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Abstract 

Many of the properties exhibited by separation membranes are due to interactions at the interface 

with their environment, including flux, rejection of solutes and surface fouling. As such when trying 

to understand how such interactions affect their function and when developing novel membranes 

with improved properties, a thorough understanding of their surface properties is essential. In this 

review paper we describe and discuss a number of instrumental techniques commonly used to 

characterize membrane surface, along with illustrative examples from the literature on membrane 

development and characterization. The techniques described include spectroscopic techniques, 

microscopic techniques and methods to measure the surface wettability and electrokinetic 

behaviour. 
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1.0 Introduction 

As all interactions between filtration membranes and the surrounding medium, containing a 

potentially diverse mixture of water, ions, organics and macromolecules, occur at the surface, it 

follows that the physical and chemical properties play a fundamental role in their operation, 

affecting membrane flux, rejection and fouling. As such, when trying to understand the interactions 

underpinning these processes, or when developing new improved membranes, characterisation of 

the pertinent membrane surface properties is very important. This review will attempt to summarise 

the major techniques used for investigation of membrane surface properties. In the first section we 

will examine spectroscopic techniques, those which use electromagnetic radiation. Fourier 

transform infra-red spectroscopy (FTIR), particularly with the attenuated total reflectance module 

(ATR), is one of the most important techniques available to the membrane developer to understand 

chemical modifications made to membrane surfaces. The several modes of Raman spectroscopy can 

not only complement the chemical information of FTIR, but can add structural information and is 

often combined with imaging techniques to allow surface mapping of these properties. X-ray 

photoelectron spectroscopy (XPS) is an extremely powerful technique to examine the elemental 

composition of surfaces. Other techniques, including nuclear magnetic resonance (NMR), small angle 

X-ray / neutron scattering (SAXS/SANS) and electron spin resonance (ESR), whilst not strictly surface 
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techniques, are included due to their great utility in obtaining information on the effects of surface 

treatment and modification into the structures in the upper active layer of membranes. The next 

section deals with three high resolution microscopy techniques, atomic force microscopy (AFM), 

scanning electron microscopy (SEM) and transmission electron microscopy (TEM). AFM allows 

quantitative examination of three-dimensional structures of surfaces in fluid environments and can 

generate a wide range of quantitative information on surface morphology, surface nano-mechanical 

properties and interaction forces between the surface and other materials. Electron microscopy 

techniques, SEM and TEM, are almost ubiquitous as a technique to gain high quality, high resolution 

images of membrane surfaces and cross-section, and when combined with energy dispersive X-ray 

detection (EDX) can simultaneously obtain elemental information. We examine several techniques 

for determination of surface wetting properties through measurement of contact angle at the air-

water-solid interface. Finally, we look at membrane surface electrokinetic properties and techniques 

to determine surface electrical potential. 

 

2.0 Spectroscopic Techniques for Characterisation of Membrane 

Surfaces 

2.1 Fourier Transform Infra-Red Spectroscopy (FTIR) 

2.1.1 Introduction and basic principles 

Much research and development on the development of separation membranes is on the creation 

of new surface chemical functionalities in the search for membranes with increasing resistance to 

fouling. One of the most mature and widely used technologies to investigate chemical functionality 

of surfaces is the group of related spectroscopic techniques termed Fourier Transform Infra-Red 

spectroscopy (FTIR).  

As with all infra-red spectroscopy techniques, FTIR probes the vibrations of molecular bonds. This is 

because infra-red (IR) frequencies (approximately 1012 to 1014 Hz) overlap with molecular vibration 
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frequencies.  A molecular vibration is a movement of atoms within a molecule which involve no 

rotation and do not alter the centre of mass of the molecule. If the frequency of IR radiation is 

identical to that of a particular molecular vibration, then it can cause the vibration to move to a 

higher energy state. The vibrations may include stretching (both symmetric and asymmetric, and 

bending (in plane or out of plane), referred to as ‘normal’ modes. 

FTIR instruments provide results much faster than traditional IR spectrometers. Inside the 

instrument a black-body source emits a beam of IR radiation. This beam is passed through an 

interferometer where different beams with different path lengths are combined to create 

constructive and destructive interference. This interference pattern, is termed an interferogram. As 

the beam is passed through the sample and wavelengths of IR light are absorbed in a manner 

specific to that sample then the interferogram will be in turn characteristic of that sample. This can 

be plotted as an interferogram of energy versus frequency. Finally, computer software subtracts a 

reference (background) signal from the sample interferogram by Fourier transform to produce the 

sample spectrum. 

The vast majority of FTIR instruments fall into one of four categories: transmission, attenuated total 

reflectance (ATR), diffuse reflectance spectroscopy (DRIFTS) and specular reflectance/ reflection-

absorption [1, 2]. The simplest, from an operational perspective and oldest technique is simple 

transmission. Here a beam of IR light is passed through the sample and the transmitted energy is 

detected and used to produce the resultant spectrum.  

ATR-FTIR is useful for examining sample surfaces, rather than bulk materials and so is of especial 

interest for study of chemically modified membrane surfaces. This technique typically requires an 

add-on module to the FTIR instrument. During ATR-FTIR operation a beam of IR light is directed onto 

a high refractive index crystal, which may typically be germanium, zinc selenide, diamond, thallium –

bromoiodide or silicon, placed in direct contact with the sample (see figure 1). Multiple internal 

reflections of the IR beam are produced, which creates an evanescent wave, which interacts with the 
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material of the sample. Absorption of the evanescent wave by the sample leads to its attenuation, 

before being reflected back through the crystal and onto the detector [2].  

<Insert figure 1 here> 

DRIFTS is useful for the study of particulate samples. The DRIFTS technique uses true diffuse 

reflectance where the incident beam can be either reflected off the surface of one or more particles 

in many directions without penetrating the surface, or may penetrate and be scattered [2]. Here IR 

energy is channelled into a sample chamber filled with sample particles suspended in a material, 

such as KBr, which is transparent to IR radiation. The scattered and diffused incident bean is 

collected by a mirror which reflects it onto the detector. The detected IR radiation is then processed 

as with other FTIR techniques. True specular reflectance is unique in that it measures reflected IR 

radiation rather than IR absorption. It utilises the variance of the unique refractive index for every 

material with the wavelength of the light being reflected. 

FTIR instruments typically operate in the middle of the IR range, with wavenumbers of 

approximately 666 to 4000 cm-1. In this region, the transition energies for many functional groups’ 

vibrational states can be found within this range. As a result, the presence of specific absorption 

bands can be used to identify the presence of the corresponding functional groups.  

The vibration of whole molecules produces complex absorption patterns at high frequencies, which 

is often particular to that chemical and hence is of great utility in identifying particular molecules. 

Single, double and triple bonds are also seen in different parts of the IR spectrum, typically 

appearing in the 2500-4000 cm-1, 1500-2000cm-1 and 2000-2500cm-1, respectively. 

2.1.2 Studies of Membrane Surface Chemical Modification 

A number of different techniques have been used to modify the surfaces of membranes to change 

their functionality in some way. FTIR based techniques are a powerful tool in assessing the 

functional groups present in the membrane and are of great utility when modifying membranes. 

Surface modification may take the form of surface coating, treatment with chemicals or plasma, 
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surface grafting of chemical species, enzyme immobilisation, UV induced modification and addition 

of nanostructured fillers.  

A common approach in the creation of membranes for water treatment application is by blending of 

complimentary polymers together. This can provide blended polymer membranes with useful 

properties which may not be found in membranes consisting of single polymers [3-6]. These 

properties may include higher permeability and higher selectivity leading to improved performance 

for desalination, gas separation, wastewater treatment and other separation applications [3, 4, 6-8]. 

Mannan et al developed polysulfone / polyether sulfone (PSF/PES) membranes for CO2 separation 

applications [3]. Observation of the FTIR absorbance spectra showed absorbance peaks shifting in 

frequency (see figure 2). The authors noted the presence of a broad peak with a wavenumber of 

between 3448 and 3460 cm-1 which was ascribed to the presence of hydrogen bonding between the 

PSF and PES, although these peaks are not easily discerned in the published figure. This 

demonstrated that the PES and PSF polymers were compatible, with positive physical interactions 

occurring between them. 

<insert figure 2 here> 

Chemical modification of membrane materials by the addition of functional groups is commonly 

carried out by oxidation, hydrolysis, addition and substitution. Oxidising agents including chromic 

and nitric acid, and potassium permanganate, may be used to oxidise the membrane surface by the 

introduction of oxygen radicals. For instance, Bottino and colleagues [9] modified poly(vinylidene 

fluoride) (PVDF) powder with potassium permanganate. Membranes created using the modified PVD 

showed improved pure water flux and increased hydrophilicity compared with unmodified PVDF 

membranes. ATR-FTIR showed the appearance of a new absorption band with a peak at 1650 cm-1. 

The authors attributed this band to the formation of carbonyl bonds formed as a result of 

dehydrofluorination and oxidation reactions. 

Modification can also be carried out on pre-fabricated membranes. This allows changes to be made 

to the active surface of the membrane without altering properties of the bulk of the membrane 
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material, for instance avoiding weakening of the mechanical properties of the membrane [10]. 

Plasma treatment of membrane surfaces has this advantage, allowing membranes with surface 

layers of low hydrophobicity to be created, without weakening the strength of the membrane 

matrix.  

 

<Insert figure 3 here> 

 

Plasma treatment can add a large variety of oxygen containing groups to the membrane surface, 

which can facilitate the interaction and bonding to the surface of a variety of chemical groups to 

create membrane surfaces with specialised properties [11]. Bae et al [12] used ATR-FTIR to study the 

effects of Freon-116 plasma treatment on the surfaces of polypropylene (PP) membranes. In figure 3 

is shown the obtained ATR-FTIR spectra of the polypropylene membranes after being exposed to the 

Freon-116 plasma for different durations. The bands which can be seen at 1300 cm-1 were attributed 

to C-F bond stretching. The authors attributed the increasing intensity of this band with increased 

plasma exposure time to the increased number of C-F bonds on the membrane surface, replacing C-

C and C-H bonds. The new C-F bonds were explained as being formed from carbon radicals on the 

membrane surface, generated by the plasma, and carbon atoms in the Freon-116 molecules.  

Wavhal and Fisher [13] used transmission FTIR to study the grafting of polyacrylic acid (PAA) onto 

PES membranes using Argon plasma (see figure 4 for reproduced FTIR spectra). As the plasma will 

penetrate into the whole of the membrane, the authors used transmission mode FTIR to study the 

chemical changes to the bulk membrane material. They observed a new absorption band appearing 

at approximately 1725.5 cm-1 which was attributed to the presence of PAA on the membrane 

surface. As the grafting yield (mass of grafted material per unit area) was increased, this absorption 

band increased in intensity and became resolved into two peaks. This was attributed by the authors 

to intra- and inter-chain interactions between carboxylic groups. 

<Insert figure 4 here> 
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Modification of polymer membrane surfaces using ultraviolet (UV) treatment can also be monitored 

using FTIR. For instance, Garcia-Ivars et al [14] used UV radiation for the surface photo-modification 

of PES membranes. This gave rise to a new absorption peak at 1645 cm-1, which was ascribed to 

carboxyl groups. 

<Insert figure 5 here> 

Covalent attachment of macromolecular chains to the functional end groups of polymers by surface 

grafting is another common technique to change the surface properties of membranes. Commonly 

three approaches are used, which are: photo-induced grafting, radiation induced grafting and 

surface initiated atom transfer radical polymerization (ATRP) [15, 16]. Modification of PVDF 

membrane surfaces by grafting of poly(N-isopropylacrylamide) (PNIPAAm) was reported by Zhao and 

Chen [17]. ATR-FTIR absorption spectra are shown in figure 5. Comparison of the spectra before and 

after modification can show clearly the effect of the modification on the chemical groups which are 

present at the surface. After grafting of PNIPAAm two new absorption peaks are seen to arise at 

1540 and 1620 cm-1. These were attributed by the authors to N-H stretching of amide groups and 

secondary amide C=O stretching in the PNIPAAm. 

As well as attaching macromolecule chains, grafting of more complex macromolecules, such as 

enzymes, has also been reported. These proteins may be adsorbed onto the membrane surface by 

several mechanisms, including physical or chemical binding, incorporation on a polymer gel matrix or 

by electrochemical attachment [10]. The efficient chemical activity of enzymes, such as proteases 

and lysosyme, have been reported as being effective in the hydrolysis of structural components in 

biofilms formed by microbial action [18-21]. Hanušová et al [22] showed that the formation of 

covalent bonds between both glucose oxidase and lysozyme with a polyamide surface showed a shift 

in the position of bands characteristic of the structure of the enzymes. As a result, it has been 

suggested that alterations in the position of spectral peaks can be a sign of enzyme attachment to 

membrane surfaces [22, 23]. 
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Incorporating organic and inorganic nanoparticles into the structure of polymer membranes is a way 

of changing physicochemical properties of membranes to improve their performance [24-27]. 

Mohammed et al [28, 29] fabricated photocatalytic membranes for treatment of waste water 

containing TiO2 nanoparticles. By comparing the FTIR spectra of the modified and unmodified 

membranes it was observed that a slight shift in absorption peaks for O-H stretching decreased in 

intensity. The authors attributed this to the interaction between the O-H groups and the Ti-O bond 

of the nanoparticles. Similarly, other researchers used FTIR to study incorporation of Al2O3 

nanoparticles into photo-modified PES membranes [14]. This resulted in the creation of three new 

peaks in the FTIR spectra not present in the PES membrane, demonstrating successful incorporation. 

 

2.2 Raman Spectroscopy 

2.2.1 Introduction and Basic Principles 

Raman spectroscopy is a technique complementary to IR spectroscopy. Here a beam of 

monochromatic laser light, with frequency ranges varying from the visible to near UV, is passed 

through a sample. It is sensitive to molecular vibrations, rotations and other low frequency modes 

and can provide useful information on the crystalline structure of polymers and other 

macromolecules. Interaction between the laser light and molecular excitations result in an energy 

shift which provides information about the vibrational modes the light has interacted with. As a 

result, Raman can provide both qualitative and quantitative information on polymer functional 

groups and structure and also on their conformation and orientation [30, 31].  

Raman spectroscopy relies upon the Raman effect, which is the inelastic scattering of light due to an 

exchange of energy between photons in the light beam and the vibrational energy levels of the 

molecule it has collided with, leading to the scattered photon having a different energy level to the 

incident photon. Dependent upon the nature of the interaction, the scattered light may have a 

higher or lower energy than the incident light, although it is mainly the higher energy scattered light 

which is studied [32]. The Raman spectrometer consists of a light source, a monochromator, a 
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sample holder and a light detector. The scattered light becomes dispersed by frequency and is used 

to construct a Raman spectra. It is complementary to IR spectroscopy as it is sensitive to some 

modes which are not easily detected by IR and vice versa [33].  

There are a number of modes of Raman spectroscopy which have been developed to increase the 

sensitivity of the technique and enhance resolution. The two most prominent of these techniques 

are tip-enhanced Raman spectroscopy (TERS) and surface-enhanced Raman spectroscopy (SERS). 

TERS, first reported by Stöckle et al [34] works on the principle that when a sharp metal probe is 

scanned across the sample surface in conjunction with a beam of monochromatic light then the 

Raman signal is enhanced, with it being possible to obtain a Raman spectra with a high degree of 

spatial resolution in conjunction with surface topography [35]. SERS, on the other hand, improves 

the Raman signal by deposition of a sample onto a suitable SERS active substrate, which may be a 

rough metal surface, a nanostructured surface or colloidal particles, which leads to excitation of 

localised surface plasmons, enhancing the Raman signal [36]. 

Raman spectroscopy can also be combined with microscopy techniques, for instance for Raman 

confocal microscopy [37], combined confocal Raman and AFM [38] and combined depth 

profilometry with Raman spectroscopy [32]. Such techniques allow a much greater amount of 

information to be captured by combining imaging with the capabilities of Raman spectroscopy. It 

also allows the collection of Raman spectra from specific sites on samples to gain structural 

information at fine resolution. The combined techniques are useful for investigation of the surface 

structure of membranes and study of the fouling of surfaces. 

2.2.2 Characterisation of Polymer Membranes and Membrane Formation 

Orientation in polymer membranes can typically result from the production techniques, including 

using a casting knife for flat sheet membranes or by spinning in the case of hollow fibre membranes. 

This orientation of the polymer membranes, as well as any crystallinity and other structural 

elements, can be investigated using Raman techniques [33]. As the macroscale characteristics and 

performance of a material can be related to the internal structure, then obtaining an understanding 
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of the internal structure and how production conditions affect it can give insight into transport 

mechanisms during operation and the mechanisms which cause particular structures to form during 

fabrication. In particular study of the active layer of the membrane (typically the upper few microns) 

is of interest as this section determines membrane selectivity and fouling. Raman spectroscopy 

allows the direct study of polymer chain orientation and polymer crystallinity, allowing such factors 

to be studied during membrane fabrication itself [39]. 

Menut et al [40] used Raman confocal spectroscopy (RCS), in conjunction with FTIR and other 

techniques, to study formation of a liquid layer on the top surface of membranes made using 

vapour-induced phase separation technique (VIPS), working with a blend of poly (ether-imide) (PEI) 

and N- methyl pyrrolidone (NMP). RCS was used to determine the film thickness during membrane 

formation in dry and humic air, as well as the mass ratio of the NMP/PEI at the air-liquid interface. 

This allowed changes in the polymer composition of the active layer during the membrane formation 

process to be directly monitored, allowing some insight into the mechanisms of active layer 

formation to be obtained.  

The high spatial resolution of Raman spectroscopy allows point-by-point mapping of the cross 

sections of membranes made using a blend of PVDF with polyvinylpyrrolidone (PVP) as an additive 

[39]. The PVP concentration profile across the cross sections were determined by assigning peaks at 

different sections of the Raman spectrum to PVDF and PVP. A linear dependence between the peak 

intensity ration and PVP concentration was found allowing the construction of a calibration curve. 

This calibration curve was then used to determine the mass fraction of the PVP at specific points 

through the cross section. 

Cross sectional analysis combined with Raman microscopy was used to perform an analysis of the 

degradation of polypropylene (PP) hollow fibre membranes used in microfiltration applications [41]. 

The samples examined had become degraded after several days use as a pre-treatment stage in a 

military water purification system. Raman spectra on cross sections of the membranes showed the 

appearance of a new peak at ~170 cm-1 in degraded samples, when compared with a pristine 
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membrane. This peak was assigned to carbonyl –C=O aldehyde stretching groups. Another new peak 

at ~3450 cm-1 was also seen for only some membranes, which was assigned to –OH bonds. This 

confirmed observations made with other techniques suggesting that the membranes had become 

oxidised. These peaks were only seen at scans at the upper and lower parts of the cross sections, 

suggesting this was largely a surface oxidation. 

 

2.2.3 Study of Fouling using Raman Spectroscopy 

Several studies have been made utilising SERS when studying the phenomenon of membrane 

fouling. For instance, Lamsal et al [42] studied pristine, organically fouled, and cleaned membranes, 

which showed different SERS spectra. This showed that it is possible to differentiate the different 

functional groups present in organic membrane fouling (see figure 6). The three membrane samples 

showed markedly different SERS spectra, compared with conventional Raman which was unable to 

differentiate the three samples, presumably as it was largely probing the bulk membrane material 

rather than surface chemistry.  

SERS was also used to study the formation of a biofilm on a cellulose ester membrane surface [43], 

using two model bacterial species (Brevundimonas diminuta and Staphylococcus aureus). This 

allowed characterisation of the changes in dominant species over time – S. aureaus was dominant in 

the first 8 hours of biofilm formation, but was later largely replaced by B. diminuta. Furthermore 

Patel et al [44] demonstrated it is possible to combine SERS with multivariate statistical analysis to 

distinguish bacterial species, and even strains.  

<insert figure 6 here> 

2.3 Nuclear Magnetic Resonance Spectroscopy (NMR) 

2.3.1 Introduction and Basic Principles of NMR spectroscopy 

The technique of NMR first emerged from the work of Bloch et al [45] and Purcell et al [46] reported 

in 1946, whilst working independently of each other. Some isotopes when exposed to an external 

magnetic field see a split in the energy levels of their nucleons, according to the spin states available, 
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with the lowest energy state (spin-aligned) being the most populous. When these nuclei are further 

exposed to radio waves of specific frequencies they may become flipped from a low energy state to 

a high-energy state, by absorbing energy [47].  Each type of nucleus has a characteristic spin. For 

instance, 1H, 15N, 19F, 31P have a spin of ½, whereas 12C, 16O and 28C have no net spin and thus can’t be 

probed using NMR [48]. The energy absorbed is dependent upon the spin properties of the atoms 

and the applied external magnetic field. The data recorded by an NMR instrument is the chemical 

shift, which is the difference between the resonant frequency of the atoms being probed and that of 

a standard. Chemical shift is reported in units of parts per million or ppm [49]. 

As the chemical shift is not just dependent upon the nuclei, but upon their environment, such as 

proximity to other nuclei, this technique allows the probing of structural relationships, either 

statically or over a wide range of timescales [50]. Most commonly 1H and 13C spectra are used. 

 

2.3.2 Membrane Structure and Morphology Prediction by NMR 

 

<insert figure 7 here> 

One of the potential applications of NMR spectroscopy of interest in membrane fabrication and 

development is the investigation of polymer blend miscibility. Rana et al [51] produced membranes, 

which were produced from blending cellulose acetate (CA) and poly(2,6-dimethyl-1,4-phenylene 

oxide) (PPO), and incorporated 2,2,6,6-tera-methyl-1-piperidinyloxy (TEMPO) as a spin probe. Using 

solid state 13C NMR they concluded from their results that the TEMPO had no chemical or physical 

interaction with the CA. PSF membranes containing functionalised carbon nanotubes were 

investigated by Nechifor et al [52] using 1H NMR spectroscopy (see figure 7 for an example NMR 

spectrum). Their results demonstrated a number of spectral shifts, including ones at 2.975 and 2.977 

from NH protons attributed to the amine functionalised carbon nanotubes. It was concluded that 

the CNTs were miscible with the PSF matrix of the membrane. 
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2.4 Electron Spin Resonance / Electron Paramagnetic Resonance Spectroscopy 

2.4.1 Introduction and Basic Principles of Electron Spin Resonance Spectroscopy 

Electron spin resonance (ESR) spectroscopy, also known as electron paramagnetic resonance (EPR) 

and electron magnetic resonance (EMN) spectroscopy, is a technique for probing atoms and 

molecules containing stable unpaired electrons. It is roughly analogous to NMR spectroscopy, but 

whereas NMR probes the magnetic moments of nuclei ESR probes the magnetic resonance of 

electrons in paramagnetic materials. 

When an external magnetic field is applied to a material, the magnetic moments of any atoms 

containing unpaired electrons is aligned either parallel or antiparallel to the magnetic field, 

depending on the spin states of the electrons. Although the requirements for having unpaired 

electrons may seem limiting, there are a large number of molecules which satisfy this criteria, 

including transition metals, organic and inorganic free radicals, molecules in electronic triplet states, 

semi-conductor impurities, electrons in unfilled conduction bands and electrons in materials 

damaged by radiation [53]. For samples which are not paramagnetic, a ‘spin label’ or ‘spin probe’ 

can used, which typical consists of adding a free radical o some sort to the material, typically a 

nitroxide radical.  

Electrons have two kinds of magnetic moment: orbital magnetic moment from motion around the 

atomic nucleus and spin magnetic moment, from the electrons rotation about its own axis. Under no 

applied external magnetic field these two spin states have equal energy. When a magnetic field is 

applied, the electrons will be induced to spin in the same (up) or opposite (down) direction to the 

applied field, each with different energies. When electromagnetic radiation is applied to these atoms 

then a change in the spin state may be induced. This change is dependent upon both the wavelength 
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of the radiation and the strength of the magnetic field and also the interactions between the 

electrons and their local environment. As a result an absorption spectra can be obtained for a 

particular material which will provide information on structural and dynamic information about 

chemical and structural properties of a material [33].  

 

2.4.2 Study of Polymer Membranes using ESR Spectroscopy 

Khulbe et al [54] reported studies of polymer membranes made using polyphenylene oxide (PPO). 

PPO powder was determined to contain free radicals, which are included in membranes fabricated 

from the powder form. Due to a low signal from these radicals they undertook to make further 

measurements by including TEMPO as a spin label [55]. Membranes were studied containing PPO, 

TEMPO and a trichloroethylene solvent, with measurements being taken as the solvent evaporated 

at different temperatures. Signal intensity decreased with evaporation temperature, with intensity 

reaching zero for the lowest temperature measured. The authors suggested that this behaviour 

could be due to a crystalline state or other molecular ordering occurring in the membrane at the low 

temperature. Khulbe et al also used the TEMPO probe to study the structure of the active layer of CA 

membranes designed for RO applications [56]. They found from their measurements that the pore 

sizes increased at low temperatures; that void spaces within the membrane were reduced in the 

absence of swelling agents in the casting solution; and that the void space was also reduced when 

the membrane was dried. 

The used of spin probes can also be used to study membrane transport mechanisms by including the 

probe in feed-water solution, or immersing the membranes in a solution containing the spin probe 

[57, 58], rather than by including it in the casting mixture. 

 

2.4.3 Study of Membrane Fouling using ESR Spectroscopy 

Oppenheim and colleagues studied fouling of PSF ultrafiltration membranes using spin labelled 

bovine serum albumin (BSA) and hen egg lysozyme (HEL) [59]. When filtering a solution containing 
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the larger BSA protein (65k Da) through a 100,000 molecular weight cut-off (MWCO) PSF membrane 

the majority of the protein uptake occurred in the initial 10 minutes, apparently independent of 

solution properties (pH, salt concentration). It was concluded that the initial solute build up was 

likely a result of pore blocking, rather than surface adsorption. Further measurements were carried 

out using HEL solutions (15k Da) with tighter 10,000 and 30,000 MWCO membranes. Spectra for the 

two membranes were reported to be significantly different. It was concluded that for the 10,000 

MWCO membrane only surface adsorption was occurring as HEL is rejected by this membrane, but 

for the 30,000 MWCO membrane a mixture of surface adsorption, pore plugging and pore 

adsorption was occurring. However, the mechanism by which this will lead to such different spectra 

is unclear. 

Kulbe et al [33] also used BSA as a model foulant in studies of protein fouling of ultrafiltration 

membranes made of PES containing PVP additive, both with and without a TEMPO spin probe. The 

authors concluded that BSA was deposited in the membrane surface and within pores in specific 

orientations, that the packing density of BSA in pores depends on both the pore size and the feed 

pressure, and that the fouling depends on the structure of the solute. 

 

2.4.4 Study of Membrane Degradation using ESR 

Oliveira et al used ESR to study the degradation and structural alteration of polyamide (PA) 

nanofiltration membranes by hypochlorite [60]. Hypochlorite solutions are regularly used for 

removal of membrane fouling and have been previously implicated in damage to membrane 

surfaces [61, 62]. Several factors were examined which may affect degradation, including 

hypochlorite concentration, pH, light intensity and irradiation [60]. As would be expected the 

concentration of cleaning agent had a direct effect on the number of free radicals active at the 

membrane surface, as did the solution pH. The particular radical species which were present could 

not be identified, however, due to a lack of ‘hyperfine’ detail in the ESR spectra. 
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2.5 X-Ray Photon Spectroscopy 

2.5.1 Introduction and Basic Principles 

X-ray photon spectroscopy (XPS) is a quantitative surface analytical technique which provides 

information on the elemental composition information. XPS works on the principle that when a 

surface is bombarded with electromagnetic energy of sufficient energy then a finite number of the 

surface atoms will absorb a photon and emit an electron, a phenomenon called photo-emission. 

Electrons will have a kinetic energy which is equal to the difference between the energy required to 

remove the electron from its orbital (binding energy) and the energy of the absorbed photon [63]. It 

is these ejected electrons and their kinetic energy which is detected by this technique. Data is 

typically plotted as binding energy on the x-axis versus the intensity on the y-axis, with the binding 

energy within the range of 0 to 1200 eV. The binding energy for each peak is typically characteristic 

for a particular element, although the chemical state of the emitting atom may have an effect on the 

binding energy and shape of the peak, giving some information on chemical bonding state. For 

atoms within the bulk material which may become excited, the kinetic energy of any emitted 

electrons is attenuated by collisions with other atoms to the point that they either do not escape the 

surface or have too low an energy to be detected. 

Peaks may appear different depending upon the orbitals from which the ejected electrons originate: 

s orbitals present single peaks and are relatively straightforward to interpret. However electrons 

from p, d and f orbitals may present multiple peaks. This multiplet splitting occurs when a vacancy in 

a core orbital due to photoionization leads to coupling with an unpaired electron in the outer shell. A 

variety of final states may occur and be seen in the resultant spectrum [64]. 

 

2.5.2 Investigation of Polymer Membranes with XPS 

The XPS technique was utilized by Ariza and co-workers [65] to compare a laboratory fabricated 

membrane (B0) with a commercially produced nanofiltration membrane (NF45). Both membranes 

were polyamide / polysulfone composites, with the active layer consisting of polyamide (≤ 1 μm), 
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with the polysulfone as a porous support. As a result, the XPS technique probed the polyamide layer 

alone for both membranes, with the main elements characterised being C, N and O (see figure 8). 

The NF45 membrane exhibited a low proportion of contaminants, seen from a small proportion of S 

(atomic concentration < 0.5%) and a slightly higher O reading than expected. The B0 membrane 

showed some S and P elements (<0.5 %) and Cl (<1 %) as well as lower O and greater N than would 

be expected from the theoretical value for polyamide. The authors interpreted this as showing that 

the B0 membrane had contamination from solvents and washing agents which had not been 

excluded from the membrane during fabrication. The authors also used XPS to study the 

composition at different depths into the polyamide layer by adjusting the angle of the X-ray beam. 

The profile of NF45 was very homogenous, except for a slight difference at depths of < 3nm, where 

aliphatic O and C rich groups were observed, indicating surface contamination. B0 was also very 

homogenous, again except for surface contamination. 

<insert figure 8 here> 

The incorporation of aluminosilicate single wall nanotubes (SWNT) into thin film nano-composite 

(TFN) membranes with poly (vinyl alcohol) (PVA)matrices was studied by Barona et al using XPS as 

one of a battery of characterisation techniques [66]. The intensities of C(1)s (284 eV) and O(1)s (532 

eV) peaks were used to determine the relative elemental composition of the upper 10 nm of the TFN 

membrane, along with Al and Si. Increasing concentrations of Al and Si were seen at increasing 

concentrations of SWNTs, demonstrating their incorporation into the surface PVA layer. 

Wei et al [67] used XPS to characterise a plasma treatment using CF4 of PES membrane surfaces. 

Scans revealed that the content of fluorine on the membrane surface increased from 0 % before 

plasma treatment to 50.8 %, becoming the dominant elemental component. This demonstrated a 

strong fluorination effect, making the surface layer more hydrophobic. 

 

2.6 Small Angle Neutron Scattering / Small Angle X-Ray Scattering (SANS / 

SAXS) 
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2.6.1 Introduction and Basic Principles of SANS /SAXS 

Small angle scattering spectroscopic techniques using neutron (SANS) and X-rays (SAXS) are 

used for the characterisation of membrane structures at length scales typically in the 

nanometre range. SAXS is sensitive to electron density, whereas SANS involves neutron 

interaction with nuclei. When using hydrogen containing polymers in a solvent containing 

deuterium instead of hydrogen a higher degree of sensitivity can be obtained due to the 

different neutron scattering lengths between hydrogen and deuterium. This makes SANS 

better suited than SAXS for examination of polymer compounds with low electron density 

[68]. 

The intensity of SAXS and SANS can be written in simplified form as a function of a 

scattering vector, Q which is dependent upon the wavelength and scattering angle and the 

forward scattering intensity I(Q) [69]. 

 

2.6.2 Structural Investigations of Polymer Membranes using SANS / SAXS 

Singh and Aswal [68] used SANS to probe the nanoscale structures of thin film composite 

(TFC) RO and NF membranes consisting of a polysulfone support layer covered with a 

polyamide selective layer (≤ 0.2 μm thickness). The researchers examined both membranes 

and thin films of the polyamides which were put into water and broken up to form a 

colloidal dispersion. The SANS study of these membranes allowed measurement of the sizes 

of the nanoscale building blocks of the polyamide layers as having a sphere median radius of 

118 Å for the RO membrane and 106 Å for the NF membrane.   

Singh et al [70] used SANS to compare two different membranes fabricated from poly 

dimethyl siloxane (PDMS), intended for treatment of water contaminated with volatile 

organic compounds. For both membranes cross-linking in the liquid state caused an increase 
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in the volumes occupied by the macromolecules, which then reduced during solvent 

evaporation.  

 

 

 

3.0: Microscopy Techniques 

3.1 Atomic Force Microscopy (AFM) 

3.1.1 Introduction and Basic Principles 

Atomic force microscopy is one member of a family of microscopic techniques collectively referred 

to as scanning probe microscopy (SPM). It uses a sharp probe, mounted on a flexible microcantilever 

arm, which physically interacts with the sample surface to obtain high resolution images of surface 

topography. It can also be used to probe interaction forces between the probe and the surface, 

leading to measurement of nano-mechanical surface properties, adhesion forces and long range 

interaction forces. It does not require vacuum, allowing measurements to take place in air and liquid 

environments and does not require conductive samples or surfaces to be metal coated.  

In essence, the sharp imaging tip is scanned across the sample surface in three dimensions by use of 

piezo crystals which are ether associated with the sample holder or probe holder, depending upon 

the particular instrument. The configuration of the piezo also varies, with some instruments using a 

tube shaped piezo crystal, which flexes to produce x, y movement or extends / retracts to produce 

movement on the z axis. Alternatively, separate piezos may be employed for each axis of movement. 

Deflection of the cantilever is detected by an optical lever system, where a beam of laser light is 

reflected from the upper side of the cantilever onto a position sensitive photodetector. 

There are now a large number of imaging modes available for specific application, many of which are 

proprietary and instrument manufacturer specific, but there are three basic modes most commonly 
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used: contact mode, tapping mode and non-contact mode, with the latter two sometimes referred 

to as dynamic modes. The primary data obtained are high resolution three-dimensional scans of the 

surface topography (the height image). From this quantitative information may be obtained 

including changes to morphology due to fouling or chemical modification and in some cases the 

diameter of pore openings and porosity [71-78]. 

Contact mode is the simplest operating mode. Here the probe maintains constant contact with the 

sample surface. As the probe is raster-scanned across the surface and encounters features of 

different heights the flexure of the cantilever will change. A feed-back loop is employed to keep the 

deflection of the lever, and hence tip-sample interaction force, at a constant set-point by extending 

or retracing the piezo. As the tip is raster scanned across the surface, the change in z-position 

needed to maintain constant deflection allows an image of surface height to be built up to high 

precision. A map of frictional forces may also be built up by monitoring the lateral deflection of the 

lever simultaneously with acquisition of height data [79-81]. 

Tapping mode, also sometimes referred to as intermittent contact or amplitude modulation mode, is 

likely the most commonly used AFM mode. It was developed to overcome some limitations of 

contact mode, which include high imaging forces (normal to the surface) and lateral forces when 

encountering edges etc., which can decrease resolution when imaging soft or rough samples [82-84]. 

Here the cantilever is driven to oscillate at a frequency close to resonance, allowing the imaging tip 

to briefly engage with the sample before disengaging. As the height of the sample varies the tip is 

engaged with the sample for a greater portion of its cycle, leading to a decreased oscillation 

amplitude. By moving the probe in the z-direction the oscillating amplitude may be maintained at a 

constant set-point, as well as recording height information in a similar manner to contact mode. In 

addition to changing the amplitude, interaction with the surface changes the oscillating frequency. 

The phase change between the drive and oscillating frequencies, the phase signal, is dependent 

upon various properties of the tip sample interaction, including interaction force, mechanical 

compliance of the surface, adhesion forces etc. This makes it extremely useful for highlighting 
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different surface domains, surface pores and other features which may not be clearly seen in the 

height image, although due to the large number of factors affecting the phase signal it is difficult to 

obtain quantitative information [85, 86]. 

A variation on tapping mode, which is useful for obtaining quantitative nano-mechanical information 

simultaneously with sample topography, is peak force mode [87, 88]. Here the oscillating frequency 

is much lower than the resonance frequency, allowing individual probe-sample interaction events to 

be measured as force curves. From features on the force curves, properties such as adhesion and 

sample deformation can be directly measured and further fed into models to estimate elastic 

modulus. 

Non-contact mode is another dynamic mode frequently seen in the literature. The cantilever is 

oscillated at much smaller amplitudes than is used for tapping mode. Instead of amplitude, 

frequency is used as the feed-back signal. As the frequency shifts due to long range interaction 

forces, the probe may be kept in close proximity with the surface without actually making hard 

contact. By adjusting height to maintain a set-point frequency the surface topography can be 

revealed [89]. By minimising the interaction forces, and hence area, between the probe and sample 

very high resolution images may be obtained even of soft sample, although the technique is more 

difficult to achieve than for other modes [90]. 

As well as imaging, by keeping the probe static in the x and y directions and scanning purely along 

the z-axis, interaction forces may be examined using this technique. For researchers interested in 

studying membranes, this feature of the AFM can be used to study foulant membrane interactions 

under a variety of operating conditions. This mode of operation has been reported in the literature 

for the study of adhesion forces [91-96], long range interaction forces [97-101], surface mechanical 

properties [91, 102-106] and the bond strengths of biomolecular interactions [107-109]. Raw force 

interaction profiles are obtained as deflection signal (in V or nA) versus piezo position. With 

calibration for the cantilever spring constant and the optical lever sensitivity, these raw values can 
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be converted to allow plots of interaction force versus probe sample separation. This process is 

covered in more detail elsewhere [110-112].  

<insert figure 9 here> 

An example force distance curve is shown in figure 9. The red trace shows the approach of the tip to 

the surface, and blue is the retract trace. Here repulsive forces are set as positive. At large 

separation distances net interaction forces are zero. As the tip approaches the surface long range 

interaction forces cause the cantilever to become deflected. As the tip contacts the surface a linear 

repulsive interaction causes the cantilever to be deflected upwards. On retraction this is reversed, 

with adhesive forces casing a hysteresis in the force profile prior to the tip becoming detached. The 

cantilever then returns to its free level.  

To obtain information about interaction forces between materials of interest the sharp imaging tip 

can be chemically functionalised or replaced with a particle of the material of interest, or replaced 

with a microsphere functionalised with the material of interest. These latter two are commonly 

referred to as ‘colloid probes’ and are of interest for studying interactions between foulants and 

membrane surfaces. The use of colloid probes was first reported by Ducker et al [113] who used a 

silica microsphere to probe the effect of solution pH and ionic strength on interactions between 

silica and polystyrene surfaces. Measurement of long range interactions can give an estimate of the 

ability of a surface to reject attachment depending upon environmental conditions, whilst 

measurement of the adhesion force can demonstrate the strength of attachment of deposited 

foulants. Adhesion forces between a silica sphere and PES membranes were used to gauge the effect 

of 2-dimethyl-aminoethylmethacrylate (qDMAEMA) modification on fouling of membranes by 

silicates  [114]. 

 

3.1.2 Membrane Surface Characterisation 

If the surface pore diameters of a membrane are sufficiently large to visualise using AFM equipment 

then it is possible to obtain the mean pore-size and pore-size distribution. If a sufficient number of 
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pores have been measured then the following probability density function may be used to describe 

the pore size distribution [115, 116]: 

𝑑𝑓(𝑑𝑝)

𝑑(𝑑𝑝)
=  

1

𝑑𝑝 ln 𝜎𝑝 √2𝜋
   𝑒𝑥𝑝 [−

(ln 𝑑𝑝 − 𝑙𝑛 𝜇𝑝)
2

2 (ln 𝜎𝑝)
2 ]             (3) 

where dp is pore size, μp is mean pore size and σp is the geometric standard deviation of the 

pore sizes. A log normal plot allows calculation of dp and μp.  Using a plot of the cumulative 

distribution, μp is the pore size found at 50 % of the cumulative total and σp is the ratio of pore sizes 

at 50 % and 84.13 % of the cumulative distribution [117].  

In general it has been found that the pore sizes measured using this method show some divergence 

from those obtained from membrane transport methods or porosimetry [117, 118]. This is in large 

part due to AFM being a surface technique, and as such it only measures the pore opening size, 

whereas other techniques may give the critical pore size, which is the minimum pore size within the 

membrane material. In addition, pore size results reported potentially include sizes of openings in 

the surface which may not be propagated through the membrane, as well as image convolution 

effects which can become pronounced when features on a size-scale equivalent to the size of 

surface asperities are being examined. This latter issue has been addressed by using specialised 

probes with carbon nanotubes mounted to give a very sharp and high aspect ratio tip [119], which 

gives better resolution to nanofiltration pores. 

Through the observation of changes to surface morphology and related quantitative parameters, 

such as roughness, AFM imaging is of utility for providing characterization information during the 

development and modification of membrane surfaces. For instance, Shirazi et al [88] used AFM to 

monitor effects of varying fabricate conditions of polystyrene hollow fibre membranes produced by 

electrospinning followed by contact heating.  Vacuum oven heating decreased surface roughness 

and a more homogenous pore geometry. Skewness values became more positive with heat 

treatment, which could be related to the smaller pore size and thicker fibres seen in AFM and SEM 

images. Skewness is a roughness statistic which describes the shape of the height distribution of the 
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surface, with negative values representing a distribution with a tail for values lower than the mean, 

positive with a tail for values greater. 

<insert figure 10 here> 

AFM was utilized by Matin et al [120] to monitor morphological changes to the surfaces of 

commercial PA membranes after modification to reduce fouling. Changes to the roughness were 

negligible, which was attributed to a smooth, even film on the surface deposited by the chemical 

vapour deposition method. It is worth noting that all of the surface roughness parameters are just 

statistical descriptors of the height distribution of pixels in an image, which means it is possible to 

have radically different surface topographies and have identical values for a particular parameter. As 

a result, researchers should be careful not to rely on a single roughness parameter in isolation to 

describe surface changes. PVDF membranes were modified using high molecular weight poly-

ethylene glycol (PEG) by Chang et al [72] who observed an increase in roughness as the degree of 

modification was increased when PEG overlayers were complete. As the overlayers became 

completed the roughness then began to decline with increasing degree of modification. 

The effect of mode and environment on imaging of PES membranes of differing hydrophobicity were 

investigated by Johnson et al [71]. When using tapping mode in water for a moderately hydrophobic 

membrane, with a water contact angle of 72°, globular surface features were observed (figure 10). 

These features did not appear in images obtained from tapping mode in air, or contact mode in air 

or water for this membrane and were not observed at all on a hydrophilic membrane. Cross-sections 

of these features could all be fitted by the equation of a circle, demonstrating that they were 

spherical caps. It was suggested that these features may be small pockets of air adhering to the 

hydrophobic surface, or ‘nanobubbles’, previously observed on other hydrophobic surfaces [121-

124]. 

<insert figure 11 here> 

Kochkodan et al [125] used the layer by layer technique for modification of commercial PA 

nanofiltration membranes. Representative AFM scans are shown in figure 11, showing unmodified 
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NF-90 membrane and membranes modified with successive layers of poly-[(4-styrenesulfonic acid) 

co-(maleic acid)]. It was observed that the surface roughness reduced as the number of layers 

increased, likely due to filling in of valleys by deposited electrolyte layers. Kaner et al [126] also used 

a layer by layer approach to modify PES membranes with AgCl xerogels incorporated into chitosan in 

an attempt to produce low biofouling membranes. Membranes modified with single layers of 

chitosan alone had lower roughness than surfaces modified with chitosan layers incorporating the 

xerogels. 

 

 

 

3.1.3 Investigation of Membrane Scaling 

Scaling of membranes by inorganics is a major issue in membrane treatment of saline or brackish 

water, leading to extensive investigation of the process. Force distance measurements using a silica 

particle probe were used by Mi and Elimelech to investigate scaling of cellulose triacetate (CT) and 

PA forward osmosis membranes in the presence of dissolved silica [127]. In the absence of dissolved 

silica adhesion forces were greater for CT than PA, due to the CT membrane having a greater density 

of hydroxyl groups available for hydrogen bonds. When measurements were repeated in 4.2 mM 

dissolved silica, adhesion forces for both membranes increased markedly, with detachment events 

occurring away from the membrane surface. This was due to the formation for a silica gel between 

the probe and membrane surface. 

The effect of dry-out on scaling of PVDF and PTFE membranes using simulated membrane distillation 

conditions were investigated by Guillen-Burrieza et al [128]. It was found that pristine PTFE 

membranes had much rougher surfaces than scaled membranes, whereas for PVDF membranes the 

opposite effect was observed. The radically different morphology of the two membranes was used 

to explain this. The rougher and more open structure of the PTFE membrane was filled in by 

deposited salt crystals leading to a reduction of roughness. However, salt crystals were seen to be 
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deposited on the surface of the PVDF membrane, leading to increased surface roughness. Forces 

measured between a CaCO3 colloid probe and the membranes showed a greater adhesion force for 

the PVDF membrane than for PTFE. This was ascribed to the increased roughness of the PTFE 

membrane decreasing the area of interaction. Wetting behaviour was ruled out as an alternative 

explanation due to the two membranes having similar water contact angles, but contributions of 

chemical interactions couldn’t be entirely excepted. Adhesion forces showed a good correlation with 

the degree of fouling during membrane distillation tests. This is likely to be due to a greater 

adhesion force demonstrating a more stable attachment of salt micro-crystals to the membrane 

surface and acting as nucleation sites for initiation of crystal growth. 

 

3.1.4 Investigation of Organic and Biofouling of Membranes 

Fouling of membranes by organic material is complex due to the wide variety of chemicals involved, 

which can include the breakdown products of plants, such as humic and fulvic substances, and also 

macromolecules such as proteins, fatty acids and polysaccharides produced by microorganisms 

(extra-cellular polymeric substances, EPS) and from waste discharge into the sea or freshwater. EPS 

is usually found alongside living microbial cells, so as such organic and biofouling often may occur 

simultaneously, with EPS performing an import role for bacterial attachment to surface [73, 129]. 

Johnson et al [130] studied organic fouling of nanofiltration membranes (both commercial and 

modified with polymeric bicontinuous emulsion [131]) using polystyrene microspheres which had 

been functionalised with humic acid (HA) in pure water and model textile dye wastewater (MTDW) 

[132] to assess potential fouling of these membranes in membrane bioreactor applications. 

Measurements taken in the two environments showed completely different performances in 

adhesion tests, due to surface modification of both probe and membranes by the MTDW, as shown 

by water contact angle and ATR-FTIR measurements [130]. In clean water more hydrophobic 

surfaces favoured larger adhesion forces, whereas after exposure to MTDW more hydrophilic 

surfaces favoured greater adhesion forces. It was confirmed that this was due to MTDW exposure 
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transforming the HA probe from hydrophobic in nature to hydrophilic. ATR-FTIR observations 

showed that the MTDW (a mixture of surfactants, textile dyes, salt and glucose) caused different 

chemical modifications to the membranes depending upon their fabrication conditions. 

EPS fouling of reverse osmosis surfaces was investigated by Tansel et al using AFM [133]. Initially a 

sub-layer was observed which consisted of discrete molecular units. After less than a day of cross 

flow filtration using an EPS solution an over-layer was formed, which was soft and easily removed by 

AFM scanning. The effect of EPS on membrane surface morphology was studied by Su et al [134] for 

several membranes. EPS extracted from activated sludge were found to increase roughness of all 

membranes, with the initially smoothest membrane being the most severely affected. Bowen et al 

[135] used BSA silica microspheres as probes to measure adhesion forces. Both membranes 

examined showed greater adhesion than when using bare silica microspheres, showing that 

modification of silica by dissolved polypeptides and proteins, found in EPS, is likely to increase the 

severity of silicate fouling. 

The first experiments to measure interaction forces using AFM between living cells and membranes 

were carried out by Bowen et al [136], who used both a Saccharomyces cerevisiae cell and a BSA 

coated microsphere as an analogue. Membrane biofouling is a complex process, but use of live cells 

to measure adhesion forces has a number of drawbacks, including use of a soft cell making 

calibration of optical lever sensitivity uncertain, as well as the soft cells undergoing compression in a 

difficult to predict manner, which could potentially change during the life cycle of the cell. As such 

much biofouling work using AFM has used functionalised colloidal probes as a stand in for actual 

cells. For instance, Herzberg et al [137] used a used a carboxylated latex probe to simulate bacterial 

interactions with a reverse osmosis membrane coated with EPS and the effect of CaCO3 in the 

surrounding medium. For pristine membranes, only repulsive forces were measured, whether Ca2+ 

was present or not; fouled membranes showed an attractive jump-in at close approaches when Ca2+ 

was present, with the attraction ascribed to binding of Ca2+ to carboxylate groups on the surfaces of 

the probe and fouling layer. A carboxylated probe was also used by Bernstein et al [138] to 
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investigate adhesion forces with RO membranes modified by graft polymerisation. It was found that 

changing of the charge states of the membranes by adjusting the pH showed that interactions were 

dominated by electrostatic double layer forces. 

Zaky et al [139] investigated the fouling of CA membranes by both live and dead cells and used 

several roughness parameters calculated from AFM scans to assess the nature of the fouling at 

several stages. Root mean squared (RMS) roughness and skewedness for membranes used to filter 

active and inactive cells for 4 hours were similar to that of pristine membrane. RMS roughness 

stayed low after 11h for inactive cells, but increased after 24h of filtration, but the skewedness of 

the height distribution remained low. For active cells after 11h, RMS also remained low but the 

skewedness was higher, suggesting a greater amount of asperities on the surface. RMS did increase 

after 24h, but with the skewedness returning to zero. The authors used the differences in the 

skewedness observed at 11h to suggest a difference in the structure of the fouling layer made by 

active and inactive cells. 

Quantitative data obtained from AFM imaging has been used by several researchers to guide 

computer models of membrane fouling. For example Demneth et al [116] used surface 

morphological information obtained from AFM scans to feed into and evaluate thermodynamic 

models of adsorption behaviour for membranes fouled with proteins, polysaccharides and HA. 

Several roughness parameters obtained from AFM scans were used by Chen et al [140] to develop 

mathematical models of several membrane surfaces by soluble microbial products and compared 

with filtration test data. Wetting behaviour and surface charge alone were not able to predict fouling 

behaviour, and interaction energies differed from that predicted for surfaces with low roughness. It 

was found that short range effect on colloidal interactions due to surface roughness lead to a 

decreased energy barrier to attachment. 

 

3.2 Scanning Electron Microscopy (SEM) 

3.2.1 Introduction and Basic Principles 
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Scanning electron microscopy operates by scanning a focussed beam of electrons onto the sample 

surface. Secondary electrons emitted by the sample, backscattered electrons and X-rays are 

captured by the appropriate detector and then used to build up an image of the sample surface or 

other information. 

Interactions between beam electrons and the samples can be elastic or inelastic. If the interaction is 

inelastic then secondary electrons (SE) are emitted with different energy from the incident electrons. 

Conversely if the interaction is elastic then the electrons are deflected and scattering takes place: 

any electrons which are deflected at an angle greater than 90° are termed back-scattered electrons 

(BSE) and can be collected by a specialised detector. 

For standard SEM, electrons are generated by thermionic emission from a tungsten filament, or a 

solid-state crystal, such as lanthanum hexaboride (LaB6). Tungsten is the most commonly used, due 

to low cost and high reliability, whereas solid state crystal emitters produce a higher output for a 

given current and longer lifetime [141]. For field emission SEMs (FESEM) a different type of electron 

source is used, a field emission gun (FEG) which works on field emission due to a potential gradient. 

The FEG is usually made of a tungsten filament with a sharp tip (~0.5 nm): this combined with low 

acceleration voltages allows better resolving power at high magnifications than standard SEM. In 

addition, the lower acceleration voltages reduces the charging of non-conducting samples, reducing 

the need for metal coating to some extent. The FESEM is divided into three types, depending upon 

the type of FEG used: cold field emission (CFE), thermal field emission (TFE) and Schottky emission 

[142]. CFE has emitters have a high brightness, but are prone to contamination due to gasses 

emitted from the sample, which need to be removed periodically by heating the tip to a high 

temperature periodically, a process referred to as flashing [143]. TFE occurs at a much higher 

temperature than CFE, reducing the problem of contamination, leading to a more stable electron 

source. 

SE tend to be relatively low in energy, (< 50 eV), meaning that they can only escape the upper 

several nanometres from the sample surface. As a result, the SE signal is capable of giving an 
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accurate depiction of the sample surface topography. Image contrast is obtained by features on the 

sample surface obscuring some emitted SE. BSE tend to have higher energy than SE, and are 

deflected differently depending upon the atomic number of the elements in the sample surface, 

with higher atomic number elements deflecting a greater proportion of incident electrons back 

towards the detector. As a result, the BSE image will contain contrast based upon the elemental 

composition of the sample. 

Interaction of incident electrons with the sample surface can cause the emission of X-ray photons. 

Detection of this X-ray signal can give important information about the elemental composition of the 

surface, using a technique called energy dispersive X-ray (EDX) spectroscopy, in addition to surface 

imaging using SE and BSE. EDX spectroscopy can detect elements with higher atomic number than 

boron (5). When primary electrons from the electron beam displace electrons from a lower atomic 

orbital, an electron from a higher orbital will replace it, losing energy in the process which is emitted 

as an X-ray photon. As each element has a characteristic X-ray spectrum, the detected spectra allows 

elemental analysis of the sample surface [142].  

 

3.2.2 Investigation of Membrane Surfaces using SEM 

SEM has been extensively used by membrane technologists due to the high quality and high 

resolution images which can be obtained of the membrane surface and cross-sections, and for 

having fast image acquisition times compared with AFM and relatively easy sample preparation as 

compared with TEM. 

For example, Galiano et al [131] used a FESEM in characterising novel membranes prepared by 

adding a polymerizable bi-continuous microemulsion (PBM) overlayer onto a commercial PES 

ultrafiltration membrane scaffold. Surface scans and scans of cross-sections through the membrane 

were made, in SE detection mode, as shown in figure 12, which shows the typical structure seen for 

bicontinuous systems. The PBM structure is made up of polymer channels (white strips) and water 

channels (dark strips) randomly distributed across the membrane surface, with water channels 



 

33 
 

having widths of 30-50 nm. Whilst surface scans are useful for gaining knowledge of the surface 

topography, scans of cross sections are useful for gaining insight into the internal structure of the 

membrane. In this case, it was seen from cross-sections that the PBM coating was clearly visible and 

less than 1 μm thick. The channels were essentially elongated pores. Bromley et al [144] showed 

that pore geometry is influential on fouling resistance to pore blocking, with critical flux being higher 

for slotted pores over circular pores, due to the geometry allowing fluid to flow around particles 

trapped in pore openings. This could in part explain the resistance to fouling which was observed for 

these PBM membranes [131]. SEM images showed a decrease in 30% of fouling layer deposited on 

the surface of the PBM membrane compared with the PES membrane after filtration tests using 

aqueous HA solutions as feed-water.  This result was in agreement with water permeability tests, 

which showed lower flux decline for the PBM membrane. 

<Insert figure 12 here> 

Wang et al [145] created nanocomposite membranes containing single walled and multi-walled 

carbon nanotubes (SWNT and MWNT respectively) in a PVDF matrix. SEM analysis demonstrated 

that CNTs formed granular aggregates, which formed a separate CNT layer on the top surface of the 

membrane. SWNT also were observed to form bundles. These CNT layers formed porous filtration 

layers, with pore sizes of >10 nm suggesting that size-exclusion mechanisms would be largely 

negligible or filtration of small molecules. 

As mentioned above, BSE imaging is able to show contrast between different materials. For instance, 

Buonomenna et al [146] utilised this feature when studying PVDF membranes containing 

Ti(IV)/trialkanolamine complexes to create catalytic membranes. As can be seen in the cross-section 

shown in figure 13 a) these Ti-containing complexes show a sharp contrast (dark) with the lighter 

shaded surrounding membrane material. It can be seen that the Ti(IV)/trialkanolamine complexes 

are uniformly distributed throughout the membrane structure. EDX spectra were analysed at 

different depths in the cross-sectional image (figure 13 b) and showed the same spectra, all with a 

clearly visible Ti peak, confirming this uniformity. EDX surface scans of this membrane also showed 



 

34 
 

that the Ti was uniformly dispersed across the membrane surface at high density, and that the Ti 

was dispersed as fine particles rather than having re-crystallised into large particles. 

<insert figure 13 here> 

 

3.3 Transmission Electron Microscopy (TEM) 

3.3.1 Introduction and Basic Principles of TEM 

Unlike SEM, where secondary electrons emitted from the surface or backscattered electrons 

deflected by more than 90° are detected, transmission electron microscopy (TEM) deals with 

electrons which transmit directly through a sample of interest. As a result, samples are required to 

be extremely thin (~100 nm), and are often milled to get them thin enough, but extremely high 

resolutions can be achieved under suitable conditions, with almost atomic resolution possible.  

A beam of high energy electrons is focussed by being passed through a series of electromagnetic 

lenses and metal apertures, it is then passed through the sample, which is mounted on a sample 

holder (TEM grid) from where they pass, after refocussing by further electromagnetic lenses, to a 

detector (usually a charge coupled device or CCD) [147]. The beam of electrons is affected by sample 

thickness, density and material composition. All measurements occur under vacuum. Sample 

preparation depends on the sample to be examined, and can include ion milling, focussed ion-beam 

(FIB), chemical etching, ultra-microtome, ball milling, mechanical polishing etc.  

Two different types of image are produced by TEM – dark field and bright field images, produced by 

diffracted and transmitted electrons respectively [148]. For bright field images the image is due to 

directly transmitted electrons, so image contrast is as a result to attenuation of the beam with 

varying sample density. With dark field mode only diffracted electrons are received by the detector, 

therefore this mode can give information on crystal structure of the sample. 

Image contrast in TEM is a result of the interactions between electrons in the incident beam with 

sample material. Electrons within the sample behave as a wave and interactions can cause both the 

amplitude and frequency of that wave to alter.  The interactions may be due to several mechanisms: 
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thickness-mass contrast, diffraction contrast or phase contrast. For thickness-mass contrast, this is 

due to variations in thickness and or density of the sample changing the number of interactions with 

electrons which will occur. Diffraction contrast is due to diffraction of electrons, following Bragg’s 

law. This can be affected by crystal structure and sample orientation. Phase contrast imaging allows 

high resolution images to be created by exploiting the phase contrast which arises from interference 

between transmitted and diffracted beams, if the detector is orientated to capture both [147]. As for 

SEM, X-rays emitted from the sample by interaction with beam electrons can be collected and 

analysed using EDX analysis. 

Typically, to obtain cross sections of membranes suitable for TEM imaging, fabric or polymer (if 

present) is carefully removed before immersing the membrane in a suitable resin. Once set, slices of 

less than 100nm thickness are made through the resin block using an ultra-microtome [149, 150]. 

For imaging of the membrane plane milling techniques, as measured above, may be necessary. 

However, thin films thin enough for TEM measurements may be prepared by careful removal or 

dissolution of any backing layer, for example preparation of polyamide thin films from a PA / PSF 

composite membrane by dissolution of the PSF layer using chloroform, as described by Pacheco et al 

[151]. 

 

3.3.2 Characterization of Membranes using TEM 

<insert figure 14 here> 

TEM was used by Jeong et al [150] to study the in situ interfacial polymerization of nanocomposite 

thin films on PSF support layers. The created thin films consisted of zeolite nanoparticles embedded 

in a PA matrix. Figure 14 shows a TEM cross section image for pure polyamide thin film (a) and 

zeolite-polyamide thin film (b) on a PSF support layer. The high degree of observed roughness 

prevented accurate film thickness measurements, with thickness varying for both films in the range 

of 50 – 200 nm. Zeolite particles had a high contrast with the PA matrix, showing as dark particles 

within the film and at the interface. Al peaks in the EDX spectra confirmed the presence of zeolite at 
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these points. To examine the structure of polyamide films in isolation Pacheco et al [151] exposed 

TEM cross-sections of PA/PES composite membranes to chloroform, which dissolved the PSF layer. 

This was carried out due to difficulties discerning the PA and PSF interface: removing the PSF layer 

was carried out to make this clearer. The PA film was seen to consist of a nodular base of PA, from 

which a ridged structure projected on the opposite side to the PA/PSF interface, which was relatively 

smooth. 

<insert figure  15 here> 

Freger et al [149] also studied thin film composite PA membrane structures using TEM. The PA layers 

were modified with acrylic acid (AA) monomers. To improve contrast, samples were stained with 

uranyl ions, which readily attached to the AA monomers through ion-exchange with free carboxylic 

groups. PSF support appeared darker than the PA layer due to the S atoms present in PSF. It was 

seen that the grafted polymer layer was approximately 20 nm thick. 

As well as 2-dimensional images through thin films, 3-dimensional imaging of the structure of thin 

films is possible using TEM tomography. For instance Pacheco et al [152] gained 3D structures of 

polyamide thin films in RO membranes, by tilting and re-imaging the sample at a large range of tilt 

angles (-70 to +70°). Software was then used to combine the large number of images into 3D 

reconstructions which could be visualised as static images or videos. In figure 15 is shown a 

representation of TEM images slicing through the sample surface to allow reconstruction of 3D 

structure. The tomograms obtained by the authors allowed visualisation of voids within the film and 

confirmed structural differences between RO membranes fabricated for use in brackish and saline 

water desalination, which explained the difference in the permeability of these membranes. The 

seawater RO membrane contained fewer voids and polyamide sections were thicker. It was 

suggested that the differences in permeability of these membranes was due to different pathways 

available to water molecules, with water passing through a void open to the backside of the film 

needing to cross fewer PA sections. 
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4 Measurement of Contact Angles of Membranes 

4.1 Introduction and Basic Principles 

Surface wetting is a phenomena which governs much of the interactions between fluids and solid 

surfaces, and as a result is of primary importance when considering membrane processes and plays 

a major role in defining flux rate, permeate rejection and surface fouling [153]. The degree of 

wetting is determined by the material properties of the membrane surface which govern interaction 

with water molecules, and are influenced by the liquid pH, temperature, charge density on the 

membrane surface and the interfacial interaction energy [154]. The degree of wettability, or 

hydrophobicity, can be determined from the contact angle formed by a droplet of fluid, most 

typically water, on the surface of interest.  

<insert figure 16> 

When considering a droplet on a flat surface, the contact angle, θc, is the inside angle between the 

tangent line, formed starting at the three-phase contact line and following the outside edge of the 

droplet, and the flat surface (figure 16). If the droplet tries to minimise the interaction area with the 

surface, then the contact angle must necessarily increase as the droplet takes on a shape closer to 

spherical. If the interaction between the droplet and surface is favourable and the surface becomes 

fully wetted, then the contact angle will approach zero. It then follows that, when using water 

droplets, the contact angle is a measure of the hydrophobicity of the surface, with contact angles 

approaching zero for hydrophilic surfaces and increasing to 90° for hydrophobic surfaces. Surfaces 

with water contact angle greater than 90° are often labelled as “super-hydrophobic”. 

More specifically, the contact angle depends on the relative magnitudes of the interfacial tensions at 

the three interfaces involved (solid-liquid, solid-gas and liquid-gas), as described by the Young 

equation [155, 156]: 

cos 𝜃𝑐 =  
𝛾𝑆𝐺 − 𝛾𝑆𝐿

𝛾𝐿𝐺
                                                   (4) 
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 where γSG, γSL and γLG are the interfacial tensions for the solid-gas, solid-liquid and liquid-gas 

boundaries respectively (see figure 16). Line tension, that is a one-dimensional tension along the 

three-phase contact line, also contributes, but for macroscopic measurements is insignificant and 

disregarded. However, due to scaling effects this becomes significant when considering contact 

angles on a microscopic scale [157].  

The Young equation assumes an idealised surface, i.e. one which is smooth, chemically inert, 

homogenous, non-porous and insoluble, a list which most surfaces violate in one way or another 

[158, 159]. Deviation from this ideal behaviour leads to different contact angle values to those 

predicted, and surface roughness and inhomogeneity can lead to different values obtained from 

different parts of the surface.  

One particular phenomenon arising from this non-ideal behaviour is that of contact angle hysteresis. 

The Young equation describes a ‘static’ contact angle, where the energy balance between the three 

interfaces are in equilibrium. For a surface with heterogeneities, different contact angle values may 

be obtained when the droplet is advancing across a surface (θa) or is receding (θr), with the 

difference between the values termed the contact angle hysteresis, H [160, 161]: 

 

𝐻 =  𝜃𝑎 −  𝜃𝑟                                        (5) 

 

For a moving droplet, either rolling on a slope or moving due to a change in quantity of liquid in that 

droplet (due to, for instance, evaporation or condensation) the advancing edge of that droplet is 

pinned until the advancing contact angle is reached; a receding droplet edge does not move until the 

receding contact angle is reached. The static contact angle is a metastable position which can have 

any value between θa or θr [162]. As a result, for surfaces with significant H, the static contact angle 

may not be very useful. For more comprehensive information on this phenomenon please see the 

following references: [160, 161, 163]. 
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Wenzel studied the effect of roughness on the static contact angles measured for a homogenous 

surface [164]. He considered the contribution of a roughness factor, r, which is the ratio of the actual 

surface area to the planar projection of the same area. The Wenzel equation was derived assuming 

that the droplet is in continuous contact with the sample surface, with the water penetrating fully 

into any crevices [156]: 

cos 𝜃𝑤 = 𝑟 𝑐𝑜𝑠𝜃𝑐                                          (6) 

 

 where θw is the Wenzel contact angle. This equation does not take into account sizes of 

surface features or their geometry. 

The Cassie-Baxter equation also derives static contact angles for surfaces with roughness but, unlike 

the Wenzel equation, was derived for the case where the droplet does not penetrate surface 

crevices, instead sitting atop a rough surface with surface crevices filled with gas in between the 

droplet and surface [165]:  

𝑐𝑜𝑠𝜃𝐶 =  𝑓1 𝑐𝑜𝑠𝜃1 −  𝑓2                                     (7) 

 

 where θ1 is the contact angle for a smooth surface of the same material and f1 and f2, are the 

fractions of the surface covered by the solid liquid and liquid air interfaces respectively (f1 + f2 =1) 

[166, 167].  

4.2 Techniques for Measuring Contact angles 

The sessile drop method for measuring surface contact angle is perhaps the simplest and most 

widely reported. It essentially consists of a single drop of liquid placed on a level sample surface. 

Contact angle is determined by direct viewing. Modern systems incorporate capture of the droplet 

image digitally, which is then processed on a computer to calculate the contact angle directly from 

the image. This technique is simple in operation, with fast processing of results, with small sample 

and droplet sizes required. Figure 17 shows an example of a droplet placed on a surface for contact 

angle measurement using this technique. 
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<insert figure 17 here> 

Measurement of static contact angles is as straightforward as described above. To measure 

advancing and receding contact angles several approaches are possible. Firstly, the needle producing 

the droplet may be used to add or remove more water to or from the droplet, allowing advancing 

and receding angles to be measured respectively. Ideally the needle should be as small as possible 

relative to the droplet to minimise any inaccuracies due to the presence of the needle distorting the 

shape of the droplet. Secondly, a tilting platform may be used. This will allow measurement of the 

advancing and receding contact angles simultaneously from the downslope and upslope parts of the 

droplet – these angles are the angles at which the respective contact lines will become unpinned 

from the surface, allowing the drops to move. Thirdly, material can be removed from the droplet by 

evaporation in a dry atmosphere leading to the receding contact angle becoming apparent, or 

increased by condensation in a humid atmosphere, allowing advancing contact angle to be 

measured. 

It should also be noted that the measured contact angle of membranes may vary depending 

whether they are in a hydrated or dehydrated state. In addition, for a porous hydrophilic membrane 

in a dehydrated state, small droplets are liable to penetrate the membrane surface rapidly, making 

obtaining a stable droplet difficult. 

One other issue which should be noted is the effect of drop size on measured contact angles. Drelich 

reviewed the literature [168] and found that whilst the advancing contact angle was only slightly 

affected by the drop size, receding contact angle measurements changed significantly from droplets 

with  a base diameter of less than 5-7mm, making comparison of measurements between different 

laboratories problematic. 

Alternatively, a bubble of air can be introduced to the surface of a sample immersed in water. The 

sample is generally inverted, with the bubble placed below the membrane to keep the bubble in 

contact with the surface in order to overcome the issue of the bubble detaching if its buoyancy is 

sufficient to overcome its attachment to the surface. Here the set-up is the inverse as that measured 
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using the sessile drop procedure, with the external angle of the bubble giving the water contact 

angle, rather than the internal angle. Zhang et al [169] compared the sessile drop and captive bubble 

methods for measuring contact angles on ultrafiltration membranes. In most cases the results from 

the two methods were in good agreement, with differences within statistically expected ranges. 

However, one membrane did show a significant difference for measured advancing contact angle. It 

was noted that this particular membrane showed a time dependant change in the measured 

receding contact angle and the authors offered a possible explanation as being that this particular 

membrane changes its surface structure more easily than the other membranes, thereby adapting to 

the surrounding medium leading to a change in surface energy. 

Another method to obtain contact angle measurements is by the Wilhelmy plate method. Here a 

smooth and thin plate of a material of interest is lowered edge-first into a liquid of known surface 

tension. If the contact angle between the plate and the liquid at the meniscus is < 90°, then a 

measurable downward force is exerted, as given by the following relationship [170]: 

 

𝑊𝑓 =  𝑝 𝛾𝐿𝑉 𝑐𝑜𝑠𝜃𝑐 − 𝑉Δ𝜌𝑔                                                  (8) 

 

 where Wf is the measured downward force, p is the perimeter of the three-phase contact, V 

is the volume of liquid displaced by the plate, Δρ is the density difference between liquid and vapour 

and g is the acceleration due to gravity. Advancing and receding contact angles can be calculated by 

moving the plate up and down through the liquid surface [170]. The sample needs to be flat and 

rectangular, to have regular geometry, and have identical characteristics in all planes. As such this 

technique is not likely to be useful for asymmetric membranes.  

Contact angle can also be measured from observing the capillary rise between two closely spaced 

vertical plates dipped into a liquid of known surface tension. The following relationship, derived 

from the Young-Laplace equation, can then be used to calculate the contact angle [171]:  
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ℎ =
2𝛾𝐿𝑉  𝑐𝑜𝑠𝜃

Δ𝜌 𝑔 𝑤
                                              (9) 

 

 where h is the rise height of the capillary front and w is the separation distance between the 

two plates. 

4.3 Contact Angle Measurements of Membrane Surfaces 

The wetting of membranes is of fundamental importance in their performance, affecting water flux, 

solute rejection and playing a large role in their fouling behaviour, as these properties depend on  

chemical interactions at the interface between the feed water and the membrane surface. The 

majority of commercially available membranes are made from hydrophobic polymers, selected for 

their chemical, mechanical and thermal stability [172]. Fouling of membranes by organic and 

microbial substances is well known to be less severe for hydrophilic surfaces compared with 

hydrophobic [173]. As such, much work on the performance improvement of membranes by surface 

modification has concentrated on adjusting their hydrophobicity. In this section we will endeavour 

to give a few examples from the literature where water contact angle measurements are used to 

determine properties of water filtration membranes. This is not intended to be an exhaustive 

review, as the literature is extensive. We would instead direct the reader to the recent review by 

Hebbar et al [174]. 

Garcia-Payo et al investigated wettability of hydrophobic membranes, using contact angle analysis 

for pure water and aqueous solutions of alcohols to complement liquid entry pressure tests [175]. 

The authors noted that when distilled water was used the contact angle measurements were 

independent of pore size. It was also noted that the roughness of the membrane surfaces increased 

the contact angle from what was expected when compared with literature values for smooth 

surfaces of the sample materials. 

<insert figure 18 here> 
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Membranes may be fabricated de novo to be hydrophilic, by selection of the appropriate polymers, 

or may be further modified after fabrication to increase the surface hydrophilicity – this may be to 

laboratory fabricated membranes or to commercially available membranes. There are a wide variety 

of modification techniques currently used: interfacial polymerization; surface grafting, including 

photo-initiated grafting and plasma induced grafting; chemical vapour deposition; surface coating; 

and incorporation of nano-fillers into membrane surfaces to name several. 

PES / terpolymer blended membranes were fabricated by Li et al [176] using poly (acrylonitrile-

acrylic acid acid-vinyl pyrrolidone). It was observed that there was a correlation between the 

proportion of the terpolymer incorporated into the membrane and the surface hydrophilicity. The 

change in water contact angle was ascribed to the acrylic acid and vinyl pyrrolidone chains on the 

membrane surface. The effect of hydrophilicity on membrane fouling due to protein was studied by 

Chen et al, who incorporated poly ethylene oxide (PEO) into poly acrylonitryl (PAN) ultrafiltration 

membranes [177]. This was carried out using PAN-graft-PEO copolymers using an immersion 

precipitation phase inversion method. The enrichment of the surface with PEO lead to a great 

reduction in the water contact angle (see figure 18) values measured, with higher concentrations of 

PEO at the surface having the greatest reduction. The effect of surface modification on flux decline 

whilst filtering aqueous solutions of bovine serum albumin (BSA) was studied, with the unmodified 

PAN membrane having the greatest flux decline. For membranes with contact angles of over 50° 

significant flux decline was observed, but flux decline was significantly retarded for the membranes 

with lower contact angles. Static adsorption of BSA was shown to be lowest for these two 

membranes also. For suspensions of E. coli bacteria and humic acid a similar behaviour was observed 

with the more hydrophilic membranes having lowest flux loss.  

PSF membranes incorporating the hydrophilic polysaccharide chitosan alongside TiO2 nanotubes 

were prepared by Kumar et al [178]. Water contact measurements using the sessile drop technique 

showed a drop in contact angle compared with the unmodified membrane. All the modified 

membranes showed a higher fouling resistance and flux recovery than the nascent unmodified 
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membrane as measured during filtration tests with BSA solutions. The fouling resistance of PSF 

membranes was improved by using N-succinyl-chitosan (NSCS) as an additive during membrane 

fabrication [179]. The hydrophilic NSCS decreased the water contact angle of the membranes, which 

correlated with the reduction of membrane fouling by BSA.  

Khayet and Matsuura prepared polyetherimide membranes containing a fluorinated surface 

modifying macromolecule (SMM) using the phase inversion method [180]. Addition of the SMM 

made the surface more hydrophobic, as shown by water contact angle measurements. This was seen 

to correlate with an increase in liquid entry pressure into dried membranes. 

<insert figure 19 here> 

Al-Amoudi et al [181] used contact angle measurements to assess effects of fouling and cleaning on 

the surface properties of a variety of membranes. The membranes were all commercial membranes 

containing a top active layer composed of polypiperazinamide. Fouled membrane samples were 

obtained during membrane autopsy of one of these membranes after operating in a commercial 

seawater RO plant. The fouled membrane had a contact angle which was over 20° higher than for 

pristine membrane, suggesting organic fouling had occurred. Cleaning treatments using HCl and 

NaOH solutions reduced the contact angle of the fouled membranes, but they did not return to the 

unfouled value. Treatment with sodium dodecyl sulfate (SDS) greatly reduced the contact angle of 

both pristine and fouled membranes to 28° and 25° respectively. An inverse correlation was also 

noted between the contact angle for the membranes and the pure water flux for both virgin and 

fouled membranes (see figure 19). 

5. Characterisation of Membrane Surface Charge 

5.1 Introduction and Basic Principles 

Polymeric and ceramic filtration membranes typically will carry ionizable features at the surface, or 

even ionic species in the case of ion-exchange membranes. As a result, in aqueous solutions the 

surface will carry a charge, the sign and magnitude of which depends on the environmental pH and 
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ionic concentration. Feed solutions are typically complex mixtures containing a wide variety of 

charge carrying substances including surfactants, macromolecules (e.g. proteins, polysaccharides, 

and nucleic acids), ions, polyelectrolytes. Interactions between these species and the membrane 

surface can significantly alter the surface charge of the membrane. Due to the charge interactions 

between the membrane surface and charged solutes and particulates, the charge of the membrane 

surface plays a significant role in mediating the separation properties of the membrane, the nature 

and extent of fouling and also concentration polarization. As such it is of great interest to people 

working with separation membranes to be able to determine the surface charge of the membrane 

under a range of different conditions. 

The arrangement of charged species in close proximity to the membrane surface is referred to as the 

electrical double layer (EDL) [182]. Charge distribution in the EDL is most concentrated in close 

proximity to the membrane and decreases with increasing distance from the membrane (as 

illustrated in figure 20) reflected by a steady decrease in potential [183, 184]. Ions close to the 

membrane surface are in the immobile Stern layer. The Stern layer may be further sub-divided into 

the inner Helmholtz layer, contained between the membrane surface and the inner Helmholtz plane, 

which consists of partially dehydrated ions bonded to the surface chemically or electrostatically, and 

the outer Helmholtz layer found between the inner and outer Helmholtz planes, consisting of 

hydrated ions of typically opposite charge to the inner Helmholtz ions. In the Stern layer the 

distribution of charge and electrical potential are determined by geometrical constraints and 

interactions between ions, dipoles and the membrane surface. Beyond the Stern layer and separated 

from it by the shear plane, is the diffuse Gouey-Chapman layer where ions are free to move by 

thermally driven motion. 

Actual membrane surface potential is very difficult to measure directly. Estimation of the zeta- (ζ) 

potential at the shear, or slip, plane is more accessible, leading to its extensive use when studying 

the electrical potential of membranes. 
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<insert figure 20> 

There are a number of electrokinetic methods available. The primary ones of interest to researchers 

studying membrane phenomenon are electrophoresis, electro-osmosis, sedimentation potential and 

streaming potential. For electrophoresis and electro-osmosis an electrical field is applied to cause 

motion in the solid or liquid phase, whereas streaming potential and sedimentation potential 

measure a change in electrical potential due to movement of the solid or liquid phase. 

Electrophoresis and sedimentation potential both study the motion of a solid phase in a stationary 

liquid phase, which makes them suitable for study of the electrostatic behaviour of suspended 

particulates. Streaming potential and electro-osmosis both have a stationary solid phase and mobile 

liquid phase, making them more suited to the study of the electrical potential of membrane 

surfaces. There are a number of other electrokinetic phenomena which have been used to probe the 

electrical potential of surfaces in electrolyte solutions, including dielectric dispersion, streaming 

current, colloid vibration potential, electrokinetic sonic amplitude and surface conduction [185]. 

 

 

5.2 Techniques to Measure Membrane Surface Potential 

5.2.1 Streaming Potential Measurement 

When a fluid  containing charged ionic species is allowed to flow through a charged membrane, 

capillary, plug or diaphragm due to a pressure gradient then the potential difference measured at 

zero current is the streaming potential [16]. The streaming potential is dependent upon a number of 

solution properties including the ζ-potential, solution viscosity, ionic diffusivities and dielectric 

constant. 

For measurements the streaming potential can be generated in two ways. The electrolyte solution 

can be forced through a porous material, such as membrane pores, to measure the transverse 
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streaming potential. Here the electrical double layer in the pores is being measured, with errors 

arising if an overlap in the double layer from opposite sides of the pores occurs. Secondly the 

electrolyte can be forced through a narrow channel formed by the membrane being sandwiched 

between two plates, with the flow across the surface of the membrane, allowing measurement of 

the tangential streaming potential. 

<insert figure 21> 

When electrolyte solutions are pumped through a porous material, a capillary or through any narrow 

channel, a streaming potential is generated (see figure 21). The solution within the pore or channel 

carries a net charge (fig. 21a), so when it flows it generates a streaming current, IS (fig. 21b), which 

gives rise to a potential difference, ΔE (fig 21c), which in turn opposes the movement of ions. This is 

because as counter-charges accumulate downstream the streaming potential arises which leads to a 

conduction current in the reverse direction (leading to back diffusion by ion diffusion and electro-

osmotic flow), termed the leak current, IL (fig.21d) [183, 186]. At equilibrium, the leak current and 

streaming current are equal in magnitude. The measured potential difference across the membrane 

or capillary at this point is the streaming potential. The ζ-potential is related to the streaming 

potential and applied pressure difference by [182, 187, 188]:  

𝜁 =  
Δ𝐸𝑠𝑡𝑟

𝜀𝑟 Δ𝑃
  𝜂 (𝜆0 +  

2𝜆𝑠

𝑟
)                          (9) 

 where ΔEstr is the streaming potential, εr is the relative permittivity of the medium, ΔP is the 

applied pressure, λ0 and λs are the bulk and surface conductivity respectively, η is solution viscosity, 

and r is the radius of pore or capillary or half the width of a slit. 

Experimentally the voltage difference across or along the membrane (ΔE) is determined at a range of 

flow rates. Assuming the conductivity of the membrane is lower than that of the electrolyte, a plot 

of ΔE versus ΔP should be linear, allowing the ζ-potential to be calculated from the gradient using 

the classic formulation of the Helmholtz-Smoluchowski equation [184]: 
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𝜁 =  
Δ𝐸

Δ𝑃 
 

𝜂

𝜀𝑟 𝜀0
 𝐾𝐵                                                           (10) 

 where KB is the specific conductivity of the electrolyte solution and ε0 is the permittivity of 

vacuum. However, there are some limitations. The liquid flow through membrane pores or capillary 

needs to be laminar with the capillary radius greater than the Debye length (1/κ, the characteristic 

width of the double layer) as well as the surface having an electrical potential less than 

approximately 25 mV [184]. Also, linearity of ΔE/ΔP is not preserved at very low salt concentrations, 

and at high salt concentrations ΔE values are very low and sensitive, limiting the range of salt 

concentrations suitable for streaming potential measurements [189]. In addition, equation 10 is only 

applicable when the membrane surface conductivity is lower than the electrolyte, otherwise, for 

instance at low electrolyte concentrations, equation 9 is preferable. This requires knowledge of the 

membrane surface conductivity, which can be difficult to measure and is usually resolved by 

measurements of resistance of the electrolyte solution in the pore and comparing with 

measurements at high salt concentrations where surface conductivity is nullified [184, 190, 191]. It 

should also be noted that the Helmholtz-Schmolukovski equation is a simplified description of 

double layer behaviour. A complete solution would require solving the Nernst-Planck equation for 

ionic transport [192], although in most cases eq.s 9 and 10 are adequate. 

  

During transverse streaming potential measurements, electrolyte flow through membrane pores 

allows determination of ζ-potential. In this case the membrane is placed between two electrodes to 

allow voltage across the membrane to be directly measured. This technique is relatively simple to 

carry out, but does have a number of limitations, restricting its utility. Firstly, for membranes 

consisting of multiple layers, each layer will contribute to the measured ζ-potential value, rather 

than just the ζ-potential of the uppermost layer, which is the one of most interest. In addition, this is 

also unsuitable for membranes with small pore sizes. This is because when the pore diameter is 

below the Debye length (double layer thickness), overlap of the double layer from opposite sides of 
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the pore occur. This invalidates the Helmholtz-Schmolukovski equation which is not valid for 

overlapping double layers [193, 194]. For microfiltration membranes this is unlikely to be a problem, 

but for tighter membranes the tangential streaming potential method is likely to be more reliable. 

For tangential streaming potential measurements, electrolyte flow is along the membrane surface, 

rather than through the membrane pores. A flow channel is typically constructed, with the channel 

formed by two identical membrane surfaces facing each other with a narrow separation distance. 

Tangential measurements overcome several deficiencies in the transverse streaming potential 

technique. A primary advantage is that the channel width is set by the instrument not the material, 

so there is no problem with invalidating the Helmholtz-Schmolukovski equation due to overlapping 

double-layers - this also allows materials with very small pores to be measured and also removes 

problems due to high pressure drop and rejection of ionic species by such membranes. As flow is 

along the membrane surface and not though the material, contribution of pores, multilayers etc. are 

ignored and only the ζ-potential of the uppermost part of the membrane surface is measured. As 

such this technique is much more commonly used compared with transverse streaming potential 

measurements to measure the ζ-potential of polymer membranes. 

Early work using tangential streaming potential measurements by Elimelech et al [186] studied the 

effect of solution pH, ionic strength and presence of humic acid on the surface charge of several 

commercial RO membranes. They concluded that as well as confirming this technique as being 

effective for ζ-potential measurement of RO membranes, that the cellulose acetate and polyamide 

membranes were negatively charged at all conditions, becoming more negative with increase pH 

and salt concentration and that the surface charge were significantly influenced by adsorption of 

humic substances and chemical substances introduced during membrane synthesis. 

5.2.2 Electro-Osmosis  

When an electrical current is applied across a porous membrane, plug or capillary filled with an 

electrolyte solution then a flow of material will occur. Observation of the subsequent flow velocity 
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when compared with the applied current will give some information about the surface charge or 

potential. The following equation for large pores at high ionic strength can be used to calculate the ζ-

potential during electro-osmosis measurements [195]: 

𝜁 =
 𝐽𝑉  4𝜋𝜂𝑘0

𝐼𝑐 𝜀𝑟
                                                 (11) 

 

 where JV is the flow rate of the electrolyte solution, and IC is the applied current. Several 

authors [196-198] have reported that higher values are obtained from electro-osmosis than for 

streaming potential measurements, particularly at low solution pH values, although this may be due 

to the shear plane being affected by the method used. 

5.2.3 Sedimentation potential 

Sedimentation potential is the potential generated when charged particles settle due to the force of 

gravity [185]. There is also a centrifugation potential, where sedimentation occurs in a centrifuge, 

rather than due to gravity. Charged particles set up an electrical field which is of identical sign in the 

direction of sedimentation, with a steady state being achieved by flow in the opposite directions of 

ions of the opposite charge. 

5.2.4 Electrophoresis 

Another major source of information on the electrical potential of surfaces is electrophoresis. During 

electrophoresis the liquid phase is static, whilst the solid phase, suspended in the electrolyte, moves. 

As such electrophoretic techniques are widely used, probably more than any other electro-kinetic 

technique, for the determination for particle surface ζ-potential and also for the separation of 

particles and molecules based on surface charge. 

Typically, particles are introduced to a tank of electrolyte solution with oppositely charge electrodes 

at each end. Particles will migrate to oppositely charged electrodes at a velocity proportional to the 
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applied electric field and the surface ζ-potential. The ζ-potential can then be calculated using Henry’s 

equation: 

𝜁 =  
3

2
 

𝑈𝜂

𝜀0𝜀𝑟
 

1

𝑓(𝜅−1𝑎)
                                             (12) 

 where U is the proportionality constant, which is the ration of the measured particle velocity 

the applied electric field strength, and f (k
-1

a) is Henry’s function, with a the particle diameter. For 

low values of κ-1a Henry’s function can be disregarded; for high values the Smoluckovski 

approximation can be made: 

𝜁 =  
𝑈𝜂

𝜀0𝜀𝑟
                                                                   (13) 

The velocity of the charged particles is usually measured by the laser Doppler technique, which is 

based on observation of light scattering [193]. Measurement of intact membrane surfaces due to 

the mobile solid phase has mostly been reported to measure electrokinetic properties of fragments 

of ceramic [193, 199, 200], polymer [201] and metal oxide [202] membranes. Wang and Ku [202] 

compared measurements of TiO2 membranes from tangential streaming potential measurements, 

with electro-phoretic measurements of TiO2 particles. It was observed that the ζ-potential 

measurements gave very different values, but both had identical iso-electric points. 

Thomas et al [203] used a novel laser Doppler electrophoresis combined with an electro-osmosis 

surface mapping based technique to directly measure the surface charge of polymer filtration 

membranes. This technique examined electrophoretic mobility of polystyrene tracer microparticles 

suspended in the electrolyte solution. Comparisons of the technique with tangential streaming 

potential were made. It was found that the novel technique gave identical results to streaming 

potential. Data acquisition was more laborious and required a larger number of sample preparation 

steps. However, only very small membrane samples were needed and the equipment is less 

expensive and can be used for particle sizing and ζ-potential measurement in addition to measuring 

membrane surface charge. 
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<Insert Table 1 here> 

6.0 Conclusions 

We have reviewed a number of experimental techniques and instruments of interest to membrane 

scientists studying surface properties and development of membranes. We have used a number of 

examples from the literature to illustrate the uses of each technique and the types of information 

they can generate which would be of interest to investigators intending to study the characteristics 

of membrane surfaces. In table 1 is presented a summary of these techniques, including advantages 

and disadvantages, to aid in selecting which techniques are most suitable in approaching a given 

characterisation task. However, it must be remembered that these techniques are never used in 

isolation. For most of the papers referred to in this review which describe characterisation of 

membrane surfaces, it is always more than one, and sometimes a battery of techniques, which are 

used to determine surface properties, with each of the techniques described here being 

complementary, having a useful part to bring to a whole understanding of the membrane surface 

and the interactions it will have with its environment. 

 

The field of membrane characterisation is constantly changing and growing. Whilst some of the 

techniques and concepts described here are old and have been used as part of membrane 

development and studies for decades, techniques are being constantly refined and updated and new 

ways to apply them are constantly being developed. It is hoped that this review gives a good account 

of the major techniques available to membrane technologists as they exist at the current moment. 

In the years to come such techniques will undergo further refinement, improvement and 

development, and techniques and instruments as yet unthought of will one day be added to the 

arsenal. 
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List of abbreviations 

 

FTIR - Fourier Transform Infra-red Spectroscopy 

ATR-FTIR - Attenuated Total Reflectance- Fourier Transform Infra-red Spectroscopy 

NMR - Nuclear Magnetic Resonance 

XPS - X-ray photon spectroscopy 

EDX - Energy dispersive X-ray 

SAXS  - Small angle X-ray scattering 

SANS - Small angle neutron scattering 

ESR - Electron spin resonance 

DRIFTS - Diffuse reflective spectroscopy 

PVDF - poly(vinylidene fluoride) 

ATRP - atom transfer radical polymerization 

PNIPAAm - poly(N-isopropylacrylamide) 

TERS - tip-enhanced Raman spectroscopy 

SERS - surface-enhanced Raman spectroscopy 

VIPS - surface-enhanced Raman spectroscopy 

PEI - poly (ether-imide) 

NMP - N- methyl pyrrolidone 

PVP - polyvinylpyrrolidone 

PP - polypropylene 

CA - cellulose acetate 

PPO - poly(2,6-dimethyl-1,4-phenylene oxide) 

TEMPO - 2,2,6,6-tera-methyl-1-piperidinyloxy 

PES - poly ether sulfone 

PSF - poly sulfone 

D - pore diameter 

σSL - liquid-solid interfacial energy 

Tm - bulk melting point 
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ΔHf - bulk enthalpy of fusion 

ρS - density of the crystalline solid 

PSD - pore size distribution 

PPO - polyphenylene oxide 

RO - reverse osmosis 

BSA - bovine serum albumin 

HEL - hen egg lysozyme 

MWCO - molecular weight cut-off 

SWNT - single walled nanotubes 

TFN - thin film nano-composite 

PVA - poly (vinyl alcohol) 

NF - nanofiltration 

qDMAEMA - 2-dimethyl-aminoethylmethacrylate 

dp - individual pore size 

μp - mean pore size 

σp - geometric standard deviation of pore size 

PEG - poly-ethylene glycol 

CT - cellulose triacetate 

PTFE - poly tetra-fluoro ethylene 

EPS - extra-cellular polymeric substances 

HA - humic acid 

MTDW - model textile dye wastewater 

RMS - root mean squared 

SE - secondary electrons 

FESEM - field emission scanning electron microscopy 

FEG - field emission gun 

CFE - cold field emission 

TFE - thermal field emission 

BSE - back scattered electrons 

PBM - polymerizable bi-continuous microemulsion 

MWCNT - multi-walled carbon nanotube 

AA - acrylic acid 
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Θ - contact angle 

γ - interfacial tension 

Wf - downward force on Wilhelmy plate 

V - displaced volume 

Ρ - density 

w - separation distance between two plates 

g - acceleration due to gravity 

PEO - poly ethylene oxide 

PAN - poly acrylonitryl 

SMM - surface modifying macromolecule 

SDS - sodium dodecyl sulfate 

EDL - electrical double layer 

ΔE - electrical potential 

ΔP - pressure difference 

η - solution viscosity 

KB - specific conductivity of electrolyte solution 

κ - Debye length 

JV - Electolyte solution flow rate 

IC  - Applied current 

U - proportionality constant for electrophoresis 

f (k-1
a) - Henry’s function 

ε0 - permittivity of vacuum 

εr - dielectric constant 
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Figure Captions 

Figure 1: Basic operation of ATR-FTIR system. 

Figure 2: Spectra of polysulfone / poly ether sulfone blended membranes. Reproduced from [3] with 

permission. Copyright 2015, John Wily and Sons. 

Figure 3 ATR-FTIR spectra of polypropylene membranes treated with Freon-116 plasma. Reproduced 

from [12] with permission. Copyright 2001, Elsevier. 

Figure 4: Transmission FTIR spectra of PES membranes treated with polyacrylic acid in Argon plasms: 

a) unmodified membrane; b) grafting yield (GY) = 85 μg/cm2; c) GY = 155 μg/cm2; d) GY = 162 

μg/cm2; e) GY = 210 μg/cm2. Reproduced from [13] with permission. Copyright 2002 Elsevier. 

Figure 5: ATR-FTIR spectra of pristine and modified membranes. M5, M10 and M12 membranes 

modified with grafting densities of 1.17. 0.60 and 0.43 mg/cm2 respectively. Reproduced with 

permission from [17]. Copyright 2015, Elsevier. 

Figure 6: SERS spectra of virgin, fouled and cleaned membrane samples. Reproduced with 

permission from [42]. Copyright 2015, Elsevier 

Figure 7: NMR spectrum of PSF membranes containing CNTS functionalised with amino-benzo crown 

ether. Reproduced with permission from [52]. Copyright 2013 Virtual Company of Physics S.R.L 

Figure 8: XPS spectra for NF45 and B0 membranes. Reproduced with permission from [65]. 

Copyright 2000, Elsevier. 

Figure 9: Example AFM force-distance curve showing approach (red trace) and retract (blue trace). 

Figure 10: Globular features only seen with tapping mode in water on hydrophobic surface (a) – not 

with contact mode in water (b). Images reproduced from Johnson et al [71] with permission. 

Copyright Elsevier 2012. 

Figure 11: AFM scans of NF90 membrane: virgin membrane a); and layer-by-layer modified samples 

with a different number of PSScoMA/ PEI layers: b) - 4 layers; c) – 8 layers; d) – 12 layers.  

Figure 12: SEM surface image (a) and cross-section (b–d) of PBM membrane with magnification from 

×10,000 to ×40,000. Reproduced from Galiano et al [131] with permission. Copyright Elsevier 2015. 
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Figure 13: Cross section of PVDF-Ti membrane in back scattered electron (BSE) mode (a) and 

corresponding EDX analyses at different depths of membrane cross section (b). Reproduced from 

Buonomenna et al [146] with permission.  Copyright Elsevier 2006. 

Figure 14: TEM images of polyamide thin film composite a) and thin film nanocomposite b) 

membranes. Adapted from Jeong et al [150], with permission. Copyright Elsevier 2007. 

Figure 15: 3D visualization of the internal nanostructure of polyamide thin films in RO membranes 

using TEM tomography. Reproduced from [152] with permission. Copyright Elsevier 2016. 

Figure 16: Illustration of contact angle formed on a flat surface. 

Figure 17: Droplet of water on PVDF membrane surface for measurement of water contact angle 

using sessile drop technique. 

Figure 18: Water contact angles measured for a PEN ultrafiltration membrane modified by PEO. 

Reproduced from [177] with permission. Copyright Elsevier 2015. 

Figure 19: a) Flux versus contact angle for virgin membranes cleaned by different cleaning agents; b) 

Flux versus contact angle for fouled membranes cleaned by different cleaning agents. Adapted from 

[181] with permission. Copyright Elsevier 2008. 

Figure 20: Distribution of ionic species close to the membrane surface giving rise to the electrical 

double layer and the resultant distribution of potential as a function of distance from the surface. 

Reproduced from [184] with permission. Copyright Elsevier 2017. 

Figure 21: Diagram to help describe processes which lead to the formation of the streaming 

potential: a) electrical double layer at a charged surface (-ve in the example) with +ve counter ions; 

b) electrolyte flow causes a streaming current, Is, to arise; c) accumulation of ions downstream forms 

a potential difference along the surface; d) potential difference produces the leak current, IL. 

Table 1: Summary of techniques presented in this review.  
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Technique Use in Membrane 
Characterisation 

Advantages Disadvantages Comments 

Fourier Transform Infra-
red Spectroscopy (FTIR) 

Chemical characterisation of 
materials. Surface 
characterisation accessed with 
attenuated total reflectance 
(ATR) module. 

Fast acquisition with high signal 
to noise ratio. 

IR signal absorbed strongly by 
water. 

Complemented well by Raman 
spectroscopy in identifying range 
of chemical species present on 
surface 

Raman Spectroscopy Chemical characterisation of 
materials. Various adaptations 
allow chemical scanning of 
surfaces 

Can distinguish some functional 
groups insensitive to IR signal. 
High spatial resolution. 

Raman signal weak leading to 
lower sensitivity than FTIR 

Sometimes combined with 
imaging techniques for surface 
mapping.  
Complementarity with FTIR 

Nuclear Magnetic 
Resonance Spectroscopy 
(NMR) 

Determination of structure Non-destructive. Simple sample 
preparation. Fast acquisition 

Relatively insensitive compared 
with other techniques. Expensive 
equipment. 
Mass limit for macromolecules 
(>30-40 kDa). 

Not a surface technique, but 
structural data when combined 
with microscopy can improve 
understanding of surface 
structure. 

Electron Spin Resonance 
(ESR) 

Determination of structure Fast acquisition, high sensitivity, 
high specificity. 

Specificity related to presence of 
unpaired electrons – may not be 
relevant to all materials, spin 
label may need to be added 

Structural data can be used to 
improve understanding of surface 
structure when combined with 
other techniques. 

X-Ray Photon 
Spectroscopy (XPS) 

Chemical analysis of membrane 
surface 

Very high chemical sensitivity. 
Non-destructive. Quantitative 
chemical and elemental 
information. 

Slow processing. High vacuum 
required. Expensive equipment. 

Best when high chemical 
resolution or sensitivity require. 
For high throughput where high 
sensitivity not needed other 
techniques may be preferable. 

Small Angle Neutron / X-
Ray Scattering (SANS/ 
SAXS) 

Determination of structure High spatial resolution. Neutrons relatively insensitive to 
matter.  

Data can be used to improve 
understanding of surface 
structure when combined with 
other techniques. 

Atomic Force 
Microscopy (AFM) 

Quantitative measurement of 
surface topography and 
interaction forces 

Can image in liquid. Quantitative 
height information and surface 
nano-mechanical properties can 
be measured. Surface interaction 
measurements between different 
materials accessible 

Slow image acquisition. Limited 
sample height range 
accommodated. Convolution 
effects at high resolution. 
Maximum scan range typically 
100 μm in x, y plane. 

Imaging can be used SEM data by 
providing more quantitative 
information. 

Scanning Electron High resolution imaging of Fast image acquisition time. Wide Imaging of artefacts: non- Workhorse high resolution 
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Microscopy (SEM) membrane surfaces and cross-
sections. Elemental analysis 

field of view. Simultaneous 
surface elemental analysis 
obtainable with EDX unit. 

conductive samples may require 
metal coating. Imaging in 
vacuum. 

imaging instrument. Often used 
to compliment quantitative AFM 
measurements, chemical 
investigations or bulk membrane 
data. 

Transmission Electron 
Microscopy (TEM) 

High resolution imaging of 
membrane surfaces and cross-
sections. Elemental analysis 

Very high resolution obtainable. 
3D tomography possible. 
Simultaneous surface elemental 
analysis obtainable with EDX unit. 

Laborious sample preparation 
required. Metal coating of non-
conducting samples. Small field of 
view. 

Generally used if higher 
resolution needed than 
obtainable with SEM, sacrificing 
higher throughput and field of 
view. 

Contact Angle 
Measurement 

Characterisation of surface 
wettability, surface free energy 

Direct measurement of surface 
wettability. Can obtain 
information on surface free 
energy. 

Porous membranes may cause 
problems using sessile drop 
method. Wilhelmy plate method 
not suitable for asymmetric 
membranes 

Sessile drop technique straight 
forward and standard test for 
surface wettability and surface 
energy data. 

Streaming Potential 
Measurement 

Characterisation of surface 
electrical properties 

ζ-potential of membrane surfaces 
easily calculated from streaming 
potential. 

Transverse measurements 
unsuitable for small pore sizes – 
tangential measurement set-up 
needed instead 

Measures change in electrical 
potential due to movement of 
liquid phase. Most used method 
for membrane surface charge 
assessment 

Electro-osmosis Characterisation of surface 
electrical properties 

ζ-potential of membrane surfaces 
easily calculated from electro-
osmotic potential. 

Some situations may require 
estimation of ratio of surface 
conduction to bulk conductivity 
(Dukhin number) 

Applied electrical field causes 
liquid phase motion. Values may 
differ from streaming potential 
measurements. 

Sedimentation Potential Characterisation of particle 
surface electrical properties 

Can study more concentrated 
suspensions than electrophoresis. 
Visual measurements can be 
carried out simultaneously. 

Can only measure particles. For 
membrane measurements 
sample needs to be fragmented 
first. 
Slow measurement. 

Measures change in electrical 
field due to solid phase motion. 

Electrophoresis Characterisation of particle 
surface electrical properties 

ζ-potential easily calculated from 
electrophoretic mobility of 
suspended particles 

Can only measure particles. For 
membrane measurements 
sample needs to be fragmented 
first 

Applied electrical field causes 
solid phase motion. 

Table 1 


