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Abstract

In this article, we are concerned with averaging principle for stochastic hyperbolic-parabolic
equations driven by Poisson random measures with slow and fast time-scales. We first es-
tablish the existence and uniqueness of weak solutions of the stochastic hyperbolic-parabolic
equations. Then, under suitable conditions, we prove that there is a limit process in which
the fast varying process is averaged out and the limit process which takes the form of the
stochastic wave equation is an average with respect to the stationary measure of the fast
varying process. Finally, we derive the rate of strong convergence for the slow component
towards the solution of the averaged equation.

Keywords. Averaging principles, stochastic hyperbolic-parabolic equations, Poisson ran-
dom measures, two-time-scales.
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1. Introduction

Let (Q, F,P) be a complete probability space with a natural filtration {F;};>o satisfying
the usual condition. Fix L > 0 arbitrarily, we denote D := (0, L), i.e., D is a fixed, open,
bounded interval of the real line R. Let H denote the Hilbert space L?(D) equipped with the
inner product (-, -)g and the corresponding norm || - ||. Let 7" > 0 be fixed arbitrarily. In this
paper, we are concerned with the following stochastic hyperbolic-parabolic (i.e., wave-heat)
equations driven by both Brownian motions and Poisson random measures,

(5O = AXG(€) + F(XF(), YE(E)) + g(XF (€)W
+ [ h(XE(€ ©. )N (t, dz),
G

f”Ygff):lAmf) LF(XF(€).Y7(9) + JzG (X7 (€). Y7 (W7 )
+ [, HXE (6 Y2 (€), D50, d2),
Xi(6) =YF(©) =0, (&) €dDx(0,7],

O
| X5(8) = Xo(6), Y5(&) = Yo(é), W“)\t _o=Xo(€),£ € D,
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for ¢ > 0 and for (§,t) € D x [0,7T], where the drift coefficients f(-,-) : R x R — R,
F(-,-) : R x R — R and the diffusion coefficients ¢g(-) : R - R, G(-,-) : R x R — R, h(-,-) :
RxZ —R,H(:,-,-) : RxRxZ — R are real-valued measurable functions. The detailed con-
ditions on them will be specified in the next section. Here, {W}'};~o and {W?2};>¢ are given
independent real-valued {F; };>o-Brownian motions, and Ny (dt, dz) and N5(dt,dz) are com-
pensated martingale measures associated with given mutually independent Poisson random
measures Ni(dt,dz) and N5 (dt,dz), respectively. We assume that N;(dt,dz) and N5(dt,dz)
are also mutually independent of {W!};>o and {W?2},50. Before proceeding, let us explicate
the Poisson random measures Ni(dt,dz) and N5 (dt,dz). Let (Z,B(Z)) be a given measur-
able space and v(dz) be a o-finite measure on it. Let Dyi,i=1,2, be two countable subsets
of R,. Furthermore, let p;,t € D,1, be a stationary Fi-adapted Poisson point process on Z
with characteristic v and let p?,t € D,z be a stationary JF-adapted Poisson point process
on Z with characteristic £. Denote by N'(dt,ds) the Poisson random (counting) measures
associated with pj, 7 = 1, 2, respectively, i.e., for i = 1,2

Ni(t,A) == > Ialp), t>0, AcB(Z)

seD ; ,s<t
Pt

The corresponding compensated Poisson martingale measures are respectively defined by the
following 3
Ni(dt,dz) := N'(dt,dz) — v(dz)dt

and ]
N5 (dt,dz) == N*(dt,dz) — gv(dz)dt.

The reader is referred to [11, 25] for more detailed descriptions of the stochastic integrals
with respect to (cylindrical) Wiener processes and Poisson martingale measures. It is well
known nowadays that much evidence has been gathered that Poisson jumps are ubiquitous
in modelling uncertainty in many diverse fields of science [1, 25, 13]. By now it is well
established that stochastic dynamical systems driven by Poisson jump noises are much more
suitable for capturing sudden bursty fluctuations, large scale moves and unpredictable events
than classical diffusion modelling systems, see, e.g., [25, 23, 2, 15].

Note that the system (1.1) is an abstract model for random vibration of an elastic string
with external force on a large time scale. More generally, the slow-fast nonlinear coupled
wave-heat equations could model thermoelastic wave propagations in a random medium [9],
describe wave phenomena which are heat generating or are temperature related [20], as well
as model biological problems with uncertainty [10, 5, 27]. Taking advantages of the fast and
slow motions, in this paper, we focus on the limit behavior of the slow-fast nonlinear coupled
wave-heat equations driven by both Brownian motions and Poisson random measures, in
which the original complex system is replaced by a much simpler averaged system.

There is an extensive literature on averaging principles for stochastic differential equa-
tions, see for example, Freidlin and Wentzell [14], Khasminskii [21], Duan [12], Thompson
[26], Xu and his co-workers [28, 29, 30, 31, 32]. To obtain the effective approximation for the
two-time-scales stochastic partial differential equations (SPDEs), the averaging approach for
SPDESs begun to receive more attention recently. In [6], Cerrai and Freidlin showed an av-
eraged result for stochastic parabolic equations with additive noise. In [7], Cerrai succeeded
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with the case of multiplicative noise. The concerned convergence in the latter two works,
however, is in sense of convergence in probability (which implies weak convergence), and
the rate of convergence has not been given. On the other hand, Bréhier [4] derived explicit
convergence rates in both strong and weak convergences for averaging of stochastic parabolic
equations. Xu, Miao and Liu [33] established averaging principles for two time-scale SPDEs
driven by Poisson random measures in the sense of mean-square. Very recently, Fu et al
[17] established an averaging principle for stochastic hyperbolic-parabolic equations driven
by additive noise (Wiener process) with two-time-scales and obtained the rate of strong
convergence for the slow component towards the solution of the averaging equation as a
byproduct.

To the best of our knowledge, the averaging principle for stochastic hyperbolic-parabolic
equations driven by jump-diffusion processes are not yet fully addressed. In this article,
our main objective is to establish an effective approximation for slow process of the original
system (1.1). To be more precise, the slow component X of original system (1.1) can be
approximated by the solution process X;, which governed by the following stochastic wave
equation

PNEO = AX(E) + FXu©) + g(Ki ()WL + [, h(Ki_(£), 2) Nu(t, d2),

Xi(§)  =0,(&t) €0D x (0,7, (1.2)
XO(&) = XO(f)? a)fatt(f) |t:0 = X0(€>7€ €D,

where

ﬂmzéj@wmwmxew

and p* denotes the unique invariant measure which will be introduced in Appendix B. The
main novelty of this article is the model itself and how to treat the term with Poisson
random measures is the key of the paper. Moreover, we will work in the framework of Green
functions, which is a little different from the previous works [6, 7, 16, 18] investigating the
coupled hyperbolic-parabolic equations.

The paper is organised as follows. In Section 2, we will present our main results and state
some well-known facts for the later use. In Section 3, the existence, uniqueness and energy
identity for an abstract hyperbolic-parabolic equation driven by Poisson random measures
will be proved. In Section 4, some priori estimates will be derived. Section 5 is devoted
to establishing the stochastic averaging principle in sense of strong convergence, with a
determination of the explicit error bounds on the difference between the solution of the slow
component and the solution of the approximating reduction equation (1.2). The paper ends
with two appendices where an important lemma (Lemma 5.1) is proved in Appendix A and
the ergodicity of the fast motion is discussed in Appendix B.

Throughout this paper, C' > 0 will denote a generic constant whose value may vary in
different occasions.

2. Preliminary

Recall that H = L?(D). Let us denote abstractly A = 0 with zero Dirichlet boundary
condition on D = {0, L}. Let {ex(§) }ren be a complete orthornormal system of eigenvectors
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in H such that, for k =1,2--- |
Aej, = —aygey, exlap=o,

with 0 < a; < ag < --- < < ---. For s € R, we introduced the space Hg := D((—A)%?),
which equipped with norm

Il _{Z@ (¢, ex) }

Let V denote the Sobolev space H} of order 1 with zero Dirichlet boundary condition, which
is densely and continuously embedded in the Hilbert space H. It is clear that for A € V C Hi,

Al < a;% |Allv. Obviously, || - |lv = - ||1. Identifying H with its dual space, we obtain the
following Gelfand triple
VCH=H" CV".
Then, Poincaré inequality yields that (Au,u) = —||Vu|* < —aq|ul|}, where (,-) denotes
the dual pair of V and V*.
Note that the Green function U (€, ¢, t) for the deterministic equation (0/0t—A)X (t,€) =
0 can be expressed as

U ¢ t) = Ze *er(€)er(C).

Thus, the associated Green’s operator is given by the following

M) = [ UECOMOI =3 e ea()en As, A(E) € B

k=1

It is straightforward that {U;};>¢ forms a contractive semigroup on H and one has that

ITA) < IAE)]-
For the deterministic wave equation (9%/9t? — A)Y (t,£) = 0, its Green’s function is given

by (cf. e.g.,[8])

SEn=3 %ek@ek(o.

It is easy to shown that the above series converge in IL?(D x D) and the associated Green’s
operator is defined by

SA© = [ S(ECHMOUK - Zsm{}:’f} (©)ler A, A(€) € H.

In order to present our results in a clear manner, it is convenient to formulate our equa-
tions in an abstract setting, where system (1.1) can be rewritten as following

EXE_AXF+ [(XE,YE) + g(XEWS + [, h(XE, 2)Ni(t, d2),
T =AY+ LP(XGYE) + J2G(XE Y)W
+ [y H(XE ,Yf 3 2)N5(t,d2),
XoeV,Yye H, EL|,_, = X, € H.

(2.1)

) dt
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The system (2.1) is understood in terms of the following two integral equations

Xe = SXo+ S Xo+ [1 S o f(XE,YE)ds + [1 Sy og(XE)dW}!
[ L S h(XE, 2) Ny (ds, dz),
c t e Ve t e Ve
Ve = UyeYo+ 1 Jo Uy F(XEYE)ds + 2 fo U)o G(XS, Vi) AW
+ Jy Sy Utemsy e H(XE, Y 2)N5 (ds, d2),

(2.2)

where 5] = %St is the derived Green’s operator with integral kernel

K'(£,¢,t) = ZCOS{\/_t}ek( Jer(C)-

We now give the definition of mild solutions of (2.1)

Definition 2.1. The pair (X, Y) of two adapted processes over (2, F,F;,P) is called a
mild solution of (2.1), if for any t > 0, the integral equations (2.2) hold true P-a.s..

Next, let us introduce the globally Lipschitz condition for (2.1). We assume the following

(A1) The coefficients of (2.1) are globally Lipschitz continuous in z, y, i.e., V1, T2, y1, Y2 € R,
there exist six positive constants C'y, Cy, C, Cp, Cq, Cyr, we have

|f(z1, 1) = fza,12) P < Cp(lzr — 2 + |y — 12]?),
lg(21) — 9(962)|2 < Cylzy — o,

/ (h(21,2) — h(za, 2)Po(dz) < Chlzs — 2o,

and
|F(x1, 1) — F(x2,12)° < Cp(lzy — za + [y — 12/?),
G(x1,y1) — G(5U27yz)|2 < Co(|r1 — 1'2|2 + |y — y2|2),

/ H (21,1, 2) — H(za g, 2)[P0(d2) < Corl|zs — 22 + g1 — 9]%).

(A2) ' :=a1 —Cp—Ce—Cpyx >0, Cp = max{CF, 1}. This condition is a strong dissipative
condition, it is very important to prove the ergodicity for the fast motion. The detailed
proofs will be given in Appendix B.

Remark 2.2. With assumption (A1), it immediately follows,
[f @y, y0) 2+ lg(e) P + [ F (e, p0) P + |G(x1,y1)|

/Ih X1, |2 dZ /|H T, Y1, = (dZ)

<2 Cf+C —|—Ch+CF+CG—|—CH)|$1|
+2(Cy + Cr + Cq + Cu) |y |?

+2(£(0,0)* + |9(0)* + /Z [7(0, 2)[*v(dz)),

L2(|F(0,0) + |G(0,0) + / H(0,0, 2)[?0(d2)),
7
for all z1,1y; € R.



Remark 2.3. Since for each t > 0,.5; is a Green’s operator, the cosine family of operators
{S;:t €10, T]} and the corresponding sine family of operators {S; : t € [0,T]} satisfy that
|S/]|*> < M and ||S¢]|> < M for a positive constant M.

Theorem 2.4. Let (A1)-(A2) hold, then for any X, € V, Xo,Yy € H and T > 0, we have

E( sup || X7 — X|* + sup [|X; — X,[3) < OV, (2.3)
0<t<T 0<t<T

where X; is the solution of the effective dynamical system (1.2).

3. Existence, Uniqueness and Energy Equality

For the separable Hilbert space H, we use M?([0,7]; H) to denote the Hilbert space of
progressively measurable, square integrable, H-valued processes equipped with the inner
product

o, 0 g = E /0 (), o (£) Vst

We also define M*?([0,T] x Z,H) to be the totality of all predictable mappings ®(s, z,w) :
[0,T] x Z x 2 — H such that

T
]E/ / |®(s, 2,w)||*v(d2)ds < occ.
0o Jz
In addition, we denote by D([0,7]; H) the space of all cadlag paths from [0, 7] into H.

3.1. Weak Solution of the Linear Hyperbolic-Parabolic Equations
Consider the following linear equations

d?>X d S dX, .
S = AX + fi+ W+ / h(t, )Ny (t, dz), Xo = 2o, ——|i—o = o, (3.1)
dt 7 dt
and
dY, < o B
E = AY;: ‘|" F;f + GtWt + H(t7 Z)Ng(t, dZ), Yb = Yo, (32)
Z

where f, g, F,G € M?([0,T],H), h, H € M“2([0,T] x Z,H).
By Itd’s formula, one can get the following Lemmas 3.1 and 3.2 (cf. [3, 22])

Lemma 3.1. Assume that f,g € M?([0,T],H),h € M"*([0,T] x Z,H). Then there is a
unique weak solution (X, X;) € L*(Q;C([0,T];V)) x (D([0, T); H) N L*(Q x [0,T];H)) of
(3.1) such that the following holds a.s.

I = 1Kol + (AKX X0) = (A0, X0} +2 [ Koduds +2 [ (g, X
- s+ [ 201 20020, ) s )
h 2u(dz)ds. .
+ [ [ It e(az)as (33)



Lemma 3.2. Assume that F,G € M?([0,T],H), H € M"*([0,T] x Z,H). Then there is a
unique weak solution Y; € D([0,T];H) N M?(Q x [0,T]; V) of (3.2) such that the following
holds a.s.

W2 = a2+ / (AY.,Yi)ds + 2 /t<FS,Y>Hds+2 /t<GS,YS>Hdwf
/ Tex ds+/ / I H(s, )12 + 20H (s, 2), Yo_ Y] No(ds, dz)

+/0 /ZHH 5. 2)|[2o(dz)ds. (3.4)

3.2. Weak Solution of the Stochastic Nonlinear Hyperbolic- Parabolic Equations

For fixed z¢ € V, &, y9 € H, we now discuss the existence and uniqueness results for the
nonlinear hyperbolic-parabolic equations

{dzgt = AX; + f(Xe, Y2) + g(Xe) W+ [ B(Xi 2)Ni(t, d2), (3.5)

D =AY+ F(Xt, ) + G(Xy, YOWP + [ H(X,—, Y, 2)No(t, d2),
where Xy = o, %h:o = Zo, Yo = Yo

Lemma 3.3. Assume that the conditions (Al)-(A2) are satisfied. Given Xy € V, XO,YO €
H, then there is a unique weak solution (also mild solution) (X;,Y;) € L?(Q2; C([0,T];V)) x
(D([0, T); H) N M2(Q x [0,T); V) of (3.5) such that for t € [0,T], the following two energy

identities hold a.s.
X = P (AKX~ (AXo, Xo) + 2 [ (X, Y0, Ko
/t ). X + [ ) Pas
/ SO P + 20X, 2) X el (s )

+/0 /ZHh X, 2)|Po(dz)ds, (3.6)

t t
v = ||%||2+2/<An,y>ds+2/<F<XS,Y> Y.)uds
0 0

and

12 /t<G<Xs,Ys> Vw160 Yo s
/ / VB(Xo Yoo, )|+ 2(H (X Yo 2), Yo )] Na(ds, d)

/ /HH (X., Y, 2)|PPo(dz)ds. (3.7)



Proof: We will verify the existence by utilising successive approximations. Let u; = Xy, v, =
X, wy =Y, and

0

0 o t .
u; =0+ fo Tods,
_ 0 _
v, = To, W, = Yp.

For n > 1, let (u}, vy, w}) be the unique weak solution to the follow

(up ™t =g+ [o o tids,
U?Jrl =19+ fg Au”“ds + f(f dS + fO dwl
+ fo Jo i, 2) N1 (ds, dz) (3.8)
witt =g+ ) Awgﬂds + [ F(ul,wh)ds + [y Gul, w)dW?
\ +f0t fz H(u?—7w2_az)N2(d$,dZ).

Using the energy equality (3.3), it follows that

n+1 U;LHQ — <A( n—+1 n+1

||U tt _Ut) Uy —u?)

t
H/g%%ﬂ%ﬂ’m dwl/mg "1 2ds

< —aqfluy ™ _ut||V+ZJZt (3.9)
By Condition (A1) and the inequality |ab| < ea® 4+ 2b% & > 0, it turns out
E sup |Jis] = 2E sup

0<s<t 0<s<t

t
S<E/WW“ Ol — R el — wl P)dr, (3.10)
0

/Xfwawn—fwfawﬁwwﬁﬂ—w%mf
0

E sup |Jos] = 2E sup / (g(u?) — g(u 1), "t — ") gdW}!
0<s<t 0<s<t | Jo

< eCE sup ||t —o?|* + CC. E/ lul — w5 dr, (3.11)

0<s<t

Ewmssz/m ) [2dr

0<s<t 0<s<t
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t
< CE / ™ — u2dr, (3.12)
0

E sup |Js] = E sup / / I, 2) — b, 2)|Po(dz)dr
Z

0<s<t 0<s<t Jo
t
< CIE/ ul — =t dr. (3.13)
0
For Jy s, Js s, by Burkholer’s inequality, we have

E sup |Jus| < ClJu, Ju)?

0<s<t

M=

< CE{ S (Ih(u,pt) — hGL b))
SEDP?SSt
sEDp%,sgt
t
_ OE//nh(u:,z)— B(an, 2)|o(d=)ds
Ot Z
< C’IE/ |u — w2 ds. (3.14)
0

E sup |J55] < ClJs, J5)?

0<s<t
( ;
< CEQ > (huf,ph) = h(ul™",ph), vt —ol)g
sEDp1,s§t
\ t L
( 3
< CE Z [h(ul, pt) — h(ul™ ", pl) [P lorth — 022
sED1s<t
\
< CeE sup i — o+ CCE Y ||h(ul,pl) — h(ul !, pl)|?
0<s<t

seD 1 s<t

< CeE sup |o"t — ”||2+CC’]E/ /Hh 2) = h(uf™, 2)|*v(dz)ds

0<s<t

< CeE sup ot — ”||2—|—CC’]E/ |u? — w3 ds. (3.15)

0<s<t

Therefore, gathering (3.10)-(3.15) and choosing ¢ > 0 sufficiently small, it yields that

E sup ([Jo;*" —of||* + [Juy™ =} %)
0<s<t

t
< C]E/ (o™ = o IP ot = M + Jw) = w7 F)dr. - (3.16)
0

9



To proceed, using the energy equality (3.4), and the fact that
(Alw™ —wp), wi™ —wy) <0,

we obtain

CR S

¢
||w”Jrl w?”2 < 2/ (F(ul,wl) — 117(11?_1,10”_1),w7hL1 —whgds
0

CR S

t
+2/ (Gu?,w?) — Gu w1, w™ — W™ gd W2
0
¢

+ [ G, wy) — Gluy ™ wi™)|ds
0

t
[ [ ) - B e ) Rads. de)
0 Jz
t
+2/ / (H(u_,wl,2) — Hul"" wi™h 2), wi™ — w? YgNo(ds, dz)
/ /||H u w?, z) — Hu™ L w?™ "t 2)||Po(dz)ds

By a similar calculation as in (3.16), it follows that

t
E sup [lwt —wil* < CE/ (o = w1 = flu = w5+ wy — wp ™) dr. (3.17)
0<s<t 0

Putting (3.16) and (3.17) together, we then have

E sup (Hv"+1 Vel A ™ = Gl A+ g™t = wi]f?)
0<s<

t
< CE/ (lor = o= ot = MG + = wl ™% dr
0

t
+CE/ (o = w1 + o = o1 + flur ™ =l |)dr
0

Let TU! = [lof™ — o7 2 + [Jul ™ — w5 + lwg™ — wi|f?, we have
t t
E sup I'""! < CE/ I'ds —i—C’E/ s, (3.18)
0<s<t 0 0
where I' = [Jog — 0Q]1” + Jlug — ull§ + llwg — wllf*.

Iterating (3.18), we obtain

E sup 't < C(CTT)

0<s<t n!

This implies that there exists (ug, w;) € L*(Q; C([0,T]; V)) x (D([0, T]; H)NM?(22x [0, T]; V))
such that

lim E sup (Hu — u|[§ + v = vl]? + [[wl — wsl]?) — 0.

n—o0 0<s<

10



Letting n — oo in (3.8), we claim that (u, wy) is a weak solution of (3.5). The uniqueness is a
directive consequence of the energy equalities and Gronwall’s inequality. To verify the energy
equalities, one has the following convergence in mean square as n — oo for all 0 <t < T,

n

Uy — U,
n

Uy — Uy,

/<f(u?,w?),v?)Hds—>/(f(us,ws),vs>Hds, (3.19)
0 0

and hence
t
/(g(u ), 0w dW1—>/ (us), U5>HdWsl,

/ lgCu)|2ds — / lg(us)2ds,

//Hh HQNl(ds dz) —>/ /Hh us_, 2)||? Nl(ds dz),

// noz), v )HNl(ds dz) %// (s, 2), Vs >HN1(ds dz),

/ /||h u, 2)|[2o(d2)ds %/ /||h s, 2)|Po(dz)ds. (3.20)
0 Z 0 Z

in mean as n — oo for all 0 < ¢ < T'. Then by taking a subsequence converging P-a.s. for
(3.20), one can obtain the energy equality given by (3.6). By a similar calculation we can
get the energy equality (3.7). O

4. A priori bounds for the solution

The following three lemmas provide mean square estimates for the process X; and Y
with bounds independent of ¢.

Lemma 4.1. Assume that the conditions (A1)-(A2) are satisfied. Given Xy € V, Xy, Y, €
H, then there exists a constant C' > 0 such that

sup E(||XF[1° + |XF])3) < C. (4.1)
0<t<T
and
sup E[|Y7|* < C. (4.2)
0<t<T

Proof: By the energy equality (3.6), we have
t
E(J| XTI + enl| XFIIF) < E(|]X0|12+a1\|X0|\§,)+CE/ (f(X5Y{), XOmds
—l—C'E/ llg(X?) ||2dS+CE/ /Hh 2)||*v(dz)ds

11



< E(I|Xo|I* + a1l Xoll) + CE /Ot(||).<'§!|2 + || XE (%) ds
+CE/Ot(1+ 1Y) ds.
Thus
E(|XF11” + aa | X5 11%) < e“E(l|Xoll” + on || Xoll7) + C/Ot U1+ ENYS|P)ds.  (4.3)

Hence, we have for ||Y#||?

d (> 2 £ € 2 £ (> 13 € 2 13 €
SEIVGP < SEAYEYE) + SE(F(XG, ) — F(XE,0), Y + SE(F(X;,0), V)

2 3 (3 (3 2 3
+2RIGOX, ¥7) - 6 0)* + ZEJG(E O
2 2
28 [ HOGYE2) — HOG 0,2l + 28 [ (G 0.9)Po(d)
Z Z

20(1 CF +1

——E[Y7|I* +
g g
+a1 —1- CG — CH

IN

€ ¢ €
EIY7I” + —EIF(XE, 0)lF
20@ P4 QCH
3

EJJY7 | + |7
+ZBIG(XTO)F + 2B [ JHX0.2) Po(dz)
< TEive+ Sa RN,
where n = ay — Cp — Cg — Cy > 0. Next, according to (4.3), we have
BT < RN T et e
0
< CRO IValP + 1ol + 160 + S8 [ 200 [ aras.

By change of variables, we get

t—r

/E e "dv| dr
0

t
< CE(1L+ Yol + %ol + 1Xo]2) + C / E||V?|2dr.

t
E|Y7* < CE(1+IIYo||2+||X0||2+||Xo||%z)+0/ E[YF|?
0

Finally, by Gronwall’s inequality, we get
E[lY7|? < CE(L + [Yol* + 1 Xoll> + [ Xoll%).

which give the estimate (4.2).
By replacing the estimate above in (4.3) and using the Gronwall’s inequality once more,
we derive the first estimate (4.1). This completes the proof. O

12



Lemma 4.2. Assume that the conditions (A1)-(A2) are satisfied. Given Xy € V, X,.Y, €

H, then there exists a constant C' > 0 such that

E|| X7y, — X;|* < Ch2.

Proof: Clearly, by (4.1), we have

t+h
—E / Xeds
t

This completes the proof of Lemma 4.2.

2

tth
E[|X;,, — X7 < IE / |XE|Pds < CH2.
t

O

~ Our goal is to estimate the difference between X7, the slow component of (1.1), and

Xy, the solution of the effective dynamics. To this end, we introduce an auxiliary process

(X7,Yy7) € VxH. Considering a partition of [0, 7] consisting of intervals of the same length
T

J (0 is sufficiently small and is fixed), that is, [0,7] = [0, §] U {U,&il 1(k35, min{(k +1)0, T'}|},

where |x| stands for the integer part of real number x € R. We then construct auxiliary

processes Y;° and X; as

A

1 t
V= i [V RO+ [ o0, va:
/ /H Xi5, YE , 2)N5(ds, dz)
and

¢ ¢
X: = SIX,+ S Xo+ / Sy o f(XE 510 VE)ds + / Sy og(XE)dW2
0
/ /St s Nl(ds dz).

Lemma 4.3. Fort € [kd, (k + 1)d], we have
E[|Y? - Y7|]* < C6°
and

E sup (|X; — X7|° + |17 - X7|13) < Co°.

0<t<T

Proof: By the energy equality (3.4), we have

(4.4)

d € Ore 2 € e € e 2 € € e e € e
DYy VP = ZEGAYS - AV Y V) + SEF(XEYE) — FOX V).~ Ve

1 e Ve € €
Ele. v - 60 v

1 € ve e Ve
+2B [ IHGYE2) — HOXG Y, 2)lPold)

13



2av ~ Cr+1 .
< ——1EIIY‘E YEIPP + ——E[Yy - Y7|* +

Co+Cy -
—E[}Y;
C 9
+EIXF - X

2&1—CF—Cg—CH—1 c e C
- - EJlY; - ¥7I? + =%,

where 20y — Cp — Cg — Cy — 1 > 0, and further by Gronwall’s inequality, we get
B|V; — VeI < 0.
Next, by (4.6), (A1)-(A2), Lemma 4.2 and [8, Lemma 3.2], we have the following

E sup ([|X7 — X3 + 15 — XI9)

0<s<t

s 2
< CE sup / Sur FXEYE) = F(XFys5 V)
o<s<t ||.Jo v
s 2
+CE sup / S, f(qua }/:) f( Lr/éjéa ra)dr
0<s<t

< CE / IF(XEYE) = FOXE 5050 Y0 | Pds
< CE / (112 = X, s lB 4 12— V2[12)ds
0
< 6.
This completes the proof of Lemma 4.3.

5. Averaging Principles

The mild solution X, of (1.2) is formulated in the following manner

t t
X = SXorsiXe+ [ S f(Rods+ [ SRy
0 0

4
+/ /Stsh(Xs,z)N1(d8,dZ)
0 Jz

0l

(5.1)

where f (introduced in Section 1) satisfies the global Lipschitz condition (due to the global
Lipschitz condition (Al) for f given in Section 2). By similar arguments as before, the
above integral equation (5.1) admits a unique mild solution X;. The time derivative of X;

is denoted by X; then, (X;, X;) € L2(Q; C([0,T]; V)) x (D([0, T]; H) N L2(Q2 x [0, T]; H)).
Lemma 5.1. Suppose that (A1)-(A2) hold. Then there exists a constant C' > 0 such that

00 5 2
_ ZE [ /O sin{ /@i (s + kO)}(f(Xi, Vi #0700) = F(XFy), ei>Hds] < Cde,

00 5 2
=2 E [ / cos{/ai(s + k) }f (X5, Y2 Ho'h0) —f(X,ig),e»Hds} < e,
=1 0 :

fork=0,1,---,|T/5] — 1.

14



Proof: Please see Appendix A.
Lemma 5.2. Suppose that (A1)-(A2) hold. Then, for T > 0, we have

E sup (1571 + 157]7) < €O+ )

where
Ef :/0 Stfs(f( \_5/5]57 s) f(XE))
Ef :/0 Silt—s(f<XLs/6J67 s) -f( ))

Proof: For any ¢t € [0, 77, there exists an n, = [t/0] such that ¢ € [n;, (n;+1)d AT]. Hence,
we have the following representation

E; = 10(t,e) + Iyt e) + I3(t,¢)

where
[t/6] -1 (k41)s -
1 = St—s X7 X
1(t,e) kzzo /k5 (f (X5, Y5) — f(Xgs))ds
[t/6]=1 (k+1)s \ -
] - St—s )(‘E - XE d
) = 3 /| (F(X55) — FOXO))ds
[t/6]6 B _
= | S — FXs
and

Iy(t.) = /L S a(F(XE a5, VE) — F(XE))ds

t/5]5

Let us first deal with I5(¢,£). Due to the Lipschitz continuity of f, (A2) and [8, Lemma 3.2],
we have the following

2

E sup [|L(te)[l; = E sup
0<t<T 0<t<T

T —_ —
< TE / 1FOXE, 555) — FOXE)|Pds

T
< CTE/ 1 X515 — X5 7ds
< C6.

[t/8]8 B )
/0 St—s(f(X[oss)5) — F(XT))ds

\%

Next, for I3(t, ), due to Holder inequality, Remark 2.2, (4.1)-(4.2) and [8, Lemma 3.2], we
obtain
2

E sup |L(te)|y = E sup
0<t<T 0<t<T

/ Sia(F(XEys15 V) — F(XE))ds
|t/8]6

\%

15



< CSE sup /L 1(FOX, 1. VE) — FOX9)) 2

0<t<T J|1/6)5

t
< 5+ COE sup /L (15 515l13 + IVEN2 + X2 2)ds

0S<T J1t/5)s

0<t<T

< Co+ COE sup / HXft/éJaH%,ds.
1t/6]5

For the second term on the right hand side above, we further derive that

t [T/4] (k+1)8

CoE Su]D/L 1XFs)5l5ds < Z /

T
IXisfds +B [ Xrlids
0<t<T J|t/5]s \T/5)8

where we have used the inequality (4.1) in the derivation. Hence, we have the following
estimation

E sup ||]3(t,5)|]%, < (C.

0<t<T
For estimation of I (t, ), we start with the following series representation of Green’s function

[t/6]-1

Lite)= > ZI(tke)

k=0

where

(k4100 2 sin{/ay (t — s . _
Take) = [ D VIO, 5~ O s

gin (k+1)5 A )
Z {\/—t} / cos{v/ais}(f (X5, Y5 ) — f(Xis), ei)mds

= 1
CcOS{ 4/t k+1)s _
yeslva) {f} oo [ RO 72) — TG edus
=1
for k=0,1,---,[t/0] — 1. We have
[7/6] -1
E sup [L(te)lf < CF - EIZ( ko)
0<t<T =0
C T/6]-1 oo (k+1)8 . - 2
<7 2 BX [ et ais}<f<xza,n€>—f<Xza>,ei>Hds]
CLT/éJ 1 (k+1)5 ) B 2
DI M az-s}<f<xza,xf:>—f<Xza>,ei>Hds]
k= i=1
<$ 3 BY | [ coslvals + NI Vi) - FXE). e
k=0 1=1

16



LT/5J L

§ 2 Y[ [ s+ NG Vi) = (X0

2

By a time shift transformation, it follows from the definition of Y¢ that, for s € [0, d], the
process Y}5, , coincides in distribution with the process, Y6 which is defined by (B.1)
in Appendix B. We have

N ké+s 1 kdé+s
Vi = Yo+ = / AYEdUWL / F(Xké,Y‘g)d

ké+s ké+s
/ Xk;é: D)AW; + / /H Xké’ya )Ng(duad?«’)
ko

= Yo+ 6/0 AY+k5du+—/0 (X5 Vi o)du
72 | e ez v [ O Vi )85 de), (52

where W2* = W2t s — Wi and p* = pl., s — Pis are the shift of W72 and p, respectively.
Let W, be a Wiener process which is independent of W}! and W2, and let p, be a simple
Poisson Process which is independent of p. and p2. We construct process Y *rs:¥ss as follows

€

Y;{Z{;,Yk‘% _ }/k% /E AYX£57Y§6d + / F(X]ié, YXk5 Yké)du

/ G(XE;, Yo oo 5y qW, +/ /H e YR Yes )N (du, dz)

XisYis

= Y,j(ﬁ-—/ AY STy +—/ Xk(;,Y ") du

/ G(X5;, Yok o) qW, +/ /H Xi5, Y0 2)N (du, dz) (5.3)

where W, = \/EI/T/U/€ and p, = P,/ are the scaled version of W,, and p,, respectively.
Comparing (5.2) and (5.3) yields that

v X2,V
(Xiss Yirirs) ~ (Xk67Y *),u € 10,9) (5.4)

where ~ means the coincidence in the distribution sense.
Furthermore, in view of (5.4) and Lemma 5.1, we have

E sup 111t €)1

< /Z EY [ [ conlyamte - kN8 1 N X, eus|

C - 00 - 2
+ Z EZV sinf /(s + k6)} (f (X5, Vi 5)—f<Xia),ei>Hds]
C’ |T/ J 1 = LT/(SJ 1
<< Egz+ Z EQ;
k=0
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£

< C-.
)

The estimation of ||Z¢||?> can be done analogously to || =¢||? as following

8 =1(t,e) + Ly(t,e) + Ls(t, ¢)

where

_ [/8]-1 (k+1)s A -
hte) = 3 / SI_J([(Xis, V) — F(Xi5))ds

k=0 g
. [t/6]=1 (k+1)s B B
bite) = 3 /M SI(F(X55) — FX7))ds
k=0

[t/6]d _ _
- / 81 (F(XE, ) — F(XE))ds
fyte) = /L 81 (F(XE a0, VE) = F(XE))ds

t/5]6

For I,(t,€), we have

[t/o]-1

Lite)= > I(tk.e)

k=0

where

. (k+1)§ 0 ~ B
I(t,kye) = / > cos{alt = II(NGs ¥5) = F(X). s
(k+1)5 R B
= Seostvanie [ eoslVms (NG ) - NG e

1= 1

(k+1)d . _
— Z sin{/a;t}e; /k:(s sin{/a; s }H(f (Xis, YY) — f(Xs), €i)mds,
i=1

for k=0,1,---,|t/d] — 1.
Similarly to the proof of I1(t,¢), I5(t,€), I3(t, ), we have the following

E sup [h(t2)* < cs,
0< 1)
E sup HIQ(t 5)||2 < 062,
< (0.

E sup [|fs(t,2)]
0<t<T

This completes the proof of Lemma 5.2.
Lemma 5.3. Let (A1)-(A2) hold, then, we have

LE - 5 _ I
E( sup | X7 = Xi[I" + sup [IX7 = Xifl3) < C(0+ <)
0<t<T 0<t<T

18

(5.5)



Proof: By Lemma 4.3, B-D-G inequality, Holder inequality, (A1) and [8, Lemma 3.2, Lemma
3.3, Lemma 3.6], we have

s 2
E sup X5 X} < CE sup |55+ CE sup || [ Suu(F0XD) ~ FOXE)du
0<s<t 0<s<t o<s<t ||Jo v
s 2
CE sup / Su W (F(X2) = F(X)du
0<s<t [|Jo A%
s 2
+CE sup || [ 5u(g(X3) - 9(X3))aW}
o<s<t ||Jo v
s 2
+CE sup / Seu(g(XE) — g(X,))dW,}!
0<s<t AV
2
+CE sup / / wu(R(XE_,2) — M(XS_, 2)) Ny (du, dz)
0<s<t v
2
+CE sup / / cu(D(XE, 2) — h(X\_, 2)) Ni(du, dz)
0<s<t v
t
< C(5—|—§)+0/ E||X§—X§||Vds—|—(]/ E|| X — X,||3ds.
0 0
Further by Grownwall’s inequality, we obtain
. - 5
E sup X7 — X;[[5 < C(0 + 5)e. (5.6)
0<s<t

Next, by Lemma 4.3, B-D-G inequality, Holder inequality, (A1) and Remark 2.3, as well as

by Grownwall’s inequality, we have
| st - FOt)du
0
2

+CE sup / S (F(X2) — F(X.))du

0<s<t

2

E sup || X¢ —)?sH2 < CE sup ||ZZ|]* + CE sup
0<s<t 0<s<t 0<s<t

2

+CE sup Si_ul9(X3) = 9(X3)dW,

0<s<t

/

+CE sup / — g(X,))dW}
A
/

2

0<s<t
B 2
+CE sup

0<s<t

2
+CE sup

0<s<t

< C(6+

X; ,z)— h()?u,,z))](fl(du,dz)

/ X2 2) = (X5, 2)) My (du, d2)
[

5)
This completes the proof of Lemma 5.3. 0]

The proof of Theorem 2.3: As a consequence of Lemma 4.3 and Lemma 5.3, we clearly
get,

. - _ €
E( sup [|X7 — Xl + sup | X7 - Xi|[3) <O+ 5)
0<t<T 0<t<T
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Next, by choosing 6 = /¢, the above then yields

E( sup [ X7 — X|2 + sup [ X7 — Xi[12) < CVE.
0<t<T

0<t<T
This completes the proof of Theorem 2.4. We are done. 0]

Remark 5.4. We would like to emphasize that we have confined ourselves to the case that
the diffusion coefficients of the slow dynamics do not depend on the fast component, that is,
g(x,y) = g(x),h(x,y,z) = h(z,z). In fact, a simple example (see [19]) indicates that strong
convergence does not hold where the noise coefficients of the slow equation depend on fast
variable.
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Appendix A: Proof for Lemma 5.1

Recall that we have defined X, Y,5, Y5 Fix 2 € H and given y € H, let Q¥ denote
the probability law of the diffusion process {Y;""};>¢ which is determined by the following
stochastic differential equation

dY? = [AY? + F(x,Y")|dt + Gz, Y)dW, + / H(z,Y",2)N(dt,dz),Yy =y, (A1)
z

where W, is a Wiener process, and N (dt, dz) is a Poisson random measure with the compen-
sator v(dz)dt which is independent of W;. Both W; and N(dt,dz) are defined on the given
filtered probability space (£2, F,P; {F;}i>0). The expectation with respect to Q¥ is denoted
by EY. Hence, we have

EY(@(Y{)) = E(I(Y7)),

for all bounded function ¥. The reader is referred to [24] for more details about QV. Recall
that {e; }ien is an orthonormal basis of H defined in Section 2, by the Fourier expansion and
the Fubini theorem, we have

2

G = D[ [ sy MO8 V) 87, e
- [ ZEsm{@sww (X Y2550 = FXGp), e

X Sm{\/a_z-(T + kO) Y (X55, Y Eo7M0) — f(XEaL eipudsdr

20



§ §
<2 [ [ S [0 i) - fo) e
0 T =1 €
X [(F(Xs, Y550) = F(XE) €| dsdr
for k=0,1,---,|T/0| — 1. Fori=1,2,---, we set

Qi(S,T,ZE, y) =E H(f(xu Ysm,y) - f(l’), 62>H‘ X |<f(l', YTm’y) - f_(x)v 62>H|:| .
To proceed, by invoking the Markov property of ¥;"Y, for i =1,2,---, we have

Qi(3777x7y) = K {Ey H(f(.CC,Y?) - f(x)7€z>H‘ X ‘(f(:l},YTx) o f_(x)7€1>H| |M£]}
= B {[(f(@,Y7) = F(@), eam] x B [(f@,YE,) = F(@), eihm] |
where M? stands for the o-field generated by {Y*,r <t} and EY" " (f(z,Y" ) — f(z), e)m
means the function EV[(f(z, Y® ) — f(), e;)u] evaluated at § = Y.

Using Holder inequality and the Lipschitz continuity of f, B.3, B.5 in Appendix B, we
then obtain the following

Yo Qsmay) < (B YD) - F@)IFY x (B (B @ Ve = F@)iyer)

f 3 lS*‘I‘

< C{B (@ Y7) = FIP}E x B+ o] + |V 12)}F estem
—L(s=r

< OO+ el + lyl?)e20=m.

Let M5, be the o-field generated by Xj; and Y)5, which is independent of {Y,™¥ : r > 0}.
By adopting the approach in [24] (cf. Theorem 7.1.2 therein). We have

) oo _
o - / / (PO YIRY8) — F(XE), el
szS’YT/ ) JF( ké) 51>H||Mi5])d5d7

_ // Zgz 56,7/, 9) o= (xip v ldsdrT

C/ / e 2= dr
0 T

< (Cée

for k=0,1,---,|%] - 1.
Analogously, we derive that Qi < Coe, for k =10,1,---, [%J — 1. This then completes

the proof. [l

IN

Appendix B: The Ergodicity of The Fast Motion

For fixed = € H, we consider the problem associates to the fast motion with frozen
component

dY; = [AY; + F(z,Y))]dt + G(x,Y;)dW; + / H(z,Y,_,2)N(dt,dz),Yy =y, (B.1)
z
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where W; and N(dt, dz) are given as before. Then, for any fixed z € H and any y € H, there
exists a unique mild solution of (B.1), which is denoted by ¥;”Y. By the energy equality
(3.7), we get

t

t
e Y R R L ) RS IR AT
0

t
+2/ (G, YoV), YoV T, +/ 1G (@, Yoo 2ds
/ JUH G Y2 D+ 20 Y, 2), V7)) Vs, d2)
+/ /HH 2, YV 2)|20(dz)ds. (B.2)
0 YA

Then by (A1)-(A2) and Remark 2.2, we have

d
SEIVZYIP < RIAYS, V) + 2ECP (5, V) = Fia, 00,7 + 2B(F (5,0, V)
G0, Y7) - GG, )P + 2B, 0
+28 [ [H(, Y7, 2) ~ B, 0.9 Polds) + 28 [ |H(z.0.2)Po(dz)
Z Z

IN

=2 E[|Y;"Y|* + (Cr + DE[Y;"Y|* + CE[|F(z,0)|?
+(a — 1= Cq — Cy)E| YY) + (2C¢ + 2CH)E| V™Y ?

+2E|Gla,0)|F +2E | 1H(z.0.2) Pu(az)
Z
< IV + O+ o)

where n = a; — Cp — Cg — Cy > 0.
Moreover, by Gronwall’s inequality, we have

ENY* < llyl*e™ + C(1 + [l (B.3)

Next, let ;" be a solution of (B.1) with the initial value Y = ¢/, with (A1) and (A2),
we have the following derivation

VPR VeI = = o2 A VY- Y s
+2 / (2, Y2Y) — F(x, YY), Y2 — Y2 Vds
0
+2 / (2, Y2Y) — G(x, YY), Y2V — Y2V Y ud W,
¥ / |G, Y2 — Gla, Y2V |2ds
—l—/ /||H 2, Y2 2) — H(z, Y™V, 2)||>N(ds, dz)
4 / / (2, YV, 2) — H(z, YV 2), Y2V — Y'Y N (ds, dz)
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t
[ MY )~ B ) Poldads
0 Jz

Furthermore, with the aid of the energy equality (3.7) and the conditions (Al) and (A2), we
obtain the following

B[ =¥V I < lly — o' Pe ™ (B.4)
where n = a; — Cp — Cg — Cy.
Next, for any € H, we use P} to denote the Markov semigroup associated to (B.1)
which is defined by the following
Pro(y) =BV (V)6 > 0,y € H,

for any ¥ € By(H), where B,(H) is the space of bounded measurable functions on H. We
recall that a probability measure p* on H is an invariant measure for (Pf)io, if

/Pfild,w’”:/Wdum, t>0
H H

for any ¥ € B,(H). As in [6, 7], it is possible to show the existence of a unique invariant
measure p” for the semigroup (Pf);>¢ satisfying the following

/H I/ 120 (dy) < (1 + lal?), =€ H.

Finally, according to the global Lipschitz assumption on f and the condition (B.4), we end
up with the following

HEf(a:,th’y)—/Hf(%y/)ﬂx(dy/)

/H Ef(z, ) — Ef (e, Y ) (dy)

< C / E (v — Y| e dy)
H
< CGQ”t/Hy—y’HM(dy’)
H
_1
< Ce 21+ ||z + |lyl])- (B.5)
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