
Physics Letters B 771 (2017) 230–234
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Diagrammar in an extended theory of gravity

David C. Dunbar ∗, John H. Godwin, Guy R. Jehu, Warren B. Perkins

College of Science, Swansea University, Swansea, SA2 8PP, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 March 2017
Accepted 17 May 2017
Available online 22 May 2017
Editor: M. Cvetič

We show how the S-matrix of an extended theory of gravity defined by its three-point amplitudes can 
be constructed by demanding factorisation. The resultant S-matrix has tree amplitudes obeying the same 
soft singularity theorems as Einstein gravity including the sub-sub-leading terms.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Scattering amplitudes are traditionally defined from a quan-
tum field theory and the resulting Feynman vertices and Feynman 
diagrams. Alternatively, the amplitudes can be regarded as the fun-
damental objects which define the theory perturbatively. It is not 
very useful to define a theory by specifying the entire S-matrix ex-
plicitly but it is an important question whether the S-matrix can 
be defined from a minimal set of data and rules i.e. a “diagram-
mar” [1]. Once a minimal set of amplitudes is specified we aim to 
construct all other amplitudes by demanding they have the correct 
symmetries and singularities. Defining the S-matrix using its sin-
gularities is a long-standing programme which is still active and 
fruitful [2–7].

In this letter we build an S-matrix from a set of three-point 
amplitudes using their singularity structure. The S-matrix corre-
sponds to a theory of Einstein gravity extended by the addition 
of R3 terms. We are working with massless theories and view 
the amplitude as a function of the twistor variables λa

i and λ̄ȧ
i , 

M(λi, ̄λi). The spinor products 〈i j〉 , [i j] are 〈i j〉 = εabλ
a
i λ

b
j , [i j] =

εȧḃλ̄
ȧ
i λ̄

ḃ
j . In this formalism amplitudes have a well-defined “spinor 

weight”. Counting λi as weight +1 and λ̄i as −1, then the ampli-
tude has weight +4 for a negative helicity graviton and −4 for a 
positive helicity graviton.

We define the theory starting with the usual three-point am-
plitudes of Einstein gravity1:

V 3(1−,2−,3+) = 〈1 2〉6

〈1 3〉2 〈3 2〉2
,

* Corresponding author.
E-mail address: d.c.dunbar@swan.ac.uk (D.C. Dunbar).

1 We remove a factor of i(κ/2)n−2 from the n-point amplitude.
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V 3(1+,2+,3−) = [1 2]6

[1 3]2 [3 2]2
,

V 3(1+,2+,3+) = V 3(1−,2−,3−) = 0 . (1)

These amplitudes have the correct spinor weight and are quadratic 
in the momenta. These amplitudes are only defined for complex 
momenta. For an on-shell three-point amplitude the condition 
k1 + k2 + k3 = 0 demands k1 · k2 = 0 etc. For real momenta this 
implies 〈i j〉 = [i j] = 0 and the vertices are all zero. However if we 
consider complex momenta then we can have λ1 ∼ λ2 ∼ λ3 but 
[i j] �= 0.

The tree amplitudes for Einstein gravity can be computed re-
cursively starting from these [8–10]. We show that a similar con-
struction can be used for an extended theory.

We extend this theory by adding additional three-point ampli-
tudes which are of higher power in momenta. To be non-trivial, 
these three-point amplitudes must either be functions of 〈i j〉 or 
[i j] exclusively. The simplest polynomial amplitudes arise with six 
powers of momenta and are

V α
3 (1−,2−,3−) = α〈1 2〉2 〈2 3〉2 〈3 1〉2 ,

V α
3 (1+,2+,3+) = α[1 2]2 [2 3]2 [3 1]2 (2)

where α is an arbitrary constant. We also have

V α
3 (1−,2−,3+) = V α

3 (1+,2+,3−) = 0 , (3)

there being no polynomial function with the correct spinor and 
momentum weight. These are essentially the unique choice for a 
three-point amplitude [11] (see Fig. 1).

The amplitudes in this theory can be expanded as a power se-
ries in α,

Mn(1, · · · ,n) =
∑

αr M(r)
n (1, · · · ,n) (4)
r=0
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Fig. 1. The non-zero three-point amplitudes.

where M(0)
n is the Einstein gravity amplitude. Here we focus on the 

r = 1 part of the extended theory. This being the leading deforma-
tion of the theory from Einstein gravity.

The theory we are considering would arise using field theory 
methods from the Lagrangian

L =
∫

dD x
√−g(R + Cα Rabcd Rcdef Ref

ab) (5)

where Cα = α/60. However we note that to do so would involve 
determining increasingly complicated n-point vertices as the La-
grangian is expanded in the graviton field. As we will see the 
three-point amplitudes are sufficient to completely determine the 
S-matrix.

The key element is that the entire S-matrix is determined from 
these vertices if we demand that the amplitudes factorise on sim-
ple poles. Specifically, for any partition of the external legs into 
two sets, {kL1 , kL2 · · · , K Ll } and {kR1 , kR2 · · · , kRm } with l + m = n

and l, m ≥ 2, if K = ∑l
j=1 kL j , then when K 2 −→ 0 the amplitude 

is singular with the simple pole being

Mtree
n

K 2→0−→
∑
λ=±

[
Mtree

l+1

(
kL1 , . . . ,kLl ,−K λ

) i

K 2

× Mtree
m+1

(
K −λ,kR1 , . . . ,kRm

)]
. (6)

We can excite the pole in K 2 by shifting to complex momenta 
and applying methods of complex analysis. There are two shifts 
which we use to generate the S-matrix. Firstly there is the original 
Britto–Cachazo–Feng–Witten (BCFW) shift [5],

λi −→ λi + zλ j , λ̄ j −→ λ̄ j − zλ̄i . (7)

For Einstein gravity this shift is sufficient to generate the tree level 
S-matrix [12]. Additionally we can use the Risager shift [13],

λi −→ λi + z [ j k] λη ,

λ j −→ λ j + z [k i]λη ,

λk −→ λk + z [i j]λη , (8)

where λη is an arbitrary spinor. Both shifts change the momenta to 
be functions of z whilst leaving all momenta null and preserving 
overall momentum conservation. We need both shifts to construct 
the S-matrix for the extended theory. By considering the integral∫
γ

M(z)

z
(9)

where γ is a closed contour, provided M(z) vanishes at infinity the 
unshifted amplitude, M(0), can be obtained from the singularities 
in the amplitude. These occur at points zi where K 2

i (z) = 0. At 
these points,

K 2
i (z) = − (z − zi)

zi
× K 2

i (0) (10)

and we obtain,
Fig. 2. Factorisations of the n-point all-plus.

Fig. 3. Factorisations of the four-point single minus amplitude.

Mtree
n (0) =

∑
i,λ

Mtree,λ
li+1 (zi)

i

K 2
i (0)

Mtree,−λ
mi+1 (zi), (11)

where the summation over i is only over factorisations where 
there are shifted legs on both sides of the pole. This is the on-
shell recursive expression of [5]. Note that if M(z) does not vanish 
at infinity this does not imply factorisation is insufficient to deter-
mine the amplitude but only that particular shift can not be used 
to engineer the amplitude.

Expressions obtained from (11) are not manifestly symmetric 
as the choice of shift legs breaks crossing symmetry, however sym-
metry is restored in the sum. This is a highly non-trivial check that 
the amplitude has been computed successfully.

2. Generating the amplitudes

In this section we give some of the details of the process of 
generating the leading α contribution to the S-matrix.

Four-point amplitudes: The three-point amplitudes are our inputs 
so the first outputs are the four-point amplitudes. There are three 
independent helicity configurations,

M4(1+,2+,3+,4+) , M4(1−,2+,3+,4+) ,

M4(1−,2−,3+,4+) . (12)

Of these the first two are vanishing in Einstein gravity with 
only the last being non-zero: which is consequently termed the 
“Maximally-Helicity-Violating” (MHV) amplitude. For M(1)

4 the re-

verse is true: M(1)
4 (1−, 2−, 3+, 4+) = 0 since there are no possible 

factorisations, while M(1)
4 (1+, 2+, 3+, 4+) and M(1)

4 (1−, 2+, 3+, 4+)

are non-zero.
The factorisations of the n-point all-plus amplitude are shown 

in Fig. 2, and the factorisations of the four-point single minus am-
plitude are shown on Fig. 3.

These factorisations can be excited using either of the shifts 
in (7) and (8). In the all-plus case only the second results in an 
amplitude with the correct symmetries. This in indication that (7)
yields a shifted all-plus amplitude that does not vanish at infinity. 
Conversely, for the single minus amplitude we must use the BCFW 
shift. Performing the shifts and evaluating the amplitudes we ob-
tain

M(1)
4 (1+,2+,3+,4+) = 10

(
st

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉
)2

stu ,

M(1)
4 (1−,2+,3+,4+) =

(
[2 4]2

[1 2] 〈2 3〉 〈3 4〉 [4 1]

)2
s3t3

u
. (13)

The other non-zero amplitudes are available by conjugation. For 
the all-plus amplitude the recursion generates terms that contain 
the arbitrary spinor λη , however the sum of terms is independent 
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Fig. 4. Factorisations of the five-point single minus amplitude.
of λη and simplifies to the above. These four-point amplitudes due 
to a R3 term have been computed using field theory methods long 
ago [14]. These amplitudes vanish to all orders in a supersymmet-
ric theory: a fact used show supergravity was two-loop ultra-violet 
finite [15,16]. The above expressions are in a spinor helicity ba-
sis but agree once this is accounted for. In [17] these four-point 
amplitudes were also obtained using a “all-line recursion” tech-
nique where all legs have shifted momenta. These expressions also 
appear as the UV infinite pieces of both two-loop gravity in four 
dimensions [18,19] and one-loop gravity in six dimensions [20].

Five-point amplitudes: As before the shift (8) yields an all-plus 
amplitude that is independent of λη and has full crossing symme-
try:

M(1)
5 (1+,2+,3+,4+,5+) =

⎛
⎝∑

P6

T A
(1,2,3),(4,5) +

∑
P3

T B
(1,2,3),4,5

⎞
⎠

(14)

where

T A
(1,2,3),(4,5)

= 10
[1 4]
〈1 4〉

[5 3] [5 2]

〈1η〉2 〈4η〉
[2 3]2

〈4 5〉 × [5|K14|η〉[2|K14|η〉[3|K14|η〉 ,

(15)

T B
(1,2,3),4,5

= −10
[1 4] [1 5] [2 3] [1|K23|η〉2[5|K23|η〉[4|K23|η〉

〈2 3〉 〈2η〉2 〈3η〉2

[4 5]
〈4 5〉 (16)

and P3 denotes summation over the three cyclic permutations 
of legs 1,2 and 3. P6 denotes the three permutations of P3 to-
gether with interchange of legs 4 and 5. The λη independence of 
M(1)

5 (1+, 2+, 3+, 4+, 5+) is not manifest.
The factorisations of the five-point single minus amplitudes are 

more varied as shown on Fig. 4. Using the BCFW shift on (λ̄1, λ2)

we obtain the amplitude

M(1)
5 (1−,2+,3+,4+,5+)

= 10

[1 2]2

⎛
⎝ ∏

i, j=2,3,4,5,i< j

[i j]

⎞
⎠

×
(

〈1 5〉
[1 5]

[2 5]3

〈3 4〉 + 〈1 3〉
[1 3]

[2 3]3

〈4 5〉 + 〈1 4〉
[1 4]

[2 4]3

〈5 3〉

)

+ 〈1 2〉2

〈3 4〉 〈3 5〉 〈4 5〉∏
i=3,4,5 〈1 i〉

(
[2 3]5 [4 5] 〈1 3〉5

〈2 3〉

+ [2 4]5 [5 3] 〈1 4〉5

〈2 4〉 + [2 5]5 [3 5] 〈1 5〉5

〈2 5〉

)

+ 1

〈1 2〉2 〈3 4〉 〈3 5〉 〈4 5〉

(
[2 3] [4 5]5 〈1 5〉3 〈1 4〉3

〈2 3〉
Fig. 5. Factorisations of the five-point MHV amplitude.

+ [2 4] [5 3]5 〈1 3〉3 〈1 5〉3

〈2 4〉 + [2 5] [3 4]5 〈1 4〉3 〈1 3〉3

〈2 5〉

)
. (17)

The five-point MHV amplitude is non-zero. The non-zero fac-
torisations of the amplitude are shown in Fig. 5.

This amplitude can be obtained using a BCFW shift of either 
the two negative helicity legs or of a negative–positive pair. Shift-
ing the two negative legs generates the expression (using only the 
second factorisation of Fig. 5),

M(1)
5 (1−,2−,3+,4+,5+) = −s34

〈1 5〉
[1 5]

[3 4]2 [3 5]3 [4 5]3

[1 2]2 [2 3] [2 4]

−s45
〈1 3〉
[1 3]

[4 5]2 [4 3]3 [5 3]3

[1 2]2 [2 4] [2 5]
− s53

〈1 4〉
[1 4]

[5 3]2 [5 4]3 [3 4]3

[1 2]2 [2 5] [2 3]
. (18)

This completes the set of five-point amplitudes. We can con-
tinue in this way generating the tree-level S-matrix. We have 
made available M(1)

n for n ≤ 7 in Mathematica format at 
http://pyweb.swan.ac.uk/~dunbar/Smatrix.html. The 
amplitudes have been generated up to n = 8 and have the correct 
symmetries, are η-independent and have the correct leading soft-
limits.

We have evaluated amplitudes in a R + αR3 theory. In ref. [21]
amplitudes in Yang–Mills theory extended by F 3 terms were stud-
ied. Then using double copy techniques and the KLT relations [22]
graviton scattering amplitudes were derived upto n = 6. As noted 
in [21] these correspond to amplitudes in a R + αR3 + √

αR2φ

theory. The four-point amplitudes in the two theories are propor-
tional [17,21] but beyond four-point the two sets of amplitudes 
are functionally different. The all-plus amplitude in the two theo-
ries remain proportional for n > 4 with

M(1),R3+R2φ
n (1+,2+, · · ·n+) = 5

2
M(1),R3

n (1+,2+, · · ·n+) (19)

and we confirm this for n ≤ 7.

3. Soft limits

Graviton scattering amplitudes are singular as a leg becomes 
soft. Weinberg [23] many years ago presented the leading soft 
limit. If we parametrise the momentum of the n-th leg as kμ

n =
t × kμ

s then in the limit t −→ 0 the singularity in the n-point am-
plitude is

Mn −→ 1

t
× S(0) × Mn−1 + O (t0) (20)

where Mn−1 is the n − 1-point amplitude. The soft-factor S(0) is 
universal and Weinberg showed that (20) does not receive correc-
tions in loop amplitudes.

http://pyweb.swan.ac.uk/~dunbar/Smatrix.html
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Recently it has also been proposed [24–26] that the sub-leading 
and sub-sub-leading terms are also universal. This can be best ex-
posed, when a positive helicity leg becomes soft, by setting

λn = t × λs , λ̄n = λ̄s . (21)

In the t −→ 0 limit the amplitude has t−3 singularities. At tree 
level the amplitudes satisfy soft-theorems [25] whereby their be-
haviour as t −→ 0 is

Mtree
n = St Mtree

n−1 + O (t0)

=
(

1

t3
S(0) + 1

t2
S(1) + 1

t
S(2)

)
Mtree

n−1 + O (t0) (22)

where, for a positive helicity-leg becoming soft [25,27,28]

S(0) = −
n−1∑
i=1

[s i] 〈i α〉 〈i β〉
〈s i〉 〈s α〉 〈s β〉 , (23)

S(1) = −1

2

n−1∑
i=1

[s i]
〈s i〉

( 〈i α〉
〈s α〉 + 〈i β〉

〈s β〉
)

λ̄ȧ
s

∂

∂λ̄ȧ
i

, (24)

S(2) = 1

2

n−1∑
i=1

[i s]
〈i s〉 λ̄

ȧ
s λ̄

ḃ
s

∂

∂λ̄ȧ
i

∂

∂λ̄ḃ
i

. (25)

The proof of the soft theorems follows from Ward identities 
of extended Bondi, van der Burg, Metzner and Sachs (BMS) sym-
metry [29]. Although exact for tree level amplitudes these receive 
loop corrections [27,30,31].

Whether the soft theorems extend beyond Einstein gravity has 
been examined before. In particular the leading soft behaviour can 
often be used as a check upon amplitudes such, e.g. in [21]. The 
leading and sub-leading limits were shown to hold for a R3 inser-
tion in [32]. Here we examine the amplitudes and, in particular, 
test the sub-sub-leading soft behaviour.

We can summarise the behaviour of the leading amplitudes, 
M(1)

n , simply by stating:

All the amplitudes calculated satisfy the soft limits of 
(22) up to and including the sub-sub-leading term.

We have verified this for all helicity amplitudes up to n = 8. 
Note: to check (22) one must implement momentum conservation 
consistently between the n-point amplitudes and the n − 1-point 
amplitudes which in essence specifies how the point t = 0 is ap-
proached. These are several ways to do this. We have followed 
the prescription of [25] but alternative implementations are pos-
sible [27,28].

In principle we could have found a behaviour of the form

M(1)
n −→ St M(1)

n−1 + Sα
t M(0)

n−1 + Rn (26)

where Sα
t would be an α correction to the soft functions and Rn is 

a non-factorising term. In terms of this we find Sα
t = Rn = 0. Since 

the theory we are considering is higher derivative it is not surpris-
ing that the leading and sub-leading parts of Sα

t vanish however it 
is interesting that the vanishing continues for the sub-sub-leading 
– unlike the loop corrections to Einstein gravity.

Incidentally as a consequence of eq. (19) the amplitude

M(1),R3+R2φ
n (1+, 2+, · · ·n+) also satisfies the soft theorems to sub-

sub leading level.
Fig. 6. Factorisations of the four-point MHV amplitude at α2.

4. Other theories

We have chosen to extend gravity using a three-point vertex 
and use a diagrammar approach whereby we only consider the 
on-shell amplitudes. There is, of course, complementarity between 
this approach and that of Lagrangian based field theory. The single 
choice of three-point amplitude corresponds to the single R3 field 
density that affects on-shell amplitudes. This makes the extended 
S-matrix simply depend upon the single parameter α.

If we were to deform Einstein gravity by an additional four-
point amplitude then there are more choices consistent with sym-
metry and spinor weight, e.g. we could have

M4(1+,2+,3+,4+)

= α1(〈1 2〉4 〈3 4〉4 + 〈1 3〉4 〈2 4〉4 + 〈1 4〉4 〈2 3〉4)

+ α2(〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉 + permutations)2 + · · · (27)

From a field theory perspective this freedom corresponds to the 
observation that there are multiple R4 tensors that contribute to 
on-shell amplitudes [33].

The same issue arises when we consider the further expansion 
in α. If we consider M(2)

4 (1−, 2−, 3+, 4+) there is a single factori-
sation as shown in Fig. 6. The amplitude

M(2)
4 (1−,2−,3+,4+) = 〈1 2〉4 [3 4]4

(
tu + βs2

s

)
(28)

has the correct factorisation for any choice of β . This ambiguity 
means we also have to specify the four-point amplitude to de-
termine the S-matrix. In the diagrammar approach this ambiguity 
arises due to the existence of a polynomial function with the cor-
rect symmetries and spinor and momentum weight. From a field 
theory perspective, additional counterterms can contribute to this 
amplitude. Specifically, we could deform the theory via

R −→ R + Cα R3 + Cβ D2 R4 (29)

and the four-point amplitude is only specified once Cα and Cβ are 
determined.

5. Conclusion

We have constructed the (leading part) of the S-matrix of an 
extended theory of gravity starting from three-point amplitudes 
and only demanding factorisation. The theory is extended by the 
addition of amplitudes which are polynomial in momentum, thus 
implicitly imposing locality and unitarity on the S-matrix. We also 
require the amplitudes to have the correct spinor helicity as ap-
propriate for massless particles. The S-matrix is then generated en-
tirely from on-shell amplitudes by demanding factorisation. Specif-
ically, we have extended the theory by the addition of three-point 
amplitudes which, from a field theory perspective, corresponds to 
introducing R3 terms. This S-matrix differs from that obtained by 
applying double copy or KLT techniques to a F 3 extension of Yang–
Mills.

Beyond the leading part, polynomial amplitudes exist at higher 
point and these must be specified to fully determine the S-matrix. 
Consistency of this approach and a field theoretic approach beyond 
leading order requires a correspondence between these polynomial 
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amplitudes and the counter terms contributing to on-shell ampli-
tudes.

We find that these amplitudes satisfy the same soft theorems 
as the tree amplitudes of Einstein gravity up to and including the 
sub-sub leading terms. It is interesting that these theorems are 
robust to deformations of Einstein gravity even at the sub-sub-
leading level particularly given the link to BMS symmetry which 
plays an important role in the recent understanding of black hole 
soft hair [34].
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