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Neural Network Boundary Detection for 3D
Vessel Segmentation

Robert Ieuan Palmer and Xianghua Xie

Department of Computer Science, Swansea University, UK

Abstract. Conventionally, hand-crafted features are used to train ma-
chine learning algorithms, however choosing useful features is not a trivial
task as they are very much data-dependent. Given raw image intensities
as inputs, supervised neural networks (NNs) essentially learn useful fea-
tures by adjusting the weights of its nodes using the back-propagation
algorithm. In this paper we investigate the performance of NN archi-
tectures for the purpose of boundary detection, before integrating a
chosen architecture in a data-driven deformable modelling framework
for full segmentation. Boundary detection performed well, with bound-
ary sensitivity of > 88% and specificity of > 85% for highly obscured
and diffused lymphatic vessel walls. In addition, the vast majority of all
boundary-classified pixels were in the immediate vicinity of the ground
truth boundary. When integrated into a 3D deformable modelling frame-
work it produced an area overlap with the ground truth of > 98%, and
both point-to-mesh and Hausdorff distance errors were less than other
approaches. To this end it has been shown that NNs are suitable for
boundary detection in deformable modelling, where object boundaries
are obscured, diffused and low in contrast.

1 Introduction

Deformable models are popular techniques for both image segmentation [18–20,
12, 13, 5, 14, 6] and tracking [1], and have also been used specifically for vessel
segmentation [21, 2, 4, 9, 7, 3]. Typically, an initial model is aligned with a test
image before being deformed to fit the object boundary. By using bottom-up
data-driven constraints as well as top-down prior shape knowledge, they have
the ability to overcome appearance inconsistencies which are often present in
images from numerous modalities.

To avoid contour entanglement, search paths are regularly defined along the
surface normal direction for each of the initial contour points. The search path
coordinates with the strongest boundary responses are then taken as the con-
tour points’ new position. Learning-based boundary detectors are therefore often
necessary in order to drive the initial model towards the object boundary, and
have been used in medical image deformable modelling [12, 15, 11]. Often, these
studies consist of hand-picking useful features to distinguish between boundary
and non-boundary pixels, e.g. Haar features [15], and gradient steerable features
[11]. However, choosing appropriate features to use is not a trivial task as useful



Fig. 1. Overview of the proposed lymphatic vessel segmentation at the testing stage.

features are very much data-dependent, with object type, image modality and
image contrast all effecting the usefulness of a feature. In addition, highly ab-
stract features may be very useful for boundary detection, therefore by using
hand-crafted features it is possible to miss out on some additional, potentially
useful information.

Multilayer NNs are composed of multiple processing layers which are them-
selves composed of multiple nodes that are interconnected by weighted con-
nections. An error is computed by comparing the forward-propagation of the
inputs through the network with the desired output, and the back-propagation
algorithm is implemented to adjust the weights. The network therefore fits a
function to a supervised output given the input values and output prediction,
essentially learning abstract representations of the input data. As a result, the
weight of each node is essentially an individual feature, meaning the network is
capable of learning useful features. For these reasons NNs are popular learning
systems for image recognition, and have been used specifically for edge detection
[16, 10].

Due to the nature of the imaging modality, slices tend to have a highly promi-
nent boundary appearance on the left hand side of the vessel, whereas they are
extremely obscure to the right hand side. This makes choosing features capable
of identifying all boundary pixels very challenging. We propose inputting raw
intensity values into a neural network to be used as a learning-based boundary
detector for deformable model-based segmentation. We perform experiments on
ex-vivo confocal microscopy images of the lymphatic vessel, where vessel walls
are very low in contrast with many weak edges. Pixels are classified as being on
the vessel’s outer wall or not, and mesh regularisation is used for complete 3D
segmentation.

2 Method

The proposed framework consists of an initial segmentation based on a simple
intensity filter on each individual image slice, which is used to generate an ini-
tial mesh model. Following this, an iterative deformable modelling process is
implemented which deforms the initial mesh towards the lymphatic vessel wall.
An overview of the proposed framework is shown in Figure 1. For full vessel
segmentation, the segmentation framework is implemented twice; once for the
outer wall and once for the inner wall; so that segmentation of both walls are



carried out independently.

The initial meshes are generated by first carrying out an initial segmenta-
tion on each individual image slice. These segmentation contours have the same
number of points, making it possible to define edges between slices to generate
a face-vertex mesh.

The deformable modelling process is iterative and stops when the maximum
number of iterations is reached. This process consists of two components. Firstly
a 2D boundary detector is carried out on each individual slice, where search paths
are defined along the normal direction of each mesh vertex. A neural network is
used for boundary detection in order to learn useful features, rather than spend-
ing time hand crafting them. Finally, 3D mesh regularisation is implemented on
the entire mesh, using a B-spline-based method. This ensures a smooth surface
not only on each 2D contour, but also between contours in the third dimension.

On every iteration the boundary detector’s search path decreases in order
to reach convergence, and the degrees of freedom associated with the mesh reg-
ularisation increases to allow the mesh to deform to areas of high curvature.
As a result, the deformable modelling process can be thought of as an iterative
refinement process.

2.1 Initial Segmentation

Before deformable modelling, an initial mesh model must be defined. This sec-
tion describes an initial 2D intensity-based segmentation on a slice-by-slice basis,
before combining the estimated 2D contours to generate a simple 3D mesh struc-
ture.

It is assumed that the pixel intensities within the lymphatic vessel walls are
significantly higher than the remaining pixels, therefore it is assumed that the
pixels with highest local gradient are on the boundary. To this end, a simple 2-
rectangle Haar-like filter [17] is employed to highlight the pixels of high gradient.
For every pixel in the image a filter response is computed as follows;

f =

N∑
k=0

µk
1 −

N∑
k=0

µk
2 (1)

where µk
1 is the intensity of pixel k in rectangle 1, µk

2 is the intensity of pixel k
in rectangle 2, and N is the number of pixels in each rectangle.

The filter is applied to the image in polar coordinates, and for each column
in the polar image the pixel with the optimal filter response is identified. As the
appearance of the outer and inner walls are opposite each other, so too will the
filter response. Therefore the maximum value of Equation 1 is used to identify
pixels on the inner wall, and the minimum value is used to identify outer wall
pixels. A filter size of 1× 21 is centred at the test pixel, where N = 10 pixels are
summed in rectangle 1, and N = 10 pixels are also summed in rectangle 2. The



Fig. 2. Left: Schematic diagram of local patch intensity extraction. Right: Example
NN architecture with 2 hidden layers.

contour in polar coordinates is then converted back to cartesian coordinates, and
is smoothed by fitting the contour to an ellipse. This is done by optimising the
conic equation for an ellipse using the least-squares algorithm.

This process is repeated for every slice in the 3D image. However, it is also
assumed that the boundary walls do not significantly change between adjacent
slices, therefore the smoothed contour from the previous slice is used to help es-
timate the contour on the next slice. This is done by restricting the search space
for finding the optimal filter response in each polar image column. A contour
point in column j in the polar image of slice i + 1 must be within ±10 of the
contour point in column j in slice i.

Given that each slice was converted to polar images of the same size, the
number of contour points on each slice is also equal. Therefore contour point j
of slice i is correspondent to contour point j in slice i+1. This makes generating
the mesh a simple task by simply defining mesh edges between corresponding
contour points in adjacent slices.

2.2 Neural Network Boundary Detection

Search paths are defined along the inward and outward normals of each vertex
of the initial mesh. The normal directions can be straightforwardly computed
given the vertices’ neighbours. Each search path coordinate is tested to get a
boundary probability score, and the coordinate with the highest score on each
path is considered the new vertex position.

Raw intensity values from a local patch are inputted into a NN for each
search path coordinate. Layers of nodes are connected by weights, and each
node is treated as a perceptron. Their activations are then calculated by passing
their weighted sum of inputs through an activation function. Given a supervised
output the weights are optimised using the back-propagation and Levenberg-
Marquardt algorithms.



To ensure that the appearance of the boundary pixels’ local patches are ro-
tationally invariant, the local patch is aligned with the search path. This comes
at no extra computational cost as the normal directions have already been com-
puted in order to define the search paths. Local patches are down-sampled to
reduce the number of network inputs, which subsequently speeds up the train-
ing process. Max-pooling is used for this purpose. The process involves sliding
a non-overlapping pooling window across the image and extracting the maxi-
mum intensity value in each window. While this is an effective down-sampling
technique, it also creates position invariance over larger local regions. The size
of the pooling window and its stride are chosen to ensure a 10 × 5 output in
all cases. The fully-connected neural network architecture is constructed in the
conventional manner, with the 50 pixels of the local patch being represented
by an input layer of 50 nodes. The output layer consists of 2 nodes represent-
ing boundary and non-boundary, essentially making this a binary classification
problem. All nodes in adjacent layers are fully connected. A schematic diagram
of the local patch extraction, and an example of a neural network architecture
with 2 hidden layers are shown in Figure 2.

An additional smoothing process follows boundary detection. Given the as-
sumption that both the inner and outer vessel walls are tubular in shape, any
distant outliers from an ellipse-like shape on any slice are discarded, and are
replaced by “interpolated” contour points. Given a 2D contour V containing n
points after boundary detection, an ellipse is fitted which yields a new contour of
n points, Ve. Outliers in V are identified if the distance to Ve is above threshold
t = 25 pixels. Any outliers in V are then replaced by their nearest neighbour in
Ve. This small step becomes important especially when detecting the boundary
of the inner wall, where a valve-like structure is seen at the centre of the vessel.
This avoids vertices converging near the valve instead of the inner vessel wall.

2.3 Segmentation with B-spline Mesh Regularisation

Before boundary detection, there is an original set of mesh vertices V , and after
boundary detection there is now a new set of mesh vertices V ′. As there is no
shape restrictions in these components (apart from the length of the bound-
ary detector search path itself), an additional process is needed to preserve the
mesh’s smooth surface. We use B-spline based mesh regularisation, where a local
transformation T (x, y, z) between V and V ′ is estimated with 3D B-splines. The
transformation is then performed on V using free-form-deformation, so that it
fits as close as possible to V ′. As a result, the smoothness of the transformed
mesh is a function of the number of B-spline degrees of freedom.

The FFD is estimated by warping an underlying voxel lattice controlled by a
set of control points. The control points are defined as φhi,j,k of size nx×ny×nz,



which are separated by δ, and the FFD is formulated as follows;

T (x, y, z) =

3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n (2)

where Bl represents the lth basis function of the B-spline. The voxel lattice
positions are i = bx/nxc − 1, j = by/nyc − 1, and k = bz/nzc − 1. u = x/nx −
bx/nxc, v = y/ny − by/nyc, and w = z/nz − bz/nzc are the fractional positions
along the lattice [8]. In addition, the non-rigid transformation is estimated in
a multi-resolution procedure which is expressed as a summation of FFDs at
multiple resolutions H [8].

TH(x, y, z) =

H∑
h=1

Th(x, y, z) (3)

At each mesh resolution h, the voxel lattice is warped by moving the set of
control points φhi,j,k which is consequential of δh, and computed is δh = δ0/2

h,
where δ0 is the original control point spacing and h is the resolution level. The
B-spline parameters φhi,j,k, are optimised by minimising the following energy
function with gradient descent;

E(φ) = Es(V
′, V ) + λEr(T ), (4)

where Er is a smoothness cost and λ is a constant that defines the contribution
of the smoothness term. Es, is a similarity metric, which is a sum-of-squared-
difference (SSD) metric between V and V ′.

A high δ yields less control points that are sparsely separated, yielding less
degrees of freedom. A low δ increases the number of control points, making
interpolation distances shorter, yielding more degrees of freedom. A balance os
found to allow V to deform as close to the boundary positions as possible (V ′),
while resulting in a sufficiently smooth surface. Two parameters are changed
on every iteration in order to achieve such a trade-off. Firstly the boundary
detector’s search path decreases on every iteration, allowing the system to reach
convergence more quickly. Secondly, as the amount of possible deformation is
reduced at each iteration, it is less likely that the mesh surface will get tangled.
Therefore on every iteration, the value of δ is also reduced.

3 Application and Results

The lymphatic vessel was labelled on six 512×512×512 ex-vivo confocal micro-
scopic volumes. For each volume the vessel’s inner and outer wall were labelled
on every tenth slice, and ground truth meshes were then generated by manu-
ally defining mesh edge connections. Inner and outer wall ground truths were
obtained independently, and so all experimental results are also evaluated inde-
pendently. Gaussian smoothing was applied to the image volumes in an attempt
to remove noise, and all experiments were performed with leave-one-out cross-
validation.



3.1 Boundary Detection Results

Before obtaining full segmentation, initial classification tests were carried out on
several neural network architectures for boundary detection. The effect of the
number of nodes in the network’s first hidden layer, the total number of hidden
layers, and the local patch size were analysed before deciding on an architecture
for segmentation. In all cases 50,000 sample pixels were used for training, 50% of
which were boundary (positive) and 50% non-boundary (negative). Search paths
were defined for all ground truth vertices with a length of 30 pixels at either side.
Non-boundary samples were randomly selected from these search paths. At the
testing stage a search path of 30 pixels was also used, resulting in 61 path pixels
for each point. All of the search path coordinates at this stage were classified as
boundary or non-boundary.

Inner wall classification sensitivity and specificity from all initial tests ranged
between 87%-92%, and 74%-85%, respectively, while outer wall sensitivity and
specificity ranged between 87%-92% and 77%-87%. This indicates that at first at-
tempt NNs can produce acceptable results for obscured lymphatic vessel bound-
ary detection. The detectors’ sensitivity values are significantly higher and have
lower variance than their specificity, which is to be expected as the boundary re-
gion is highly diffused. Given this, it is important to find an architecture which
produces the highest specificity results as possible to accurately classify non-
boundary pixels close to the boundary.

Architectures with 1, 2, 5, 15, 40 and 100 nodes were tested. These tests
showed little variance in the inner and outer wall’s sensitivity (2% and 3% respec-
tively), however the specificity variance was significant larger (11% and 10%).
Furthermore the specificity for both walls increased with increasing nodes, and
plateaued at 40 nodes with 85% and 87%. This suggests that a sufficient num-
ber of nodes is necessary to discriminate between boundary and non-boundary
pixels. Architectures with 1, 2 and 3 layers were also tested, however increas-
ing the layers had a marginal detrimental effect on the specificity of both walls
(∼ 2%), possibly due to overfitting. Given that the boundary area is diffused,
highly abstract and complex features may be too specific for good generalisa-
tion, suggesting that a simple NN architecture of one hidden layer is sufficient for
boundary detection. Networks were trained by extracting patch sizes of 20× 10,
40 × 20 and 80 × 40 were also extracted, which showed that there was little
difference between extracting larger patch sizes (< 1%). However, there was a
drop of 3% in the specificity of inner wall classification for the smallest patch,
suggesting that a relatively large patch is needed to incorporate useful boundary
features.

Based on these results a NN architecture was chosen for full segmentation.
For simplicity the same architecture is used for both inner and outer walls.
An architecture with 40 nodes in the first hidden layer is sufficient, and larger
patches of 40×20 or 80×40 should be extracted due to their higher specificity for
the vessel’s inner wall. For simplicity and to reduce computation, the smaller of



Fig. 3. Example segmentation results. From left to right; 1st column: Image slices.
2nd column: Inner and outer wall segmentation results. Green contours are the ground
truth and blue contours are the result. 3rd column: Resulting inner wall mesh with
corresponding slices. 4th column: Resulting outer wall mesh with corresponding slices.

the two was chosen. Finally a simple architecture of one hidden layer produced
the best specificity results. To this end, the NN boundary detector used for
segmentation has a single hidden layer of 40 nodes with local patch extraction
of size 40×20. This architecture produced boundary sensitivities of 88±2% and
91±4% for the inner and outer walls receptively, and specificities of 85±3% and
87 ± 1%. Furthermore, the vast majority of incorrectly classified non-boundary
pixels were in the immediate vicinity of the ground truth boundary. Given that
the appearance of the vessel is diffused, classification errors would be expected
in this small region.

3.2 Segmentation Results

The proposed method was compared to two alternative approaches, as well as our
initial segmentation method. For fair comparison our results were only compared
to other methods working on the same dataset. To our knowledge, Essa et al. [3]
are the only others to do this, and so we compared our results to their minimum
s-excess graph segmentation. This involved formulating a graph to segment both



Method PMD (vox) HD2 (vox) AO (%) Sens. (%) Spec. (%)

S-Excess Graph [3] 3.1 ± 1.9 9.8 ± 4.3 95.5 ± 3.2 96.9 ± 3.1 99.2 ± 0.8
Intensity-based 5.9 ± 0.8 48.5 ± 7.1 92.4 ± 1.5 93.0 ± 1.4 99.1 ± 0.1

Initial Seg. 2.9 ± 0.4 9.3 ± 0.9 96.4 ± 0.4 97.0 ± 0.4 99.6± 0.1
Proposed 1.6± 0.1 5.8± 0.5 98.0± 0.4 99.1± 0.4 99.2 ± 0.2

Table 1. Inner wall quantitative results comparison.

Method PMD (vox) HD2 (vox) AO (%) Sens. (%) Spec. (%)

S-Excess Graph [3] 2.0 ± 0.8 7.4 ± 3.1 97.6 ± 1.0 98.7 ± 1.1 99.1 ± 0.6
Intensity-based 4.5 ± 1.4 46.9 ± 8.1 95.0 ± 1.8 96.9 ± 1.4 98.3 ± 0.8

Initial Seg. 1.7 ± 0.2 5.7 ± 0.3 98.2 ± 0.1 99.2 ± 0.1 99.0 ± 0.3
Proposed 1.5± 0.1 5.4± 0.4 98.4± 0.1 99.2± 0.2 99.2± 0.03

Table 2. Outer wall quantitative results comparison.

inner and outer walls simultaneously in polar coordinates, and a hidden Markov
model was used to track the vessel walls between the columns. Secondly, a simple
intensity-based approach was implemented using Haar-like filtering. This was the
same filtering used in Section 2.1, but without contour smoothing in the carte-
sian coordinate system. For the remainder of this paper this approach is referred
to as intensity-based segmentation. In doing this we have allowed comparison
with a purely data-driven approach which had no shape regularisation, and to
a completely different segmentation approach. Evaluation was performed on a
2D slice-by-slice basis in polar coordinates. The point-to-mesh distance (PMD),
Hausdorff distance (HD), area overlap (AO), and foreground and background
specificity and sensitivity were the metrics used.

Figure 3 shows an example segmentation of the proposed method, which
shows close correlation with the ground truth. Smooth resulting mesh surfaces
are also shown, with no tangled or extremely faceted mesh faces. Tables 1 and
2 show that the proposed method produced the lowest PMD and HD, and the
highest AO, specificity and sensitivity results. Figures 4 and 5 compare the qual-
itative slice segmentations and mesh results for the inner and outer walls of the
data-driven approaches.

It is immediately noticeable that the simplistic intensity-based segmentation
produced significantly worse quantitative results, and large regions of both walls
deviated significantly from the ground truth. Noticeably, the boundary detec-
tor has caused inner wall vertices to converge at the valve at the centre of the
vessel, as its appearance is similar to the wall itself. The lack of any shape reg-
ularisation is therefore unsuitable for such data where the vessel walls are not
always prominent. The initial segmentation results are significantly better. By
fitting each slice contour to an ellipse the majority of correctly deviated vertices
have forced the incorrectly placed vertices nearer the boundary walls. This sim-
ple shape regularisation approach has had dramatic effects on the smoothness



Fig. 4. Comparison results on image slices. From left to right; 1st column: Ground
truth. 2nd column: Intensity-based segmentation. 3rd column: Initial segmentation. 4th

column: Proposed framework.

of the mesh surface, however it does not allow enough degrees of freedom to
reach boundary areas of high curvature. The results from the proposed method
show that the additional deformable modelling process is necessary after ini-
tial segmentation. The iterative boundary detector allows deformation towards
areas of high curvature, which is represented by both the low PMD and HD er-
rors. Meanwhile the iterative mesh regularisation maintains the mesh’s smooth
surface, which can be seen in Figure 5.

Compared to the minimum s-excess graph method, the proposed method
still produced better segmentation results. The tracking-based method produced
PMD and HD metrics that were higher for the outer wall, and almost double
that of the proposed method for the inner wall. This is also reflected in the
AO, specificity and sensitivity metrics. This may be a result of the tracking



Fig. 5. Comparison mesh results. The top row shows the inner vessel wall mesh and
the bottom row shows the outer wall mesh. From left to right; 1st column: Ground
truth. 2nd column: Intensity-based segmentation. 3rd column: Initial segmentation. 4th

column: Proposed framework.

model, however a likely cause is the hand-crafted edge features used for emission
probability. This being the case it would show that using learned features from
algorithms such as NN has an advantage for edge detection in such data.

4 Conclusion

A fully automatic deformable modelling method has been presented for the seg-
mentation of 3D lymphatic vessels in confocal microscopy images. A bottom-up,
data-driven framework was used, which included a learning-based boundary de-
tector and mesh regularisation for shape preservation. A simple intensity-based
initial segmentation was first adopted which was followed by a deformable mod-
elling system. A neural network was used for boundary detection, which allowed
suitable features to be learned instead of hand-crafting them. This proved par-
ticularly useful, as choosing features for edges with varying degrees of contrast
is not a trivial task. It was also shown that this type of boundary detection was
able to accurately detect both vessel walls, proving it was capable of detecting
edges of highly varying contrasts. Mesh regularisation was also necessary in order
to obtain smooth vessel surfaces.
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