z5

(
G ρ2

κ̃
− 1

)
+

d

dρ

(
κ̃ ∂ ρz

z4G

)
=
∂ρf̃(z) κ̃

2 z4G
. (5.29)

We now search for solutions by expanding about the UV (z → 0)

z(ρ→ 0) ≃ ρ

κ̃
+

a

κ̃
ρ2 +

(a
κ̃

)2
κ̃ ρ3 +

(a
κ̃

)3
κ̃2 ρ4 +

6 κ̃8 z4+ (aκ̃−1)4 − 1

6 z4+ κ̃
5

ρ5 + . . .

and integrating-in/shooting towards the horizon. There are two distinct behaviours for

the solutions, shown in figure 7, distinguished by the sign of the deformation parameter:

positive a leads to solutions that approach the horizon before turning around and running

off to spatial infinity (ρ → ∞), whereas negative a solutions directly run off to spatial

infinity. This qualitative structure appears to be generic for any non-zero temperature.

We conclude that there are no expanded D3-brane configurations at finite temperature,

related to symmetric representation Polyakov loops or flows originating from them.

6 Discussion

We have analysed the interpretation and thermodynamics of a class of D3- and D5-brane

probe embeddings in AdS5×S5 which interpolate between Wilson/Polyakov loops in higher

rank tensor representations and the fundamental representation. In both cases we could

characterise the nonconformal probe embeddings in terms of a flow induced by a defor-

mation that could be interpreted as a VEV for a ∆ = 1 operator in the UV description
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Figure 7. Solutions to the D3-brane embedding equations at finite temperature for κ = 1 and
z+ = 1/πT = 1. Both the red (a = 4) and blue (a = −8) curves do not get to the horizon, and
instead run off to spatial infinity. Zooming in near z = z+ = 1 (right) we observe that the red curve
never reaches the horizon.

of the quantum mechanical impurity. The UV limit for the D5-brane embedding corre-

sponds to k fundamental quarks whilst the same limit for the D3-brane is dual to a source

transforming in the symmetric tensor representation of the gauge group. The D3-brane

case is particularly intriguing, since the one-point function of OF 2 shows a decrease in the

strength of the coupling to the source whilst interpolating between a symmetric represen-

tation source in the UV and k fundamental quarks in the IR. The ratio ⟨OF 2⟩/⟨OF 2⟩!
decreases monotonically with distance from the source in the boundary gauge theory. Al-

though naturally suggestive of a “thinning out” of degrees of freedom towards the IR, other

measures e.g. the entanglement entropy (EE) of Wilson line defects [28] and a proposed

holographic g-function [29] do not support this interpretation. In particular, the results

of [28] for conformal probes imply that the contributions from symmetric, antisymmet-

ric and fundamental representation sources to the EE of a spherical domain in the gauge

theory (at large N and ’t Hooft coupling λ≫ 1) are, respectively:

SEE
! = k

√
λ

3
, SEE

Ak
=

2N

9π

√
λ sin3 θk , SEE

Sk
= 2N

(
sinh−1 κ̃− 1

3 κ̃
√
κ̃2 + 1

)
.

It is easy to check that SEE
Ak

< SEE
! and SEE

Sk
< SEE

! , whilst keeping κ fixed in the first

case, and κ̃ fixed in the second. For the D3-brane flow, this clashes with the intuitive

picture implied by the behaviour of ⟨OF 2⟩ (figure 6) at the fixed points. It should be

possible to calculate the entanglement entropy for the non-conformal D3- and D5-brane

embeddings discussed in this paper using the techniques in [30]. The contribution from

defects/impurities to the EE of a spherical region of radius R is a candidate g-function

(see e.g. [31, 32]) and its behaviour for the D3-brane flow solution would clearly be very

interesting. It should also be possible to analyse the D3-brane system from the viewpoint

of the bosonic quantum mechanics of the boundary impurity. For D5-branes computing

the antisymmetric representation, the corresponding fermionic impurity model has been

solved exactly [13–15] but a similar analysis for the symmetric representation D3-brane

(and deformations) is lacking.

Finally, given the two types of interpolating solutions above, a natural question is

whether there exist flows from the symmetric representation (expanded D3-brane) in the
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UV to the antisymmetric one (expanded D5-brane). A possible approach to this ques-

tion is via a D7-brane embedding with worldvolume AdS2 × S2 × S4, carrying k units of

string charge.
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