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Abstract

This paper presents a homogenization study of porous piezoelectric materials through
analytical and numerical analysis. Using two of the most well-known analytical meth-
ods for theoretical homogenization, the Mori-Tanaka and self-consistent schemes, the
full set of material properties are obtained. These results are compared to two differ-
ent theoretical bounds, the Halpin-Tsai and Hashin-Sthrikman bounds. A numerical
model of a representative volume element is then developed using finite element analy-
sis for different percentages of inclusions. Finally, the analytical and numerical results
are compared and discussed; a good agreement between the analytical and numerical
methods is shown.

Keywords: Piezoelectricity, Porous, Homogenization, Numerical, Mori-Tanaka,
Finite Element Method

1. Introduction

The piezoelectrical effect is the capacity exhibited by some materials to convert
strain to electrical energy and electrical energy to strain. Piezoelectric materials have
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received significant attention due to their use in devices such as sensors, to mea-
sure strain or voltage, actuators and energy harvesters [32, 47]. Many authors have5

worked on the use of the piezoelectric materials for energy harvesters. Ertuk and Inman
[16, 17, 18] studied the piezoelectric cantilever bimorph beam for energy harvesting,
from theoretical to experimental cases. Sodano extensively reviewed the applications
of piezoelectric materials for energy harvesting [2, 54, 55]. Friswell and Adhikari ex-
plored the possibilities of piezoelectric devices to harvest energy under non-linear vi-10

bration [22] and broadband excitation [1]. The piezoelectric material properties, from
a general point of view, are defined by two parameters, the electromechanical coupling
and the capacitance, which depend on the piezoelectric coefficients and the geometry.
The coupling measures the amount of mechanical energy the material can convert to
electrical energy and the capacitance measures the losses in the generating of the elec-15

trical field which will remain confined in the material. These coefficients depend on
the geometry and material properties. Looking at the material impact on these coef-
ficients, the capacitance depends on the permittivity of the material as well as other
non-material related parameters such as electrode area and thickness. The coupling is
proportional to the piezoelectric coefficients [18]. Clearly it is desirable to have high20

coupling and low capacitance, in order to maximize the energy output. Material science
has discovered new ceramics PZT materials with higher coupling effects which mean
higher energy generated. The use of composite materials can improve the characteris-
tics of bulk materials. Different applications, for example naval or aerospace, require
high values of parameters such as stiffness, strength or piezoelectrical coupling. Unfor-25

tunately, piezoelectric ceramic materials are quite brittle, and do not support the high
deformation which is desirable for the high strains required to generate high voltages
for energy harvesting or sensing [58]. Also, the piezoelectric coefficients are an intrin-
sic property of the material and so there is limited potential to modify them without
using composite science, i.e. mixing the piezoelectric material with other piezo or30

non-piezo in order to increase or decrease the piezoelectric coefficients. One solution
to improve these elastic properties is to mix the brittle PZT with more flexible materi-
als like polymers, so that the composite resultant material has better general properties,
depending on the properties of the material added to the piezoelectric phase, such as its
structure, electromechanical properties and percentage added. For these reasons, most35

attention has been given to composites made of piezoelectric materials and polymers.
In an early work about analytical piezoelectric composites, Newnham [47] explored the
properties, the connectivity patterns, and the symmetry of the composite. He realised
the relation between the connectivity and the field and force concentration. Gururaja et
al. [25] studied the use of piezoelectric composites as transducers. Different tests were40

performed to measure the resonance modes also considering the temperature effect.
Beeby et al. [5] reviewed applications of piezoelectricity in microsystem applications
for energy harvesting. Cook-Chennault et al. [11] investigated the use of the piezo-
electric devices to supply energy to micro-electro-mechanical systems (MEMS). For
the correct design of piezoelectric composite devices it is necessary to have some a45

priori estimate of the percentage of each phase and the resulting parameters (elastic,
piezoelectric and dielectric coefficients) to control the piezoelectric coefficients and
their stress-charge counterpart. These estimates can be obtained from analytical theo-
ries, numerical models (FEM models) and/or characterization experiments.

2
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For the analytical approach, different authors have worked on piezoelectric ma-50

terials homogenization. Nemat-Nasser and Hori [45] considered the homogenization
of heterogeneous materials. In this book, an analytical study of different heteroge-
neous composites was given, from composites which contains inhomogeneities to those
which have micro-cracks. Dunn and Taya [13] extended the Mori-Tanaka method, one
of the most reliable analytical homogenization methods, to include the electrical cou-55

pling of the piezoelectric materials. Also, they calculated the corresponding Eshelby
tensor [13] which is required to calculate analytically the relation between the strain
inside the inclusion and the macro-strain [19] and hence the electro-mechanical matrix
of the corresponding homogenized material. One approach to increase the efficiency
of piezoelectric devices is to increase the piezoelectrical coupling to harvest more en-60

ergy. This approach is followed when PZT-polymer composites are used. The other
approach is to decrease the capacitance, through modifying the piezoelectrical and di-
electric coefficients by adding a new phase to the composite material. In this sense,
the porous piezoelectric materials represent a good alternative to the traditional PZT-
polymer composites. Little emphasis has been given to porous piezoelectrics, although65

they exhibit good piezoelectric properties and low capacitance [32]. Li et al. [38] char-
acterized porous piezoelectric material from experimental results. Roncari [51] elabo-
rated a comprehensive review of the different methods to prepare porous piezoelectric
ceramics. Bowen [10] reviewed the experimental figures of merit for different fabrica-
tion processes, such as poly(methyl methacrylate) (PMMA), self-raising and burn out70

polymer spheres process (BurPS). Roscow [52] applied piezoelectric porous material to
energy harvesting using piezoelectricity, pyroelectricity and ferroelectricity properties.
Until now, few studies has been performed on the analytical homogenization of porous
piezoelectric materials. Dunn and Taya [14] used the Mori-Tanaka approach to evalu-
ate the properties of porous PZT. In addition to the analytical models, homogenization75

can be performed by a numerical approach using FE techniques. Different authors
have highlighted the validity of such techniques for different fields such as elasticity
[39, 24, 35, 57], plasticity [40, 21], non-linearities[23, 20], complex microstructures
[43, 57], etc... Other authors have studied the distribution of the inclusions using sta-
tistical approaches to account for randomness in the location of the inclusions [3, 53].80

Kar-Gupta and Venkatesh [31] analysed through a finite element model the influence of
the porosity percentage and the orientation of the inclusion on the effective parameters.

A new approach to the porous piezoelectrical material homogenization is proposed
and a comparison between theoretical models and numerical results is given. A theoret-
ical analysis of the porous piezoelectric material is proposed using mean-field homog-85

enization methods, such as the self-consistent scheme and the Mori-Tanaka approach,
which are used to determine the homogenized material properties. Also, two bounds
are given to contrast the different limit values. These results are compared to a finite
element model, which represents the most favourable case. The most favourable case
is when the distribution of inclusions is spatially homogeneous and the inclusion shape90

is a perfect sphere which gives a perfectly transverse isotropic material. The influence
of the different percentages of inclusions is studied for both approaches, analytical and
numerical.

The present paper has 6 sections. An introduction and justification of this work
is made in the first section. The mathematical notation which will be followed in the95

3
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paper, is defined in the second part. The third section, gives a brief review of the
techniques for analytical homogenization, such as the Mori-Tanaka method and self-
consistent methods. Also, we compare these methods with common theoretical bounds,
namely the Halpin-Tsai bounds and Hashin-Sthrikman bounds. In the fourth section fi-
nite element modelling of the representative volume element (RVE), and a verification100

of the analytical theories, is performed. The characteristics of the model and the pro-
cedure of verification via the material parameters of the homogenised material are also
described. The results of the analytical theories and finite element models are summa-
rized in the fifth section, together with a discussion of the implications of porosity on
the energy harvesting performance of piezoelectric materials. Finally, conclusions are105

given at the end of the paper.

2. Mathematical preliminaries and notation

In piezoelectricity the governing equations for a linear static case without body
charge or forces are given by

σi j = Ci jmn εmn − eni j En

and Di = eimn εmn − kin En (1)

In these equations, the independent variables are the elastic strain εmn and the electric110

field En. These variables are related to the stress σi j and the electric displacement Di by
Ci jmn, eni j and kin which are the elastic constitutive matrix (measured in a constant elec-
tric field), the piezoelectric coefficients matrix (measured at a constant strain or electric
field) and the dielectric constant matrix (measured at a constant strain), respectively.
Due to the multi-physics nature of the piezoelectric effect, we need to use a consistent115

notation which accounts for this coupled nature. The notation used here is a modifica-
tion of the Einstein notation (repeated subscripts are summed over the range 1-3) that
was developed by Barnett and Lothe [4] and by Dunn and Taya [15]. This notation is
identical to that of Einstein with the exception that lower case subscripts have the range
1-3 while upper-case subscripts have the range 1-4, and repeated upper-case subscripts120

are summed over 1-4. A comma in the sub-index denotes partial differentiation.
When the piezoelectric effect is included, ZMn is the elastic strain and electric field

coupled vector, and is expressed as

ZMn =


εmn, M = 1, 2, 3,

−En, M = 4,
(2)

Similarly, we obtain the stress and electric displacement coupled vector which is de-
fined as125

ΣiJ =


σi j, J = 1, 2, 3,

Di, J = 4,
(3)

4
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The electroelastic material matrix can then be represented as

EiJMn =



Ci jmn J,M = 1, 2, 3,

eni j J = 1, 2, 3; M = 4,

eimn J = 4; M = 1, 2, 3

kin J,M = 4,

(4)

The inverse of the electro-elastic material matrix is the compliance electro-elastic
matrix FAbiJ . The properties of these matrices are derived from their constitutive ele-
ments Ci jmn, eni j and kin, which means these matrices are symmetric. With this notation
we obtain the constitutive laws of the piezoelectric materials in matrix form as130

ΣiJ = EiJMnZMn (5)

and ZAb = FAbiJΣiJ (6)

It is important to note that ZMn,UM ,ΣiJ , EiJMn, and FAbiJ are not tensors [13]. Hence
each individual tensor must be transformed by the well known laws of tensor transfor-
mation to write corresponding equations in an alternate coordinate system.

Equivalently, equation (5) can be written in condensed form [14] as



σ11

σ22

σ33

σ23

σ13

σ12

D1

D2

D3



=



C11 C12 C13 C14 C15 C16 −e11 −e12 −e13

C21 C22 C23 C24 C25 C26 −e21 −e22 −e23

C31 C32 C33 C34 C35 C36 −e31 −e32 −e33

C41 C42 C43 C44 C45 C46 −e41 −e42 −e43

C51 C52 C53 C54 C55 C56 −e51 −e52 −e53

C61 C62 C63 C64 C65 C66 −e61 −e62 −e63

e11 e12 e13 e14 e15 e16 k11 k12 k13

e21 e22 e23 e24 e25 e26 k21 k22 k23

e31 e32 e33 e34 e35 e36 k31 k32 k33



·



ε11

ε22

ε33

ε23

ε13

ε12

E1

E2

E3



(7)

The different materials considered will be specified by the superindex, being the value135

“I” for the inclusion parameters and “M” for the matrix parameters. When there is
more than one inclusion phase, the phase inclusion considered is denoted by “r”. We
also notice that all the different parameters have their equivalent at the macro-scale and
they are denoted with an over bar, for example, Σ or Z.

3. Analytical homogenization approach140

3.1. Introduction

Since linear behaviour is assumed throughout the composite, it is logical to as-
sume the response of the composite material is a superposition of the response of the
different phases averaged in some way. The composite response is determined by the
homogenized composite properties called “effective properties” or “macro-properties”.145
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These macro-properties, Σ and Z, also have to be consistent with the energy conserva-
tion principle, that means the virtual work, W, on a given material volume, V , at the
macro-scale must be equal to the virtual work at the micro-scale. Thus

δW =
1
V

∫

V
δWdV (8)

The Hill-Mandel condition is fulfilled when we apply linear displacements, uniform
tractions, mixed boundary conditions or periodic boundary conditions on dV [45, 46].150

The choice of boundary conditions is discussed in Section 4.2. When we apply one of
these boundary conditions, the variables such as strain, stress, electrical displacement
and electrical field in a finite volume V are equal to the macro equivalent variable,
namely macro strain, macro stress, macro electrical displacement, and macro electrical
field.155

From equation (8), an averaging process of the different parameters from the mi-
crolevel to the macroscopic level gives the relations

Σ
I

=
1

V I

∫

V I
Σ dV , Z

M
=

1
V M

∫

V M
Z dV (9)

The Hill-Mandel conditions mean that the variations in strain, stress, electrical dis-
placement and electrical fields at the micro-scale influence the macroscopic response
only through its volumetric mean value. This is derived from the energy conservation160

principle. Also, gradients in strain, stress, electrical displacement and electrical field
are not significant at the micro-scale, and so these gradients are assumed constant. This
is derived from the linearity assumed at the beginning. All these assumptions shape the
Mean-Field Homogenization Theory which is the basis of the analytical study devel-
oped in this paper.165

From the assumptions made previously and equation (9), a simple volume averaged
over a suitable cell, called a representative volume element (RVE), can estimate the
overall properties [15, 14, 29, 49]. The chosen volume must be statistically represen-
tative of the material at the macroscale. The required RVE properties will be discussed
more in depth in Section 4.1. Accordingly to these suppositions, the volume-averaged170

fields of the composite with N phases can be obtained using the averaged summations
as

Σ =

N∑

r=1

crΣr

and Z =

N∑

r=1

cr Z r (10)

where cr is the volume fraction of the phase r, the overbar denotes a volume-averaged
quantity or macro-parameter and r = 1 is the matrix phase. The constitutive equation
of each phase is given by equation (7).175

Following this approach the constitutive equations for the composite can be ex-
pressed in term of the volume-averaged fields as

Σ = E Z (11)

6
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3.2. Eshelby Solution

A composite material can be described as one or more well-defined phases inside
a matrix made of other material different to those of the phases. These phases have a180

defined boundary with the matrix, so these phases have specific shapes (layers, fibers,
spheres, ellipsoids, etc.). Depending on the geometry of the inclusions, the solution
or procedure is different. The study of the analytical solution of an ellipsoidal inclu-
sion inside a matrix was realised by Eshelby [19]. He considered that the matrix was
infinite compared with the size of the inclusion. This assumption holds for non-high185

inclusion percentages; some authors reported the maximum percentage is about 50 per-
cent [13, 14]. Eshelby developed relations between the stress and strain in the inclusion
and the matrix through a concentration tensor called the “Eshelby Tensor”. This ten-
sor relates the constrained strain inside the inclusion with their eigenstrain [19]. This
solution, based on the linearity of the material behaviour, solves the Green’s function190

for the elliptical shape. The solution has been extended by varying the dimensions of
the ellipsoid axis, for fibers (one of the axis is infinite), spheres (all axis are equal) or
cracks (one of the axis is zero) or for non-elliptical shapes such as arbitrary polygons
or those characterized by the finite Laurent series [33, 60]. For an ellipsoidal inclusion
in a homogeneous infinite matrix, the Eshelby Tensor is constant, due to the uniform195

relationship between the stress and strain fields. This relationship was demonstrated in
[19] using a tensor Di jkl which relates the displacement gradients to the stress inside
the inclusion. The Eshelby tensor can be calculated using different approaches, such
as calculating the electro-elastic Green’s function or solving the integrals associated
with the inclusion problem. Dunn and Taya extended this tensor to include piezoelec-200

trical materials [13]. Based on the previous works of Degg [12] , they obtained the
four tensors necessary to define the elastic, piezoelectric and dielectric properties of
an ellipsoidal inclusion embedded in an infinite matrix. One of these tensors is the
piezoelectric equivalent tensor or simply the Eshelby tensor. In this paper, the Eshelby
tensor is calculated by solving the inclusion integrals following the procedure described205

in Mikata [41]. To obtain the Eshelby tensor for a given material, only the nature of the
matrix (isotropic, transverse isotropic, orthotropic, etc) and the shape of the inclusion
are required, and this tensor changes depending on the geometry considered such as,
fibre, sphere or ellipsoid. In our case, we consider a piezoelectric material matrix be-
haviour which is transverse isotropic and with spherical inclusions. The Eshelby tensor210

by itself cannot be used to homogenize a composite material, but it is the basis of the
analytical homogeneization and is used in the most important theoretical approaches
such as the Mori-Tanaka method and the self-consistent scheme [34].

3.3. Mori-Tanaka method

The Mori-Tanaka method [44] was developed for calculating the average inter-215

nal stress in one matrix which contains precipitates with eigenstrains. Benveniste [6]
extended this approach to composite materials, considering anisotropic phases and el-
lipsoidal phases [37]. In this method each inclusion behaves as an isolated inclusion,
embedded in an infinite matrix with properties EM that is loaded remotely by an ap-
plied strain. Hence each inclusion is subjected to the averaged stress fields acting on it220

from all the other inclusions, through the superposition of stresses. The procedure of

7
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this method is detailed next. Firstly, an influence tensor has to be calculated for every
phase r (AI,r

0 ). This concentration tensor is assumed to be equal to the relation between
the strain in the inclusion with the strain in the matrix [34].

EI,r = AI,r
0 EM (12)

This concentration tensor is written in terms of the Eshelby tensor S ∗225

AI,r
0 =

[
I + S∗

(
EM

)−1 (
EI,r − EM

)]−1
(13)

Later, these concentration tensors will be averaged to obtain a general influence tensor
(AI(MT ))

AI,r
(MT ) =

c
I,r I + cM

(
AI,r

0

)−1
+

N∑

j=1

cI,r AI, j
0

(
AI,r

0

)−1



−1

(14)

And finally we obtain the effective electro-elastic material tensor (E∗) as

E∗(MT ) = EM +
∑

r=1

cI,r
(
EI,r − EM

)
AI,r

(MT ) (15)

This method is considered also self-consistent since the inverse of the electromechani-
cal matrix E∗ is equal to the compliance electromechanical matrix F∗.230

3.4. Self-consistent method

The self-consistent method of Hershey [28] and Kroner [36] was originally pro-
posed for aggregates of crystals and extended by Hill [30] for application to com-
posites. The self-consistent method (SCM) approximates the interaction between the
phases by assuming that each phase is embedded in some equivalent medium with235

electroelastic properties E∗, which represents the influence of all other inclusions [42].
A priori, the value of E∗ is unknown, so an iteration scheme has to be used. Ac-
cording to Norris [48], the SCM has two groups, symmetric models where the phases
are interchangeable and none of them are dominant, or asymmetric models were one
phase is taken as a matrix phase, and the rest are all inclusions. Asymmetric models240

are preferred by Wu [59] and Boucher [9] although, for the sphere inclusion shape,
both approaches lead to the same result. In general, the self-consistent method gives
a sufficient prediction of the behaviour of poly-crystals but it is less accurate in the
case of two-phase composites [50]. In the present work, a variant of the self-consistent
method is used based on the Zouari approach [61]. The procedure relies on a pro-245

gressive introduction of the inclusions in the matrix. For each step the behaviour of
the homogenized medium is obtained by the self-consistent method and is used as the
matrix of the following step. In the SCM, we account for the influence of each phase
through an influence tensor, which is also related to the Eshelby tensor. One can obtain
the influence tensor for each step N as250

Ar
(N−1),(S CM) =

[
I + S∗

(
E∗(N−1)

)−1 (
EI,r − E∗(N−1)

)]−1
(16)

8
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The parameter Ar
(N−1),(S CM) is the concentration tensor for the self-consistent method

(SCM) for the phase r in step (N − 1). This method gives the electromechanical prop-
erties E∗N for the self-consistent scheme as

E∗N,(S CM) = EM +

N∑

r=1

(
cI,r

N − cI,r
(N−1)

) (
EI,r − EM

)
Ar

(N−1),(S CM) (17)

The main difference between the self-consistent scheme and the Mori-Tanaka me-
thod is that Mori-Tanaka accounts for the effect of other inclusions through the con-255

centration tensor, whereas the self-consistent method considers this effect using the
effective properties of the embedded material inclusions as matrix properties.

3.5. Halpin-Tsai bounds
These bounds are one of the most popular approaches for composite homogeniza-

tion. They are based upon the “self-consistent method” developed by Hill [29] which260

Hermans [27] employed to obtain a solution in terms of Hill’s “reduced moduli”. Later
Halpin and Tsai reduced Hermans solution to a simpler analytical form and extended its
use to different geometries. In this paper, a variation based on the Halpin-Tsai bounds
will be used. This variation was developed and used by Odegard [49]

E∗il = EM
il

1 +
∑N

r=2 η
r
ilc

r

1 −∑N
r=2 η

r
ilc

r
(18)

where265

ηr
il =

EI,r
il − EM

il

EI,r
il + EM

il

(19)

3.6. Hashin-Shtrikman bounds
The approach of Hashin and Shtrikman [26] calculates the tightest bounds possible

for a two-phase material, and
is based on the Mori-Tanaka method. The approach leads to upper and lower

bounds, which can be calculated by applying the Mori-Tanaka method considering270

the matrix material to have the best properties for the upper bound, and interchanging
phases for the lower bound. In our case, the piezoelectric material the lower bound.
Thus

E∗(HS +) = EI + cM
[(

EM − EI
)−1

+ cISI
(
EI

)−1
]−1

and E∗(HS−) = EM + cI
[(

EI − EM
)−1

+ cMSM
(
EM

)−1
]−1

(20)

The upper Hashin-Shtrikman bound should be calculated with care, since it re-
quires the inverse of the inclusion electroelastic material matrix, which in our case275

(air) is assumed to be singular. Since the stiffness of the air inclusion is negligible, the
upper bound defined in equations (20) (E∗(HS +)) tends to zero in the resultant electrome-
chanical stiffness matrix. However, the lower bound (E∗(HS−)) represents the maximum
values. Thus the bounds are inverted, although the definitions used in this paper are not
changed, in order to be consistent with the literature.280
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4. Finite elements modelling of the RVE

4.1. Representative Volume Element (RVE).

To apply the Finite Element Method (FEM), we need to define the dimensions and
characteristics of the model or the part of the model we are going to simulate. As high-
lighted in Section 3.1 the representative volume should be statistically representative285

of the macro-element. This can be done by choosing a correct size of RVE, which nor-
mally is a cube with a specific side length LRVE . The effective properties of the material
are obtained by volume averaging (or homogenization) on a “computational cell” with
typical size. For a random micro-structure, the true effective properties are obtained as
the converged values when LRVE becomes sufficiently large. However, in practice, to290

avoid excessive computational costs, it is necessary to choose a cell of finite size.
For the non-random case considered here, a cell size is used that represents the

smallest periodic geometry which is still representative of the material configuration.
In the case of complete scale separation, in order to quantify as an RVE, the size LRVE

must be:295

• sufficiently small compared to the typical macro-scale dimension of the struc-
tural component.

• sufficiently large compared to the typical sub-scale dimension of constituents.

That the RVE is sufficiently small means that the averaged field variables, e.g. stress
and strains, vary at most linearly within the RVE, as seen in Section 3.1. That the RVE300

is sufficiently large means that the averaged field variables for a given macroscopic
“point” do not change significantly with a further increase of the RVE size. Nemat-
Nasser and Hori [45] discussed the size of the RVE in more detail. Obviously, the RVE
size will be conditioned by the size of the inclusions. The porous regions or inclusions
are air spheres whose diameter depends on the fabrication method. For polymers made305

using self-raising flour, the diameters are between 30-90 µm [10]. When the BurPS
process is chosen, which burns out polymer spheres when the mix is exposed to high
temperatures, the diameters are between 70-200 µm [10]. In some cases, for example
when poly(methyl methacrylate) is used, the diameters can be over the 200 µm. These
processes are detailed in Section 4.3. Knowing the distribution of the inclusions inside310

the matrix and their size, we can choose an appropriate RVE size. The distribution of
inclusions in the RVE in the numerical model developed in this paper corresponds to
a homogeneous and perfect distribution which allows us to establish a fair comparison
with the analytical models which do not consider random distributions of inclusions.
The computational cost is also reduced significantly by only considering a single in-315

clusion geometry.
If the RVE is statistically representative of the composite geometry and properties,

then E = F
−1

as seen in equation (6). A consistent averaging technique is expected to
satisfy this inverse relation.

4.2. Periodic boundary conditions320

A numerical model is simulated to compare with the analytical results, using a
finite element model, based on the simulated RVE. These elements have properties
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(a) Periodicity: RVE inside an infinite matrix of
RVEs.

(b) Periodic boundary conditions
definition

Figure 1: Periodic boundary conditions for a representative volume element

corresponding to the phase they are contained within. The definition of the element
properties is straightforward as soon as we know the properties of the phases (PZT
and air) and the geometrical distribution. To define completely a numerical model, ap-325

propriate boundary conditions have to be defined. These boundary conditions have to
represent the behaviour of the heterogeneous material RVE in a specific situation, for
example in a traction test (Dirichlet conditions or Neumann conditions) or inside a ma-
trix of a repeated RVE (Periodic Boundary Conditions). Periodic boundary conditions
can be formulated for unit cells when the volume exhibits a periodic structure. Terada330

[57] investigated the application of periodic boundary conditions in micromechanics.
He showed that:

• Periodic boundary conditions applied on a relative small RVE provides reason-
able estimates of the effective properties even if the medium doesn’t have actual
periodicity.335

• Periodic boundary conditions give a more reasonable estimate of the effective
moduli than either Dirichlet or Neumann boundary conditions.

As shown in Figure 1b, the chosen boundary conditions imply that the opposite edges
have identical deformation, and opposite stress direction [56].

These conditions simulate the boundary conditions created by an infinite matrix340

surrounding the RVE, as shown in figure 1a. This matrix is supposed to consist of an
infinite series of RVEs repeating in all directions. This assumptions allows us to choose
the minimum RVE which ensures a representative geometry, and hence to the model a
single simple inclusion geometry.

To simulate the periodic boundary conditions in ANSYS®, a macro links all bound-345

ary nodal displacements depending on their position. To link correctly the values of the
displacements between opposite nodes, the relative position of this node with respect
to their surface has to be the same. This means that the meshes should be equal on
the opposite faces. To achieve this, we mesh the primary surfaces and copy this mesh
to the secondary surfaces. When all surfaces are generated, we generate the volume350
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mesh. Berger et al. [7] used only one element in the transverse direction due to the
transverse isotropic behaviour, but here we consider the volume is a 3D cubic volume
with sides equal to L. Also each node has only three mechanical (displacements in
X, Y and Z directions) and one electrical (voltage VOLT) degrees of freedom, and so
appropriate relative displacements between surfaces in the correct directions have to be355

used to simulate the tangential stresses.
In this paper, periodic boundary conditions are applied to a periodic porous struc-

ture consisting of a piezoelectric material matrix and air inclusions in different percent-
ages.

4.3. Finite Element Model360

To model the representative volume of our porous piezoelectrical material, first we
need to define the materials that will be used. Formed by two phases, the RVE is made
of air and a piezoelectrical material. The air phase will be meshed and modelled as a
material with low elastic properties, about 100 N/m2 which is small compared to the
piezoelectric elastic properties, which has order 1010 N/m2. The relative permittivity365

of the air is defined as 1.
The air parts are meshed in order to fulfil the requirements of equation (9) which

means the values measured have to be averaged over all regions of the RVE. Further-
more, not all of the properties of air are zero, for example the permittivity will be
non-zero. Thus, by meshing the air, a general purpose framework for computational370

optimization can be built, and this decreases the possibilities of numerical issues arising
from the use of zero elastic properties in the FEM model. The piezoelectrical material
chosen is the synthetic ceramic PZT-5A, which is one of the most used in engineering.
The properties of this material are given by Erturk and Inman [18]. The PZT-5A is a
transverse isotropic material and its properties are given in equation (21), with units375

given in equation (22).

EM =



121 75.4 75.2 0 0 0 0 0 5.4
121 75.2 0 0 0 0 0 5.4

111 0 0 0 0 0 −15.8
21.1 0 0 0 −12.3 0

S ymmetric 21.1 0 −12.3 0 0
22.9 0 0 0

0 0 0 0 12.3 919 0 0
0 0 0 12.3 0 0 919 0
−5.4 −5.4 15.8 0 0 0 S ymm. 826.6



(21)

Units =



C (GPa) eT (C/m2)

e (C/m2) kT /k0


k0 = 8.854 × 10−12pF/m (22)
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(a) Inner inclusion view (b) Mesh Element view

Figure 2: Different views of the representative volume element

Once the material properties of the different phases are defined, the next step is to
model the geometry of the volume. The geometry is composed of two spheres in a ma-
trix, one in the center, the other distributed equally in the corners of the RVE. We should
note that imperfections in the sphere shapes are possible as a result of the fabrication380

process. There are two main processes to generate porosity in a piezoelectric matrix.
The most flexible in terms of the range of materials, and hence the most general, is
the BurPS process. The name is derived from the process itself, “Burn out Polymer
Sphere”. In this process, the piezoelectric phase is fabricated as a powder or by ball
milling and the most common materials are polyethylene oxide (PEO) and poly(methyl385

methacrylate) (PMMA) [10]. This mix is subjected to pressure equal to 50 MPa. At the
same time, a heat treatment at 400 °C is used to burn off the volatile additive, and then
the temperature is increased up to 1125 °C for 2 hours to sinter the ceramic [10]. This
technique is limited to percentages of inclusion lower than 70% [32]. Using the BurPS
process, the overlapping of inclusions is minimum, reduced only to spheres “touching”390

each other, because the polymer spheres cannot overlap each other. The shape of the
inclusions is consistent, because the spheres maintain their shape during the process of
the increasing heat until they disappear. Also an elaborate and careful fabrication pro-
cess can lead to a relatively homogeneous and regular distribution. Some authors have
studied the influence of the shape of inclusions in the piezoelectric material properties395

using assumptions such as cuboidal porosity [8]. The authors also conclude that “the
fundamental elastic, piezoelectric and dielectric constants increase nonlinearly with the
increase in material volume fraction.”

The second most common process to manufacture porous piezoelectric materials
is the self-raising method. In this process, the final inclusion size is finer than in the400

BurPS case. In this process the porous inclusion are grown from inside of the matrix.
The deformation of the inclusion and overlapping are both likely because the bubbles
of air created in the process intersect and connect to each other, changing their size and
shape.

In our model, we suppose the test is prepared using a BurPS process, so the possi-405

ble deformation of the inclusions and the overlapping of particles are neglected. Also
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a regular distribution of the inclusions in the matrix is considered. Although clearly
unrealistic, this configuration should show the best possible results avoiding conglom-
eration effects, shape deformations and particles overlapping. The comparison with the
analytical theories is then more fair.410

The geometry of the model is then defined by an inclusion in the center of the RVE
and a segment of an inclusion in each corner, as shown in figure 2. The size of the RVE
is chosen to reduce computational cost but is still representative of the geometry of the
material.

In the finite element model one of the most important steps in the setup process is415

to configure the boundary conditions, and periodic boundary conditions will be used
here. In terms of the modelling, this means that each node (i) has its displacements
related with those of node ( j) on the opposite surface. These displacements are related
through the strain applied in the model as Berger et al. [7] explained. Thus

U j
M − U i

M = ZMn(x j
n − xi

n)⇒


u j
m − u j

m = εmn(x j
n − xi

n)

φ j − φi = En(x j
n − xi

n)

To avoid rigid body motion, the displacements and voltage of one of the points are420

fixed to zero. In our case, the point (0, 0,Rinclusion).
The geometry is programmed into the FEM program ANSYS® using its program-

ming language APDL. A script with all of the geometry and boundary conditions was
written as a function of the displacement applied and the percentage of inclusion.

4.4. Evaluation of the different effective coefficients425

The boundary conditions are applied and the results are obtained using ANSYS®

integrated solver, namely the stress and strain for each element and node. The macro
parameters are obtained through the volumetric mean using equation (9). These equa-
tions will be approximated by the weighted average over the RVE volume as

σ =
1
V

∑

V

σe Ve , ε =
1
V

∑

V

εe Ve , D =
1
V

∑

V

De Ve , E =
1
V

∑

V

Ee Ve

(23)

where the subindex “e” means the element number. From the volumetric mean of the430

parameters, the material parameters of the homogenized material are calculated from
equation (7).

To obtain the 81 parameters which appear in equation (7) and constitute the elec-
troelastic material properties matrix, we need at least 81 equations. Each test realised
(one strain/electric field applied) generates 9 equations, derived from the nine elements435

of the strain/electric field vector. So, we should realise 9 different tests applying differ-
ent strain/electric fields. We notice that the piezoelectric material is transverse isotropic
and the air can be considered homogeneous, so that the composite material will have
the higher grade of anisotropy of its components, and hence the composite will be trans-
verse isotropic too. To define a transverse isotropic electroelastic matrix we do not need440

all 81 parameters, because some components are zero and additionally the elastic part
is symmetric and the eletromechanical coupling coefficients of the main diagonal have
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opposite signs. Thus only 10 parameters are needed to define a transverse isotropic
material: 5 mechanical, 3 piezoelectric and 2 dielectric. This reduces the number of
tests to only 2, but it is preferred to realise the whole set to estimate the whole material445

matrix and check convergence, symmetry and possible errors introduced.
Having obtained the results for the nine tests, we proceed to solve the system of

equations. Due to the periodic boundary conditions that relate the deformations in op-
posite sides, the expected deformation averaged volume values will be very small, ex-
cept the displacement/electrical field applied as part of the characterization test. Hence450

the material parameters can be obtained from the relation

Enm =
Σn

Zm
for n,m ∈ [1, 9]

where the subindex m corresponds to the strain/electric field applied and the n corre-
sponds to the stress/electrical displacement response.

5. Results and comparison

The results obtained from the analytical and numerical models are shown in Figure455

3 and Figure 4. Figure 3 shows the five mechanical coefficients necessary to define a
transverse isotropic material. In our case, the analytical theories are used for extreme
cases as electromechanical homogenization and very different phases (air-PZT) but
they show a good agreement between the mechanical coefficients with the numerical
results. The Mori-Tanaka approach is one of the most advanced and reliable methods460

for analytical homogenization, and for this porous case shows a good match with the
numerical results. This agreement holds for the whole range of inclusion percentage.
For the mechanical coefficients, the self-consistent scheme also shows good agree-
ment with the Mori-Tanaka and the numerical results, which it is expected due to the
similar assumptions in both analytical methods and numerical methods, based on the465

averaging technique (Mean field homogenization theory and Hill-Mandel condition).
The Hashin-Shtrikman bound offers results similar to the Halpin-Tsai bound, and for
most of the mechanical parameters is an upper bound for the analytical results. For
the piezoelectric coefficients, these bounds represent average values of the numeri-
cal results, which tends to give the highest values, and the analytical methods (Mori-470

Tanaka and Self-Consistent) which tends to underestimate these coefficients. The upper
Hashin-Shtrikman bound cannot be calculated as explained in Section 3.6. The method
proposed by Odegard [49] is a geometrical approximation to the Halpin-Tsai bounds
which is extended for the piezoelectric material. Hence the results are quite uniform in
all graphs, and are in the middle of the results of the other methods.475

Figure 4 shows the piezoelectric and dielectric parameter results. There are larger
differences between the analytical models and the numerical results. This is due to the
nature of the model which has been extended from the mechanical part to the electric
field. This leads to considerable differences between the different methods and an
important variation of the results with respect to the numerical methods. In contrast,480

the dielectric coefficients show a better match between all theories and the numerical
results. The Mori-Tanaka method shows the best agreement with the numerical results
again.
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Figure 3: The estimated mechanical coefficients.
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Figure 4: The estimated piezoelectric and dielectric coefficients.
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For the piezoelectrical parameter results presented in figure 4, each method will
be discussed in turn. The Mori-Tanaka method shows the best agreement with the485

numerical results for the coefficient e31, which is the most dominant coefficient in en-
ergy harvesting applications. For the other coefficients, the differences are bigger and
it underestimates the numerical values. The self-consistent method shows interesting
results in the coefficient e31 where it shows an increase of the absolute value until 20%
of inclusions and decreases after that but at lower ratio than the other methods. These490

results are very different from the numerical results. This increase in e31 for small per-
centages of inclusions might be due to the decrease in the permittivity coefficients and
the very small increase in the strain in the matrix material for small percentage of in-
clusions. As stated before, the e31 coefficient is a ratio between the voltage measured,
which is increased by the decreased permittivity, and the strain measured, which for495

small increases in inclusion percentage could be very small. For the other piezoelec-
tric coefficients the agreement is better, and similar to the Mori-Tanaka approach. It
is interesting to notice that the self-consistent results tend to overestimate the absolute
value of the parameters for percentages of inclusions over 40-50%. The Halpin-Tsai
method shows the same tendency as the mechanical coefficient results. Due to the ge-500

ometrical variation, this method shows smooth and similar results for all coefficients.
In the case of the Hashin-Shtrikman bounds the results are between the self-consistent
method and the numerical results, and are best for the capacitative coefficient which is
plotted as relative permittivity k33.

It is interesting to notice the linearity of the numerical results with respect to the505

percentage of inclusions. In the case of the mechanical coefficients, this linearity is
not so clear. This linearity arises from the small impact of the electromechanical cou-
pling with respect to the impact of the inclusion percentage, as this percentage is the
main driver for the change in these parameters. The same logic can be applied to the
dielectric coefficients, which again show the dominance of the percentage inclusions510

over any other coupling.
These results can be used to obtain the figures of merit of the porous piezoelectric

material. These figures are relationships between material coefficients which express
the potential amount of energy the material can generate independently of the geometry,
excitation or electrical connection. Higher values of these coefficients represent higher515

capability to generate energy. As a comparison, the coefficients dh and gh are presented.
These coefficients are defined as

dh = d33 + 2 · d31 (24)

gh =
dh

kσ,33
(25)

The coefficients d are the piezoelectric coefficients expressed when the dependent vari-
ables are the strains (ε) and the electrical displacement (D). This is also called the
strain-charge form.520

ε = S E · σ + dT · E
D = d · σ + kσ · E (26)

18



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

where the subindex σ and E in kσ and S E mean the permittivity and stiffness are mea-
sured under constant stress σ and electrical field E respectively. When T appears as
superindex, it means transpose of the matrix. In the present paper, the stress-charge
form has been used (see eq. 1), where the dependent variables are the stresses σ and
the electrical displacement D. Hence the appropriate change is necessary using the525

relationships:

S E = C−1
E

d = e S E

kσ = kε + d ·C−1
E · dT (27)

The coefficient dh represents the total amount of energy generated by the piezoelectric
effect, and the gh represents the energy output when the losses due to the permittivity
are included.

In figure 5 the evolution of these coefficients with respect to the porosity is pre-530

sented. These coefficients increase for higher porosity, specially the coefficient gh

which increases rapidly for porosity percentages higher than 20%. The coefficient dh

does not show much variability with respect to the porosity, with changes smaller than
1% compared to the strain coefficients d. In contrast, the coefficient gh increases as a
consequence of the small decreases in the piezoelectric coefficients, represented by dh,535

and the important decrease in the permittivity e33 (see figure 4). Thus the porous piezo-
electric materials show improved properties for energy harvesting compared to dense
piezoelectric materials. This conclusion agrees with the results presented by Bowen at
al. [10]. In this study the coefficient dh remains relatively constant for porosity per-
centages up to 50% where the PZT structure is compromised due to the high level of540

porosity. Furthermore, the coefficient gh shows a significant increase compared to the
non-porous material, as Bowen et al. reported [10]. Hence the approach presented in
this paper appears to be valid for porosity up to 50%.

6. Conclusions

A new approach to the homogenization of porous piezoelectric materials has been545

given. Using different analytical methods developed in this paper, a comparison be-
tween these results and their corresponding finite element estimates is performed. From
the comparison of both approaches the following conclusions can be drawn:

• The analytical models are well-developed for the elastic homogenization of com-
posite material, with only small differences to the numerical methods, indepen-550

dent of the nature of the constituent of the composite.

• The same methods give good estimates of the piezoelectric properties for small
percentages of inclusions. Especially for the piezoelectric coefficient e31 the
Mori-Tanaka method gives good estimates of the composite coefficients, making
this analytical approach suitable for energy harvester design.555

• Although the analytical and numerical methods show reasonable agreement in
the dielectric parameters, these parameters show some errors due to their order
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Figure 5: The figures of merit dh and gh for the analytical and numerical methods.

which is much more smaller than the other values in the electroelastic material
matrix.

• Porous piezoelectric materials present important advantages for energy harvest-560

ing compared to dense piezoelectric materials as a consequence of the beneficial
ratio between the piezoelectric coefficients and the permittivity when the poros-
ity is increased.
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search Network and Swansea University through a Postgraduate Scholarship.

References

[1] S. Adhikari, M. I. Friswell, D. J. Inman, Piezoelectric energy harvesting from
broadband random vibrations, Smart Materials and Structures 18 (11) (2009)
115005.

[2] S. R. Anton, H. A. Sodano, A review of power harvesting using piezoelectric
materials (2003–2006), Smart Materials and Structures 16 (3) (2007) R1.

[3] D. Balzani, L. Scheunemann, D. Brands, J. Schröder, Construction of two-and
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