

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in : *Scientific Reports*

Cronfa URL for this paper: http://cronfa.swan.ac.uk/Record/cronfa31919

Paper:

Tang, K. (in press). Porewater methane transport within the gas vesicles of diurnally migrating Chaoborus spp.: An energetic advantage. *Scientific Reports*

This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions. When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO database to judge whether or not it is copyright safe to add this version of the paper to this repository. http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

SCIENTIFIC REPORTS

Received: 11 July 2016 Accepted: 09 February 2017 Published: 14 March 2017

OPEN Porewater methane transport within the gas vesicles of diurnally migrating Chaoborus spp.: An energetic advantage

Daniel F. McGinnis^{1,2}, Sabine Flury², Kam W. Tang³ & Hans-Peter Grossart^{2,4}

Diurnally-migrating Chaoborus spp. reach populations of up to 130,000 individuals m⁻² in lakes up to 70 meters deep on all continents except Antarctica. Linked to eutrophication, migrating Chaoborus spp. dwell in the anoxic sediment during daytime and feed in the oxic surface layer at night. Our experiments show that by burrowing into the sediment, Chaoborus spp. utilize the high dissolved gas partial pressure of sediment methane to inflate their tracheal sacs. This mechanism provides a significant energetic advantage that allows the larvae to migrate via passive buoyancy rather than more energy-costly swimming. The Chaoborus spp. larvae, in addition to potentially releasing sediment methane bubbles twice a day by entering and leaving the sediment, also transport porewater methane within their gas vesicles into the water column, resulting in a flux of $0.01-2 \text{ mol m}^{-2} \text{ yr}^{-1}$ depending on population density and water depth. Chaoborus spp. emerging annually as flies also result in 0.1–6 mol m⁻² yr⁻¹ of carbon export from the system. Finding the tipping point in lake eutrophication enabling this methanepowered migration mechanism is crucial for ultimately reconstructing the geographical expansion of Chaoborus spp., and the corresponding shifts in the lake's biogeochemistry, carbon cycling and food web structure.

Chaoborus spp., or phantom-midge larvae, are widely distributed in both temperate and tropical lakes¹ and references therein with depths up to 70 meters². As *Chaoborus* spp. can be present in large quantities in lakes (ca. 2,000–130,000 individuals m⁻²), they can have significant impacts on lake ecology³, and their appearance in the lake's history may signal a "tipping point" in trophic status (Fig. 1).

Though generally unaccounted for in lake studies and models, Chaoborus spp. are often the most important invertebrate predators⁴ and food source for fish⁵, bioturbate sediments³ (including methane bubble release⁶), are a significant oxygen sink through respiration⁷, and represent a carbon loss upon emergence and thus an important link to the terrestrial ecosystem⁸. Chaoborus spp. are commonly found in eutrophic and dystrophic lakes, yet are absent in oligotrophic lakes⁹. Consequently, they are often used as paleolimnological indicators for reconstructing eutrophication history¹⁰. Linked to climate change, Chaoborus spp. have been recently shown to expand their habitat across tundra thaw ponds¹¹.

Spending most of their lives in the larval stage in lakes (1-2 years), the third- and fourth-instar of some Chaoborus spp. larvae (e.g. C. flavicans, C. punctipennis, C. trivitattus) diurnally migrate in the presence of fish^{1,12-14}: dwelling in the sediment during daytime and feeding at night in the surface layer. Gosselin and Hare³ observed them migrating into and out of the anoxic sediment, which disturbs and enhances exchange across the top sediment layer. This bioturbation has been shown to result in the release of a large amount of gas bubbles from the sediment during emergence of Chaoborus spp. larvae from the sediments of a Brazilian reservoir⁶. In the sediment, Chaoborus spp. larvae burrow beneath the oxic zones several centimeters deep and position themselves in a vertical "S" shape³. In addition to predator avoidance, this migration behavior helps the larvae to reduce their

¹Aquatic Physics Group, Department F.-A. Forel for Environmental and Aquatic Sciences (DEFSE), Section of Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, 66 boulevard Carl-Vogt, CH-1211 Geneva, Switzerland. ²Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Mueggelseedamm 310, 12587 Berlin, Germany. ³Department of Biosciences, Swansea University, Wallace Building 104, SA2 8PP Swansea, UK. ⁴Potsdam University, Institute of Biochemistry and Biology, Maulbeerallee 2, 14469 Potsdam, Germany. Correspondence and requests for materials should be addressed to D.F.M. (email: daniel.mcginnis@unige.ch)

metabolic expenditure by staying in the often-colder hypolimnion⁷. The conservation of energy is critical, as lower energy requirements allow migrating *Chaoborus* spp. to expand their habitat to deeper and less productive (less prey) lakes.

Chaoborus spp. adjust or correct their position in the water column using their two sets of gas-filled, semi-rigid tracheal sacs (gas sacs) which they can adjust by ca. $\pm 20-25\%$ volume¹⁵ and references therein; however, it is not known whether they also use these sacs to aid diurnal migration^{7,16}. Migrating *Chaoborus* spp. are found in lakes no deeper than 70 m², and at depths greater than 100 m their tracheal respiration system would collapse¹⁷. *Nilssen*¹⁸ reported that only *C. flavicans* occurred at depths greater than 5 m in Norwegian Lakes (down to 60 m), suggesting other species (i.e. *C. obscuripes* and *C. crystallinus*) cannot withstand higher hydrostatic pressure due to the morphology of their gas sacs.

Chaoborus spp. control gas diffusion across the sac wall with a protein that expands or contracts based on $pH^{15,17,19}$. The expansion of the tracheal sac is suggested to be due to changes in the sac wall plasticity, coupled with an "extending force" – i.e. extrinsic muscles, an intimal component, or gas pressure¹⁵. To our knowledge, no explanation has yet been presented as to how (or if) these insects are able to expand their sacs at depth against high hydrostatic pressure.

As *Chaoborus* spp. mandibles are well-preserved in the sediment, they are often used as paleolimnological indicators of eutrophication history of lakes^{10,20,21}. Many studies have attempted to search for reliable eutrophication-related predictors of *Chaoborus* spp. presence. Oxygen levels seem to be an obvious choice, as it has been suggested that *Chaoborus* spp. utilize anoxic regions to avoid predation²⁰. They are tolerant of hydrogen sulfide (H_2S) and are able to respire anaerobically using a malate cycle to produce $ATP^{3,17}$ and references therein. However, correlations of *Chaoborus* spp. presence with hypolimnetic oxygen levels are sometimes weak or even contradictory¹⁰, suggesting additional unknown factors are needed to explain their presence. One of these factors may be methane, since it has the potential to affect the buoyancy mechanism and hence the energetic expenditure and habitat range of migrating *Chaoborus* spp.

We suggest that *Chaoborus* spp. utilize the high partial-pressure of dissolved gases in sediment porewater as a transport mechanism to allow them to migrate via buoyancy (Fig. 1). The likely source of saturated or over-saturated gas partial pressure would be high levels of dissolved methane (CH₄) in the porewater resulting from methanogenesis²². Carbon dioxide (CO₂) and H₂S, while present, are about 27 and 80 times more soluble than CH₄, respectively, thus providing insignificant partial pressures for gas sac expansion²³. Combined with dissolved nitrogen (N₂), the other most abundant sparingly-soluble gas in the sediment porewater, the two gases (CH₄ and N₂) lead to high enough partial pressures (matching or exceeding the ambient hydrostatic pressure) to effortlessly inflate the *Chaoborus* spp. gas sacs when in contact with the porewater. This provides an energetic advantage for migration through passive buoyancy rather than active swimming. This unique adaptation has the potential to greatly reduce metabolic expenditure, and subsequently allow *Chaoborus* spp. to thrive in deeper environments and in those with lower food availability. As important side-effects, migrating *Chaoborus* spp. transport porewater methane to the water column directly in their gas sacs and bioturbate methane-rich sediments, allowing methane to bypass diffusive and oxidation limitations at the sediment-water interface.

Figure 2. (a) Increase in headspace CH_4 concentration over 100 minutes in the experimental flask with 35 animals and (b) results from 13, 25 and 35 methane pre-treated *Chaoborus* at equilibrium after 60 min. Control flask (at 0 on the axis) in (b) contained 25 *Chaoborus* pre-treated with CH_4 -free lake water.

It is critical to understand limnological conditions and variables which promote lakes as suitable habitats for *Chaoborus spp*. In this paper, we explore the energetics and methane gas transport involved in this proposed migratory adaptation by: (1) studying the methane gas transfer into and out of the gas sacs; (2) investigating the physics of the *Chaoborus*' rise and descent; (3) comparing the energetic requirements for swimming vs. buoyant locomotion; and (4) investigating the effect on methane fluxes from the sediment to the overlying water column.

Results

Our experiments confirmed that *Chaoborus* spp. initially took up the dissolved methane when exposed to methane-saturated water (~1.5 mmol L⁻¹). After the initial exposure to the methane-saturated water and subsequent transferal to the experimental "methane-free" flask (~3 nmol L⁻¹), methane in their gas sacs was redissolved into the surrounding water and into the head space as indicated by the increase in head-space CH₄ concentration measured by the gas analyzer (Fig. 2a).

In the first experiment, 35 methane pre-treated larvae were transferred to the experimental flask, and changes in headspace gas concentrations were monitored continuously. The headspace CH_4 concentration gradually increased until it reached a steady state at 110 minutes (Fig. 2a). These results are consistent with the experiments of *Teraguchi*¹⁵, who showed that the gas concentration in the gas sacs approached equilibrium with the surrounding dissolved gas concentrations (enriched argon, etc.). In the second experiment, the steady state increase was 3.29, 6.46 and 8.90 ppm CH_4 for 13, 25 and 35 individuals, respectively. Therefore, the CH_4 increase was proportional to the number of *C. flavicans* in the flask (0.255 ± 0.003 ppm CH_4 ind.⁻¹), and was close to nil in the control flask (Fig. 2b).

Stoke's rise velocity: We calculate the theoretical rising (and sinking) velocity of a single *Chaoborus* larvae based on an adjustment of its total gas sac volume by $\pm 25\%^{15}$. In these calculations, we assume a homogeneous water column and that neutral density is achieved at $\rho = 1 \text{ mg mm}^{-3}$. A *Chaoborus* larva of 1 mm in diameter and 11 mm in length³ has a volume of 8.6 mm³. Expanding or contracting its gas sac volume of 0.12 mm³ by $\pm 25\%$ will change its density by $\pm 0.35\%$. Using these values in equation 2 (see methods) gives a rising (or sinking) speed of 4.1 mm s⁻¹. This is in good agreement with the migration speed of ~5 mm s⁻¹ measured acoustically by Lorke *et al.*¹³.

Discussion

Bioenergetics of migration: Several studies have related *Chaoborus* spp. presence to eutrophication of lakes^{10,20,24,25}, but to our knowledge no explanation has been provided for this relationship based on the larvae's migration energetics. *Giguere*¹⁶ experimentally measured the energy required for swimming at 0.07 mJ motion⁻¹ with an average horizontal displacement of 2.5 cm motion⁻¹ (2.8 mJ m⁻¹). A simple analysis is performed assuming a resting metabolism of 490 mJ d⁻¹ at 10 °C^{7,16} and a constant lake temperature. With these assumptions, the increase in energy expenditure for migration by active swimming (roundtrip) is shown in Fig. 3: A *Chaoborus* larva migrating between 45 m and the surface (i.e. 90 m total per day) would increase its energy demand by 50% see ref. 16 and nearly 80% in 70 m water depth.

To put this energy expenditure into perspective: A functional response study showed that a fourth instar *Chaoborus* has a maximum ingestion rate of 5 *Daphnia pulex* (1.44 mm size) per day²⁶. Assuming an energy content of 185 mJ ind⁻¹ for *Daphnia*²⁷, this translates to a maximum energy intake of 925 mJ d⁻¹ for the *Chaoborus* larva. Thus, diurnal migration through a 45–70 m water column by swimming would use up 80–95% of the larva's maximum energy intake, and considerably more in warmer or less productive waters. Therefore, there is a clear and substantial energetic advantage for *Chaoborus* spp. to exploit the buoyancy provided by their methane-filled gas sacs for migration.

Figure 3. Increase in *Chaoborus* spp. energy expenditure above the resting metabolism (assumed to be 490 mJ d⁻¹ at 10 °C) for round-trip migration by active swimming as a function of depth.

While *Chaoborus* spp. are commonly found in lakes all over the world, there are no comparable examples in the open ocean despite the vast abundance and diversity of insects¹⁷. This gas-supersaturation buoyancy mechanism would not work in ocean settings, as methane production occurs much deeper in marine sediments beneath the sulfate reduction zone^{28} . Because CO₂ and H₂S are much more soluble than CH₄ (~27 and 80 times respectively)²³, the total dissolved gases in the porewater (including dissolved N₂) of surficial marine sediments likely do not approach the supersaturated concentrations needed to inflate gas sacs.

The process of *Chaoborus* spp. inflating their gas sacs occurs very naturally and passively by the larvae being in contact with the porewater with saturated to oversaturated gas pressures. The only variable is the larvae's adjustment of the gas diffusion rate across the gas sac wall¹⁵. Therefore, we suggest porewater methane as a potential but hitherto overlooked factor of the prevalence of migrating *Chaoborus* spp. in lakes. This is crucial to understanding their past and present distributions in lakes, and their impacts on carbon dynamics in lakes and in the surrounding landscapes, which we discuss below.

The work of *Teraguchi*¹⁵ and our results both demonstrate that the gases making up the sac contents are a product of sparingly-soluble gases in the surrounding environment. For *Chaoborus* spp. dwelling in lake sediment, the gas in their gas sacs consists largely of methane, which is re-dissolved in the water column during upward migration. Assuming *Chaoborus* spp. densities of 2,000 to 130,000 ind. m⁻²³ and a sac volume of $0.12 \mu L^{15}$, the migration-driven methane flux from the sediment to the water column would be ca. 10–2,000 mmol m⁻² yr⁻¹ for depths ranging from 20–70 m. This flux approaches and even exceeds typical diffusive fluxes across the sediment-water interface^{29,30}, and is then dissolved throughout the water column as the *Chaoborus spp*. migrate from the sediment towards the surface layer to feed. The proportion dissolved in the hypolimnion and surface layer would depend on the lake depth and will be investigated in future studies.

Additionally, hydroacoustic surveys show that bioturbation by migrating *Chaoborus* spp. larvae at the surface sediment leads to increased gas bubble release from the sediment⁶. We therefore speculate that *Chaoborus* spp. larvae greatly affect methane transport from the lake sediment to the water column and atmosphere and could, in some cases, be a partial source of the often observed mid-water methane peak³¹. Furthermore, it illustrates the potential for other volatile and sparingly-soluble chemicals to be transported across the sediment-water interface via *Chaoborus* gas sacs and bioturbation.

In lakes with a history of eutrophication and pollution, the sediment can act as a reservoir of nutrients and pollutants, and diffusive release of solutes from sediment porewater can sustain and exacerbate internal chemical loading within the water column. While bubbles in cohesive sediment due to methane actually inhibit diffusion of other solutes to the water³², it is suggested that *Chaoborus* spp. can, through bioturbation, significantly enhance solute flux from sediment to the water column and subsequently increase lake internal loading³. *Gosselin and Hare*³ estimate that it takes between 9.3 days (2,300 ind m⁻²) and 0.2 days (130,000 ind m⁻²) to turnover 1 m² of sediment by *Chaoborus*. Expressed as an apparent diffusivity, 2,000 ind m⁻² enhance the surface sediment diffusivity 1,000 times over molecular diffusion, a substantial increase. In fact, *Chaoborus* spp. bioturbation is strong enough to even destroy the calcareous laminations in sediment deposits³³.

Chaoborus spp. emergence represents a potentially significant carbon export from the system, and a link between the sediment biogeochemistry and the surrounding terrestrial ecosystem³⁴. Estimates for adult *Chaoborus* spp. dry weight range from 1–1.8 mg ind^{-1 16,35}. Assuming 40% carbon and a mean dry weight of 1.4 mg ind⁻¹, *Chaoborus* spp. emergence once per year gives a carbon export ranging from 0.1–6 mol m⁻² yr⁻¹ (1–72 g C m⁻² yr⁻¹) for densities of 2,300 to 130,000 ind m⁻². Extrapolating this to the total lake surface area (4% of land area³⁶) yields a global flux of ca. 7–400 Tg C yr⁻¹. This is a very simple estimate as *Chaoborus* spp. are absent in oligotrophic and deep (>70 m) lakes, yet it does not include small ponds. In addition to the carbon flux, emergent insects can be important links between sediment pollutants and surrounding predators (e.g. spiders)³⁴.

Figure 4. Experimental setup for measuring gas transfer from *Chaoborus flavicans*. *C. flavicans* larvae pretreated with CH₄-saturated water were placed in a gas-tight flask connected to gas analyzer in a closed circuit. A magnetic stirrer produced gentle mixing to equilibrate gases between the water phase and the headspace.

Here we present a novel mechanism by which *Chaoborus* spp. use methane-filled gas sacs to aid migration. With this unique adaptation, *Chaoborus* spp. can migrate from sediment at depth with minimal energy expenditure during the night and take advantage of cooler temperatures and absence of predators at depth during the day. Lowered energy demand and effective predator avoidance therefore allow them to substantially expand their habitat and drastically alter the lake ecology. For example, using data from a seven year study of fish biomanipulation in two lakes (Mouse and Ranger Lakes, Dorset, Ontario), Ramcharan *et al.*³⁷ found that *Chaoborus* spp. consume more zooplankton than fish, indicating their importance for trophic interactions and energy cycling. Finding the tipping point in the lake's eutrophication history when methane-fueled migration became feasible (Fig. 1) is therefore an important consideration in paleolimnological research and for understanding corresponding shifts in the lake's biogeochemistry, greenhouse gas fluxes and food web structure.

Methods

Chaoborus sampling: *Chaoborus* spp. (*C. flavicans*) were collected from Lake Dagow (Stechlin, Germany). Lake Dagow (maximum depth 9.5 m, surface area 0.24 km^2) is a eutrophic lake with an anoxic hypolimnion in the summer, where *C. flavicans* commonly occur^{31,38}. Samples were collected in Lake Dagow by deploying a conical net (0.5 m mouth diameter, 200 µm mesh) at about 1–2 m depth from a small boat around midnight when *Chaoborus* spp. migrated to the oxic surface. The animals were kept in surface lake water and immediately transported to the laboratory.

Sample preparation. In the laboratory, a CH_4 -saturated solution was prepared by bubbling CH_4 gas into ~20 °C water for ~15 minutes until it reached saturation at ~1.5 mmol L⁻¹³⁹. *Chaoborus* spp. (4th instars) were sorted for the experiments. These were carefully and individually rinsed (three times) in 5-µm filtered lake water and then placed in the CH_4 -saturated solution for 12 hours (sealed flask) to allow the gas sacs to take up methane from the surrounding water. Afterward the larvae were quickly washed and transferred to the experimental flask (within ~2 minutes).

Experiments. To demonstrate methane uptake and redissolution from the larvae, we transferred methane pre-treated larvae to the experimental flask containing 150 ml of filtered lake water. The filtered lake water was at room temperature and at equilibrium with the CH₄ in the atmosphere (\sim 3 nM CH₄). The flask was immediately connected to a gas analyzer (CO₂ and CH₄; Los Gatos Ultra-Portable Gas Analyzer, Los Gatos Research, California, USA) with a closed circuit. The instrument has a CH₄ measurement range of 0.01–100 ppm with a repeatability/precision <2 ppb at 1 Hz sampling. A slow-spinning (\sim 60 rpm) magnetic stirrer positioned at the bottom of the flask provided gentle mixing to ensure equal distribution of dissolved CH₄ (Fig. 4). The expectation was that CH₄ contained in the larvae's gas sacs would diffuse across the sac wall and tissues into the surrounding water. Being a sparingly-soluble gas, a large fraction would then pass from the water phase to the headspace, resulting in an increase in headspace CH₄ concentration over time as a function of abundance of the larvae.

The first experiment was conducted to follow the detailed temporal changes in headspace gas concentrations. Thirty-five fresh, methane pre-treated larvae were transferred to the experimental flask, and changes in headspace gas concentrations were monitored continuously until the CH_4 concentration reached steady state. We then used 35, 25 and 13 methane treated animals and included a control of 25 larvae pre-incubated in CH_4 -free lake water instead of CH_4 -saturated water to investigate the number of larvae on the total gas exchange. The experiment lasted at least 60 minutes.

Stoke's Law. The terminal velocity for the buoyant rise and sink of the larva is calculated from balancing the forces as

$$F_{grav} = F_{buoy} + F_{drag} \tag{1}$$

where F_{drag} , F_{buoy} and F_{grav} are the drag force, buoyance force, and force due to gravity, respectively. Expanding each of the force terms we get

$$\rho_c V_c g = p_w V_c g - \frac{1}{2} \rho_w A C_D v^2 \tag{2}$$

where A is the cross-section surface area of the larva (assumed cylindrical), C_D is the drag coefficient, ρ is density, V is volume, g is gravitational acceleration, and v is the terminal velocity. The subscripts w and c refer to water and Chaoborus, respectively. The drag coefficient is a function of the Reynolds number, Re, defined as

$$Re = vd_c/\nu \tag{3}$$

where *d* is the larva's cross-section diameter, and ν is the kinematic viscosity of water. Estimating the initial rising velocity of 5 mm s⁻¹¹³ gives $Re \approx 4,000$. For cylinders with $100 < Re < 10^5$, the drag coefficient $C_D \approx 1^{40}$.

References

- 1. Sweetman, J. N. & Smol, J. P. Reconstructing fish populations using *Chaoborus* (Diptera: Chaoboridae) remains a review. *Quat. Sci. Rev.* 25, 2013–2023 (2006).
- Green, J., Corbet, S. A. & Betney, E. Ecological studies on crater lakes in west Cameroon blood of endemic Cichlids in Barombi Mbo in relation to stratification and their feeding habits. J. Zool. 170, 299–308 (1973).
- Gosselin, A. & Hare, L. Burrowing behavior of *Chaoborus flavicans* larvae and its ecological significance. J. N. Am. Benthol. Soc. 22, 575–581 (2003).
- Elser, M. M., Vonende, C. N., Sorrano, P. & Carpenter, S. R. Chaoborus populations response to food web manipulation and potential effects on zooplankton communities. Can. J. Zool. 65, 2846–2852 (1987).
- 5. Wissel, B., Yan, N. D. & Ramcharan, C. W. Predation and refugia: implications for *Chaoborus* abundance and species composition. *Freshwat. Biol.* **48**, 1421–1431 (2003).
- 6. Bezerra-Neto, J. F., Brighenti, L. S., Mello, N. A. S. T. D. & Pinto-Coelho, R. M. Hydroacoustic assessment of fish and *Chaoborus* (Diptera-Chaoboridae) distribution in three Neotropical lakes. *Acta Limnol. Bras.* 24, 18–28 (2012).
- 7. Swift, M. C. Energetics of vertical migration in Chaoborus trivittatus larvae. Ecology 57, 900-914 (1976).
- 8. Scharnweber, K., Vanni, M. J., Hilt, S., Syväranta, J. & Mehner, T. Boomerang ecosystem fluxes: organic carbon inputs from land to lakes are returned to terrestrial food webs via aquatic insects. *Oikos* 123, 1439–1448 (2014).
- 9. Thienemann, A. Die binnengewasser Nittelewopas Eine limnologische Einführung. Binnengegewässer 1, 1–225 (1925).
- Luoto, T. P. & Nevalainen, L. Larval chaoborid mandibles in surface sediments of small shallow lakes in Finland: implications for palaeolimnology. *Hydrobiologia* 631, 185–195 (2009).
- Taylor, D. J., Ballinger, M. J., Medeiros, A. S. & Kotov, A. A. Climate-associated tundra thaw pond formation and range expansion of boreal zooplankton predators. *Ecography* 39, 43–53 (2016).
- 12. Joensuu, L., Pekcan-Hekim, Z., Hellen, N. & Horppila, J. Turbulence disturbs vertical refuge use by *Chaoborus flavicans* larvae and increases their horizontal dispersion. *Freshwat. Biol.* **58**, 1997–2006 (2013).
- Lorke, A., McGinnis, D. F., Spaak, P. & Wüest, A. Acoustic observations of zooplankton in lakes using a Doppler current profiler. Freshwat. Biol. 49, 1280–1292 (2004).
- 14. Teraguchi, M. & Northcote, T. G. Vertical distribution and migration of *Chaoborus flavicans* larvae in Corbett Lake British Columbia. *Limnol. Oceanogr.* 11, 164–& (1966).
- 15. Teraguchi, S. Correction of negative buoyancy in phantom larva. Chaoborus americanus. J. Insect. Physiol. 21, 1659–1670 (1975).
- 16. Giguere, L. A. Metabolic expenditures in Chaoborus larvae. Limnol. Oceanogr. 25, 922-928 (1980).
- 17. Maddrell, S. H. P. Why are there no insects in the open sea? J. Exp. Biol. 201, 2461-2464 (1998).
- Nilssen, J. P. On the ecology and distribution of the Norwegian larvae of *Chaoborus* (Diptera, Chaoboridae). *Norwegian J. Entomol.* 21, 37–44 (1974).
- 19. Wigglesworth, V. B. The Principles of Insect Physiology. 2nd edn, (Methuen & Co., Ltd., 1942).
- Quinlan, R. & Smol, J. P. Use of subfossil *Chaoborus* mandibles in models for inferring past hypolimnetic oxygen. J. Paleolimnol. 44, 43–50 (2010).
- 21. Quinlan, R. & Smol, J. P. The extant *Chaoborus* assemblage can be assessed using subfossil mandibles. *Freshwat. Biol.* 55, 2458–2467 (2010).
- 22. Anderson, A. L. & Hampton, L. D. Acoustics of gas-bearing sediments.1. Background. J. Acoust. Soc. Am. 67, 1865–1889 (1980).
- 23. Sander, R. Compilation of Henry's law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. 15, 4399-4981 (2015).
- 24. Wazbinski, K. E. & Quinlan, R. Midge (Chironomidae, Chaoboridae, Ceratopogonidae) assemblages and their relationship with biological and physicochemical variables in shallow, polymictic lakes. *Freshwat. Biol.* **58**, 2464–2480 (2013).
- 25. Verbruggen, F., Heiri, O., Merilainen, J. J. & Lotter, A. F. Subfossil chironomid assemblages in deep, stratified European lakes: relationships with temperature, trophic state and oxygen. *Freshwat. Biol.* **56**, 407–423 (2011).
- 26. Spitze, K. Functional-response of an ambush predator *Chaoborus americanus* predation on *Daphnia pulex*. Ecology **66**, 938–949 (1985).
- 27. Golley, F. B. Energy values of ecological materials. *Ecology* **42**, 581–& (1961).
- 28. Canfield, D. E., Kirstensen, E. & Thamdrup, B. Aquatic Geomicrobiology. 640 (Elsevier Academic Press, 2005).
- DelSontro, T., McGinnis, D. F., Sobek, S., Östrovsky, I. & Wehrli, B. Extreme methane emissions from a Swiss hydropower reservoir: Contribution from bubbling sediments. *Environ. Sci. Technol.* 44, 2419–2425 (2010).
- 30. Maeck, A. et al. Sediment trapping by dams creates methane emission hot spots. Environ. Sci. Technol. 47, 8130-8137 (2013).
- Tang, K. W., McGinnis, D. F., Frindte, K., Bruchert, V. & Grossart, H.-P. Paradox reconsidered: Methane oversaturation in welloxygenated lake waters. *Limnol. Oceanogr.* 59, 275–284 (2014).
- Flury, S., Glud, R. N., Premke, K. & McGinnis, D. F. The effect of sediment gas voids and ebullition on benthic solute exchange. Environ. Sci. Technol. 49, 10413–10420 (2015).
- Hajdas-Skowronek, I. Extension of the Radiocarbon Calibration Curve by AMS Dating of Laminated Sediments of Lake Soppensee and Lake Holzmaar Doctor of Natural Sciences thesis, Swiss Federal Institute of Technology Zurich (1993).
- Tweedy, B. N., Drenner, R. W., Chumchal, M. M. & Kennedy, J. H. Effects of fish on emergent insect-mediated flux of methyl mercury across a gradient of contamination. *Environ. Sci. Technol.* 47, 1614–1619 (2013).
- 35. Dumont, H. J. & Balvay, G. Dry-weight estimate of *Chaoborus flavicans* (meigen) as a function of length and instars. *Hydrobiologia* **64**, 139–145 (1979).

- Verpoorter, C., Kutser, T., Seekell, D. A. & Tranvik, L. J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402 (2014).
- 37. Rancharan, C. W. *et al.* Analyses of lake food webs using individual-based models to estimate *Chaoborus* production and consumption Part 5 of the Dorset food web piscivore manipulation project. *Arch. Hydrobiol. Spec. Issues Advanc. Limnol.* **56**, 101–126 (2001).
- 38. Casper, J. S. Lake Stechlin: A Temperate Oligotrophic Lake (1985).
- Wiesenburg, D. A. & Guinasso, N. L. Equilibrium solubilities of methane, carbon-monoxide, and hydrogen in water and sea-water. Journal of Chemical and Engineering Data 24, 356–360 (1979).
- 40. Tritton, D. J. Physical Fluid Dynamics. 2nd ed. edn, (Oxford University Press, 1988).

Acknowledgements

Financial support was provided by an IGB fellowship grant (DFM), the Leibniz SAW project Landscales (SF and HPG), the Swiss National Science Foundation Advanced Mobility Stipend Grant no: PA00P2-142041 (SF), the DFG-Aquameth project GR 1540/21-1 (HPG), and a Humboldt Fellowship for Experienced Researchers (KWT).

Author Contributions

D.F.M. conceived the study. D.F.M., S.F., K.W.T. and H.P.G. contributed equally to experiments, analysis and manuscript preparation.

Additional Information

Competing Interests: The authors declare no competing financial interests.

How to cite this article: McGinnis, D. F. *et al.* Porewater methane transport within the gas vesicles of diurnally migrating *Chaoborus* spp.: An energetic advantage. *Sci. Rep.* 7, 44478; doi: 10.1038/srep44478 (2017).

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017