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Abstract  

Species diversity affects the functioning of ecosystems, including the efficiency by which 

communities capture limited resources, produce biomass, recycle and retain biologically 

essential nutrients.  These ecological functions ultimately support the ecosystem services upon 25 

which humanity depends. Despite hundreds of experimental tests of the effect of biodiversity on 

ecosystem function (BEF), it remains unclear whether diversity effects are sufficiently general 

that we can use a single relationship to quantitatively predict how changes in species richness 

alter an ecosystem function across trophic levels, ecosystems and ecological conditions. Our 

objective here is to determine whether a general relationship exists between biodiversity and 30 

ecosystem functioning. We used hierarchical mixed effects models, based on a power function 

between species richness and biomass production (Y = a*Sb), and a database of 374 published 

experiments to estimate the BEF relationship (the change in function with the addition of 

species), and its associated uncertainty, in the context of environmental factors. We found that 

the mean relationship (b = 0.26, 95% CI: 0.16, 0.37) characterized the vast majority of 35 

observations, was robust to differences in experimental design, and was independent of the range 

of species richness levels considered. However, the richness-biomass relationship varied by 

trophic level and among ecosystems; b was nearly twice as high for consumers (herbivores and 

detritivores) compared to primary producers in aquatic systems; in terrestrial ecosystems, b 

deviated from the overall pattern for terrestrial detritivores. We estimated changes in biomass 40 

expected for a range of changes in species richness, highlighting that species loss has greater 

functional implications than species gains, skewing a distribution of biomass change relative to 

observed species richness change. When biomass provides a good proxy for processes that 



 3 

underpin ecosystem services, this relationship could be used as a step in modeling the production 

of ecosystem services and their dependence on biodiversity. 45 

Introduction  

A major goal in biodiversity research is to understand the consequences of biodiversity change 

for ecosystem functioning (Tilman et al. 1997, Petchey 2000, Turnbull et al. 2013). Experiments 

have shown that species richness positively affects many ecosystem functions, such as standing 

biomass and resource use (Tilman et al. 2001, Cardinale et al. 2006, Reich et al. 2012). A 50 

nonlinear function commonly captures the relationship between species richness and ecosystem 

function, and its prevalence among experimental results in the literature suggests a common 

quantitative relationship might characterize the rate of change of function with changing species 

richness. Generalized empirical relationships in ecology have allowed for comparisons and 

predictions across complex systems (Peters 1983, Brown and West 2000, O’Connor et al. 2007). 55 

Here we provide evidence that a general empirical relationship between diversity and function 

depends on trophic level, but is otherwise conserved across a large database of BEF experiments.  

 To extend the biodiversity-ecosystem functioning paradigm to contexts beyond 

controlled experiments, we need (1) a quantitative estimate of how much function is lost with the 

loss of a species, (2) reliable estimates of variation around the mean estimate of the BEF 60 

relationship and, ideally (3) assignment of uncertainty to factors that are known (e.g., species 

traits, resource supply, ecosystem) and factors not yet identified. With existing data, an empirical 

estimate of the relationship between richness and biomass could be applied to biodiversity 

change models to give a first approximation, or testable prediction, for effects of biodiversity 

change outside experimental settings. The ecosystem function of biomass production, here 65 

estimated as standing biomass at a particular time point and referred to throughout as ‘standing 
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biomass’, has often been described as a positive decelerating function of species richness (e.g., 

Balvanera et al. 2006, Cardinale et al. 2006, Reich et al. 2012). For competitively structured 

communities, this relationship has been suggested to follow the Michealis-Menten function; 

however in many experiments, the saturation of function with accumulating species is not clear 70 

at the levels of species richness nested (Cardinale et al. 2011). An alternative model that captures 

the strong effects of species richness at low levels of richness, but diminishing effects at higher 

richness, is a power function, biomass = a*(richness)b with scaling parameter b (Cardinale et al. 

2007, 2011, Reich et al. 2012). The power function used here is not meant to imply a particular 

theoretical BEF mechanism. It is used because it has substantial empirical support from previous 75 

syntheses (Cardinale et al 2011, Gamfeldt et al. 2015, Lefcheck et al 2015). 

 Previous grassland diversity experiments reported a central tendency toward a value of 

approximately b = 0.26. These studies have identified variation in this estimate: 95% confidence 

intervals of 0.15 - 0.32 (Cardinale et al. 2006), or a standard deviation of 0.27 (Cardinale et al. 

2011). Whether that variation reflects systematic and ecologically important differences among 80 

BEF relationships has not been clear. Individual experimental studies suggest this relationship 

can vary with resource availability (e.g., water, nutrients, CO2) (Reich et al. 2001, Fridley 2002, 

Boyer et al. 2009), presence of a predator (Duffy et al. 2005), and can increase in strength over 

time as experiments are run for more experimental years (Stachowicz et al. 2008, Reich et al. 

2012, Cardinale et al. 2007). Within experiments that share a species pool, experimental design, 85 

and other factors, the BEF relationship varies among sites (Hector et al. 1999). Such among-site 

variation could imply that the strength of the richness-function relationship is contingent on 

species composition and environmental condition (e.g., soil type, climate, etc). Meta-analyses of 

dozens of experiments have demonstrated that, across studies, estimated mean richness-standing 
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biomass scaling values (e.g., b) or effect sizes (e.g., log response ratios) are conserved across 90 

experiments conducted in different ecosystem types and trophic groups (Cardinale et al. 2006). 

However, the values of b do vary systematically with attributes of the experimental design, such 

as additive and substitutive designs or the total number of richness levels (Balvanera et al. 2006), 

experimental durations (Cardinale et al. 2007), and spatial and temporal scale (Cardinale et al. 

2011). Recently, three meta-analyses reported differences in BEF effects among trophic levels 95 

demonstrating that marine herbivore richness has a stronger effect on function than algae 

(Gamfeldt et al. 2014), aquatic herbivore richness has stronger effects on function than plants 

when multiple functions are analyzed (Lefcheck et al., 2015), and carnivore richness more 

strongly affects resource depletion than richness at lower trophic levels (Griffin et al. 2013). If 

the BEF relationship does vary in space and time, or with biotic and abiotic conditions, then 100 

estimates of the scaling parameter alone may impart minimal information; however, if it is 

general or varies predictably it can provide a powerful tool for efforts to generalize the 

consequences of species loss for ecological function and ecosystem services (Isbell et al. 2014). 

While individual experiments, and broader meta-analyses, have tested the importance of one or a 

few additional factors (time, resource supply, trophic structure, etc.; (Hooper et al. 2012, Tilman 105 

et al. 2012)), the relative importance of these factors, the uncertainty in their effects, and whether 

it is necessary to include these parameters in general richness-function models remains unclear.   

Here, we test the hypothesis that a single BEF relationship, expressed as an empirically 

estimated value of b in a power function, adequately describes the relationship between species 

richness and standing biomass at fine spatial grains (e.g., m2 or litres) despite variation in abiotic 110 

conditions, sites, and ecological community contexts such as different species pools, ecosystems, 

trophic levels or resource regimes. We then test biological and experimental conditions that 
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might explain variation in this relationship, aiming to identify which factors are essential to 

understanding the richness-biomass scaling relationship and which might be left out of a general 

model. We apply our findings to estimate the effects of changes in species richness for changes 115 

in standing biomass. Ultimately, our goal is to facilitate integration and quantitative application 

of the BEF relationship by determining whether experimental evidence supports a scaling 

relationship (a specific value) between richness and the important ecological function of 

community biomass production. 

 120 

2. Methods 

We used a hierarchical mixed effects model to test our hypothesis that there is a constant scaling 

relationship between species richness and community biomass. We chose standing biomass as 

the response variable, because theoretical work has centered on this response and hundreds of 

experimental tests of the relationship between community biomass and richness are published. 125 

Standing biomass is often inferred to be correlated with net primary production, though the data 

most available and analyzed here are for standing stocks only. Modeling standing biomass 

provides a diverse and large sample to estimate not only the effect of richness on standing 

biomass but also to test for systematic variation in this relationship among groups. Our sample of 

studies included 374 experiments and 558 entries (from 91 studies published between 1985 and 130 

2009, appendix) in which richness was manipulated and standing stock of biomass was reported 

for a species assemblage. The fundamental unit of observation in our analysis was a biomass 

response variable (e.g., above-ground biomass) reported across a set of species richness (S) 

treatments varying in the number of species (at least 2 richness levels), with all other factors 

controlled, hereafter an “entry.” For most entries, we lacked data on individual replicates for a 135 



 7 

treatment in a given experimental unit, and had no choice but to use published means of the 

richness treatment. Though all entries shared this basic experimental design, they differed in 1) 

the number of richness levels tested, 2) maximum species richness, 3) the duration of the 

experiment, 4) whether resources like nutrients or water were added, reduced or unmanipulated, 

5) whether experimental units were conducted in the lab or in the field, 6) whether the ecosystem 140 

studied was aquatic or terrestrial, and 7) in which trophic level diversity was manipulated and 

biomass reported (Table 1). Many experiments included monocultures (richness = 1 species), 

such that 544 of 558 entries included S = 1, and the highest richness level tested (Smax) increased 

with the number of richness levels within entries (r2 = 0.41, P < 0.001). For each entry, we 

obtained or estimated a value for each predictor listed above (Table 1). Studies were dropped 145 

from the analysis when information on this set of predictors were not available, so there were no 

unknown values, and the dataset included the same information for all models tested. The 

number of entries for each level of each predictor was not balanced. The database is dominated 

by terrestrial plant studies lacking explicit resource manipulations (Table 1). The database also 

does not include the following combinations: aquatic species richness x resource reduction 150 

treatments, terrestrial herbivore richness manipulations, or resource reduction treatments for 

herbivores or detritivores. There were also insufficient studies reporting the effects of carnivore 

diversity on carnivore biomass to include in this analysis. Fortunately, hierarchical mixed effects 

models handle unbalanced designs, and groups with few data points can still contribute some 

information to the overall analysis (Gelman and Hill 2007).  155 

 

2.1 The search for a single BEF relationship 



 8 

 Our primary objective was to estimate the scaling relationship between richness and 

biomass. Then, we aimed to test whether a single scaling coefficient describes the relationship 

between richness and biomass given the variation across organisms, ecosystems, and studies 160 

performed to date, and if not, to determine what additional information is required to estimate the 

effect of species richness on biomass. We chose a mixed effects modeling approach that allowed 

us to characterize the effect of richness on biomass using our structured dataset in which many 

variables are shared by observations reported from the same experiment or study.  

In this dataset, entries within experiments differ in aspects including date sampled or response 165 

variable (e.g., above or below ground biomass sampled from the same plot), but share all other 

attributes such as species richness levels, focal taxa, etc. Experiments within studies differ in 

treatment levels of resources, location or time (e.g., year sampled), but share a publication, 

research team, and other study-level attributes (Table 1). Mixed effects models allow modeling 

of variation associated with all unmeasured variables that make parameter estimates from the 170 

same group (e.g., a study) similar to each other but distinct from other groups. Hierarchical 

mixed effects models pool information at the group level, using fewer degrees of freedom and 

reducing uncertainty in estimated relationships relative to an analysis of each group (e.g., study) 

independently with regressions (Pinheiro and Bates 2000, Gelman and Hill 2007, O’Connor et al. 

2007, Cressie et al. 2009). Hierarchical mixed effects models that account for such structure in 175 

datasets are used extensively in social sciences, economics, public health, and other fields where 

grouped data are the norm (Snijders and Bosker 1999, Gelman and Hill 2007), and provide an 

information-efficient approach for structured data.  
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We began by modeling the BEF relationship at the finest data resolution with the simplest 

plausible relationship of interest, in our case biomass (ln(Y)) at the plot level as predicted by 180 

species richness (ln(S)),   

  ln(Yijkl) = Β0.ijk + Β1.ijk*ln(Sijkl) + εijkl,              Eqn 1a 

for plots or mesocosms (l) within each combination of a species richness manipulation and a 

biomass response (entry, k), entries within experiments (j) and experiments within studies (i). We 

assumed normally distributed residual error (εijk ~ (N, σ2)). We modeled the biomass-richness 185 

relationship as a log-log relationship, derived by log-transforming the power function Y = a*S b, 

so that a is estimated by Β0 and the scaling parameter b is estimated by Β1. Although other 

formulations (e.g., Michaelis-Menten) have been used to describe this relationship (e.g., 

Cardinale et al., 2011), we proceed with the power function, which has received substantial 

empirical support (Cardinale et al. 2007, 2011, Reich et al. 2012, Gamfeldt et al. 2014).  190 

 Our hypotheses are centered on the question of how predictable is the value of Β1, or 

conversely, how variable it is among studies and conditions.  Though it is not of primary interest 

in this study, we also modeled variation in the intercept term, Β0, because predictors of Β1 could 

influence the intercept (mean biomass), and those influences likely covary in some cases with 

variation in the slope. To test our hypotheses while accounting for variability among 195 

experimental conditions and study systems in our dataset, we modeled variation in the slope 

(Β1.ijk) and intercept (Β0.ijk):  

 Β0.ijk = γ00  +  μ0.i + μ0.j + μ0.k                Eqn 1b 

 Β1.ijk = γ10  +  μ1.i + μ1.j + μ1.k              

In Eqns 1b, the slope Β1.ijk and intercept Β0.ijk  for each observation (a set of species richness – 200 

biomass observations) are modeled (as mean γ10  and γ00, respectively),  and variation associated 
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with each level of data grouping - entry (μ1.k, μ0.k), experiment (μ1.j, μ0.j) and study (μ1.i, μ0.i) - can 

be formally considered as random effects normally distributed with variance Σ0 estimated by the 

model (Appendix A).  

 The test of our first hypotheses is whether variable slopes (μ1.i, μ1.j, μ1.k) are required. If so, 205 

we would conclude that it is not possible to identify a single scaling parameter (Β1.ijk) for this 

dataset. We also tested alternate models (Eqns 2-3) that include interaction terms for time (TG) 

passed since the beginning of the experiment normalized to the generation time of the taxon 

(such that TG = duration of experiment in days / generation time of focal organism) (Β2), and the 

interaction between TG and ln(S) (Β3): 210 

ln(Yijkl) = Β0.ijk + Β1.ijk*ln(Sijkl) + Β2*ln(TG.ijkl) + εijkl.                   Eqn 2 

ln(Yijkl) = Β0.ijk + Β1.ijk*ln(Sijkl) + Β2*ln(TG.ijkl) + Β3*ln(Sijkl)*ln(TG.ijkl)  + εijkl.          Eqn 3 

These models test for effects of plot-scale richness and plot age, and are possible because paired 

richness, function data were reported for multiple time points in many studies.  

 215 

2.2 Testing hypotheses about factors that modify the BEF scaling relationship 

 We tested our second main hypothesis that entry-, experiment- or study-level factors alter 

estimates of the richness-biomass scaling relationship. Specifically, we compared mixed effects 

models with different formulations that represent hypotheses for how various biotic and abiotic 

factors (listed in Table 1) interact with species richness to affect the scaling relationship.  220 

 In addition to the basic hypothesis that biomass changes with increasing species richness 

and time (models 1-3), we tested the hypothesis that ecosystem (aquatic, terrestrial) and trophic 

group (primary producer, detritivore, herbivore) influence the richness-biomass relationship 

(slope = Β1.ij, model 4). The trophic group predictor indicates the group for which species 



 11 

richness was manipulated and biomass was measured. In this hypothesis, we included an 225 

interaction between ecosystem and trophic group to allow for the lack of data on terrestrial 

herbivores. We also tested the hypotheses that in addition to ecosystem and trophic group, 

increased or reduced resources (water, nutrients, CO2) modified the BEF relationship (model 5). 

The three categorical levels of the resource treatment predictor (control, addition, reduction) 

reflect experimental manipulations relative to ambient conditions. A level of ‘control’ was 230 

assigned to any species richness manipulation that did not specify that resources were added or 

reduced relative to ambient levels. This resource predictor includes no information on whether 

the resource was a priori shown to be limiting in the system, and not all experiments included 

factorial resource treatments (Table 1). Consequently, the ‘resource’ predictor represents a 

coarse test of whether resource manipulation modifies the richness-function relationship.  235 

 In a fourth hypothesis, we tested for an effect of experimental duration among studies 

standardized to estimated generation time of the manipulated taxa, testing whether experiments 

that run for a greater number of generations show stronger effects of richness when compared 

across taxa or systems (model 6). We considered time in two ways. First, we modeled the effect 

of time ‘within an experiment’, looking at whether the slope parameter changes as an experiment 240 

moves from year 1 to year 2 to year 3. We might expect the parameter to change over time based 

on studies in long-term experiments such as Reich et al 2012 and Stachowicz et al 2008. This 

effect of time is captured by the level-1 parameter TG, and models the effect of year (or day) 

within a multi-year (day) experiment (Table 2). Second, we examined the effect of time by 

modeling the effect of total experiment duration on the slope b. This model tested whether longer 245 

experiments have steeper slopes (the parameter is called ‘ln(maxDuration)’, which is measured 

by the number of generations of the focal taxa in the experiment).  
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 We also tested the hypothesis that the BEF relationship varies with attributes of the 

experimental design – maximum duration, maximum number of species tested (Smax), units in 

which biomass was measured (biomass estimator), and lab vs field (model 8). Finally, we tested 250 

the hypothesis that all factors modify the BEF relationship (model 9, Eqn 4), and that when all 

are included, the interaction between ecosystem and trophic group is not important (model 9.1). 

We modeled interactions between intercepts (Β0.ijk) and slopes (Β1.ijk) for each group using the 

following equations, and each hypothesis outlined above was modeled as a nested subset of the 

full model:  255 

 

Β0.ijk = γ00 + γ01*Sysi + γ02*TGi + γ03*Sysi*TGi  + γ04 *Unitsj + γ05*LabFieldi  

 + γ06*Smax.il  + γ07* Nj + γ08*ln(max(Durationi)) +  μ0.i + μ0.j + μ0.l         Eqn 4a 

Β1.ijk = γ10 + γ11*Sysi + γ12*TGi + γ13*Sysi*TGi  + γ14 *Unitsj + γ15*LabFieldi  

 + γ16*Smax.il  + γ17* Nj + γ18*ln(max(Durationi)) +  μ1.i + μ1.j + μ1.k  Eqn 4b 260 

 

with random effects, normally distributed about zero with variance estimated by the model 

(Appendix). 

 

2.3 Model selection, analysis and inference 265 

 To identify the best model, we first determined the need for variable slopes and intercepts 

for each candidate model (Eqn 1a, 2 and 3) by comparing models with different random effects 

structures (Table A1). The test of our first hypothesis is whether the BEF model requires variable 

slopes at group (entry, experiment and study) levels, implying variation in the BEF relationship 

among groups.  We ranked models with and without variable slopes and intercepts using AICc 270 

adjusted for degrees of freedom to account for different random effects following Bolker et al. 
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(2009) and Gelman and Hill (2007), and δaic values (Bolker et al. 2009). If variable slopes were 

required at the group level, we examined residuals (μ1.k, μ1.j, μ1.l) using caterpillar plots to 

determine whether only a few studies drove the need for variable slopes at the group level 

(Verbeke and Molenberghs 2000). 275 

 To test our second hypothesis, we compared models with biotic and experimental 

predictors (models 4-9; Eqns 4a-b). We ranked models using AICc, and compared them with δaic 

and Akaike weights (w). We defined the best model set as all models with δaic < 2 (Richards 

2005), Burnham and Anderson 2002). If more than one model met our criteria of δaic < 2, we 

averaged these models to produce coefficient estimates (Burnham and Anderson 2002). Model 280 

averaging produces estimates for all coefficients in the best model set, weighted by the 

importance (w) of each model in the set. To estimate the scaling parameter b for each study, we 

summed coefficients for each richness manipulation (b = Β1.ijk + μ1.i + μ1.j + μ1.k) (Gelman and 

Hill 2007) from the best model set.  

We proceeded with a linear mixed effects model, although in our dataset, ln(Yijkl) values 285 

have a fat-tailed distribution and are not strictly normally distributed (Shapiro Test, p < 0.001), 

differing from normal but without significant skew. Analysis of residuals of Equation 1 revealed 

7 experiments from 2 studies that were extreme outliers in the dataset (< 0.03% of entries), and 

these were excluded from analysis to meet assumptions of homoscedasticity (Appendix 1). 

Although we tested for an effect of time and there is a risk that observations are temporally 290 

autocorrelated, we could not include a temporal autocorrelation term in the model because time 

and richness are modeled at the finest resolution of our hierarchical data. Thus, there are multiple 

observations (biomass at multiple richness levels) for each level of TG within each entry, and we 

cannot isolate potential autocorrelation in time from among richness levels. Therefore, the 
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ln(TG)*ln(S) fixed effect is expected to include any real effects and any possible autocorrelation. 295 

All analyses were done in R (v. 3.2.1). We used lme4 package (v. 1.1-8) for mixed effects 

analyses, comparing models fit with REML = FALSE but used REML = TRUE for estimation of 

coefficients. Data and analytical code is available from the authors and at 

https://github.com/mioconnor78/OConnor-et-al-BEF-Relationship. We produced caterpillar plots 

using the package sjPlot (v. 1.8.2). 300 

 

3. Results  

A single, universal scaling relationship (Β1.ijk value) was not supported by our analysis of the 

species richness-biomass relationship. Variable slopes and intercepts associated with entry, 

experiment and study were required for each candidate model (Eqns 1-3) (AICC > 100 for 305 

comparison of model with variable slopes and intercepts to model with fewer random effects 

terms) (Table A1).  We did not find strong evidence for a systematic effect of experimental 

duration on the BEF relationship across all studies (Table 2). This simple model with random 

effects (Model 2; Eqn 2) estimates a BEF relationship of b = γ10 = 0.23 (95% CI: 0.18, 0.28) that 

applies to most but not all entries (Figure 1A, A1). Examination of the variation in slopes (μ1.i, 310 

μ1.j and μ0.k ), plotted as the deviation of each slope’s estimated random effect from the mean 

slope fixed effect (Figure 2), suggests this estimate of b = γ10  adequately describes most 

observations (i.e., the confidence intervals for the random effects include 0 in the caterpillar plots 

for most ln(S) estimates) (Figure A1). Still, the number of slope residuals deviating from the 

central estimate (γ10) is sufficient that removing those observations neither eliminates the need 315 

for variable slopes, nor is justified based on the dataset.  In all models, richness values were 
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centered on ln(8) to minimize covariation of random effects to 0.07 for Entry, 0.24 for 

Experiment, and -0.16 for Study level slopes and intercepts estimated by model 1. 

 After concluding that variable slopes at the entry, experiment and study levels confound 

the identification of a single scaling relationship, we tested our second main hypothesis that 320 

entry-, experiment-, and study-level factors could explain some variation in richness-biomass 

scaling relationship, thus eliminating the need for variable slopes (μ1.i, μ1.j and μ0.k). We found 

that the BEF relationship varies systematically between aquatic primary producers and 

consumers such that herbivore and detritivore biomass increased with species richness by 

baq.herbivores = γ10 + γ12 = 0.47, whereas detritivore biomass increased with species richness by baq. 325 

detritivores = γ10 + γ12 = 0.55, both stronger than the relationship between primary producer (plants, 

algae) biomass and primary producer species richness (bprim.prod = γ10 = 0.26) (Table 3, Figure 1B). 

Though there was no difference between aquatic and terrestrial primary producers, terrestrial 

detritivores had a much weaker and negative relationship between richness and biomass than all 

other groups (aquatic primary producers and herbivores, and terrestrial plants) (Figure 1B, C). 330 

The top-ranked model of our set was model 4 (Table 3), which included the interaction between 

trophic group and ecosystem (Figure 1B). None of our other hypotheses about variation in the 

BEF relationship could be considered as equivalent to this ‘best’ model.  

 The best model indicates that variable slopes and intercepts are required, even with fixed 

effects for trophic group and ecosystem (Model 4, Table A2, Figure 2). Thus, systematic 335 

variation remains among entries, experiments, and studies that prohibits a single estimate of a 

BEF relationship between ln(Y) and ln(S) (Figure 2). Still, the value estimated by model 4 of b = 

γ10 = 0.26 (95% CI: 0.16, 0.37) describes the majority of the dataset (Figure 2). The larger 
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variance components associated with study and entry compared to experiment suggests that most 

of the unexplained systematic variation is at those levels. 340 

 Our model comparison results allowed us to reject some of our alternate hypotheses 

(Table 3). We rejected the hypothesis that the basic model (Eqn 2) is sufficient to explain the 

relationship between richness and biomass. We also rejected the hypotheses that differences in 

experimental designs (number of species tested, lab vs field experiment, and the method of 

estimating biomass) explain variation in the observed BEF relationship. Results of the test of the 345 

importance of (no. generations, TG) within experiments did not support an interaction between 

ln(S) and ln(TG) (Table 2).  AICc values and the likelihood ratio test suggest that the model with 

and without the interaction term are equivalent, and we therefore proceeded with the simpler 

model without the interaction between time and richness (model 2) inferring that the richness-

biomass relationship did not depend on the duration of an experiment relative to the generation 350 

time of the organisms being studied (e.g., no. generations, TG) across the 374 experiments in our 

dataset (Table 2). We conducted two additional tests of the hypothesis that experimental duration 

might affect the strength of the relationship. In the first of these, we tested the effect of 

maximum duration on the scaling relationship for only final observations of each experiment. 

Model comparisons for this dataset were consistent with the full dataset, and suggested no effect 355 

of maximum duration on the scaling parameter (Table A3). Second, we expanded model 3 (Table 

2) to test alternate hypotheses that there is an interaction between ecosystem, time and richness 

(Model 3a) or between trophic group, time and richness (Model 3b). The inclusion of the 

interaction term for time in this model suggests an effect of time could be informative, yet 

coefficients for the TG interactions do not differ from 0 except for herbivores, which suggests a 360 
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very weak negative effect of time on the BEF relationship. We did not find evidence for this 

effect of time on plants or detritivores across all studies (Tables S4 and S5). 

 

4. Discussion 

We used 558 experimental diversity manipulations to quantify the richness-biomass relationship, 365 

and found that most (but not all) primary producer assemblages conform to a single scaling 

coefficient (b = 0.26) for how biomass increases with increasing species richness, with evidence 

for a stronger relationship among aquatic consumers (herbivores, b = 0.47; detritivores, b = 0.54) 

compared to plants and algae. We conclude that in addition to a change in species richness, 

information about trophic group and ecosystem can inform estimates of the consequences of 370 

species loss or gain for one ecosystem function, standing biomass. Our hierarchical mixed effects 

modeling approach provides one of the more comprehensive analyses of the richness-biomass 

relationship to date, simultaneously considering the potential dependence of the richness-

biomass relationship on 8 abiotic and biotic factors and additional systematic variation across 

hundreds of experimental tests. Our failure to reject the need for variable slopes among groups 375 

(entries, experiments, and studies) indicates that systematic variation in the BEF relationship 

exists among studies and experiments, not captured by our hypotheses. 

 One application of a parameterized BEF relationship is to estimate the change in function 

(biomass) associated with a change in species richness. The identification of empirically 

supported scaling parameters for the power function allow the expectation that not only does 380 

species loss or gain per se affect standing biomass, but also to estimate how the proportional loss 

of species translates to a specific expected loss in standing biomass. Our results suggest that a 

proportional change in species richness has greater effects on standing biomass for aquatic 
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herbivores and detritivores than for primary producers, and possibly a negative effect for 

terrestrial detritivores (Figure 1C). The nonlinearity of the BEF relationship informs 385 

interpretation of this relationship. For a distribution of possible changes in species richness 

(Figure 3), Jensen’s inequality implies that for positive values of b, the mean change in species 

richness will always exceed the associated change in biomass expected from this change in 

species number (not considering other dimensions of biodiversity, non-random species loss, or 

co-varying environmental conditions). This is due to the decelerating nature of the BEF curve; 390 

gains accrue less change in function than is lost when an equivalent number of species are lost 

(Figure A3). Thus, even for a distribution in observed species richness changes centered on 0, 

we’d expect an associated distribution in biomass change with a mean value less than 0 (Figure 

3). This highlights the fact that species losses have greater effects on function than gains, given 

values of b less than one, and large proportional losses are expected to lead to disproportionately 395 

large losses in biomass. This is particularly true for systems initially low in species richness for 

which the loss of even a few species amounts to a large proportional loss.  

 The larger effects of species richness change for aquatic herbivore and detritivore 

biomass than primary producer biomass lead to the hypothesis that changes in diversity could 

create positive feedbacks in aquatic systems if as species richness declines, the magnitude of the 400 

consequences increase. If diversity declines occur more among consumers than resources 

(Byrnes et al 2007, Duffy 2003), then the BEF relationship could also shift the importance of top 

down control as grazer species loss disproportionately reduces grazer biomass, potentially 

releasing plant assemblages from grazing pressure, and indirectly increasing plant productivity. 

 The observed stronger BEF scaling relationship in primary consumers relative to primary 405 

producers has been predicted conceptually (Duffy 2002, 2003). Although early syntheses did not 
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detect this difference, that could be explained by smaller numbers of studies and relatively 

simplistic statistical methods of data synthesis (Cardinale et al. 2006). Recently, using variants of 

the dataset we used here, Gamfeldt et al (2014) found that in marine studies, herbivore biomass 

increases more strongly with richness than does primary producer biomass, and Lefcheck et al. 410 

(2015)  reported stronger effects of aquatic herbivore than primary producer diversity on 

multiple functions. Similarly, Griffin et al (2013) found stronger effects of species richness on 

resource depletion rates for higher trophic groups. We confirm this result for a larger dataset that 

includes terrestrial studies, suggesting that as more data has become available, previous findings 

that herbivores did not differ from plants can now be revised.  415 

 We did not find a systematic relationship between the BEF relationship and experimental 

duration (TG) across this dataset (Table 2). Still, for several reasons, we cannot reject the 

hypothesis that the BEF relationship changes though time within a community. First, there is 

strong evidence in the literature, including one meta-analysis, that have reported that the 

richness-biomass relationship strengthens through time (Cardinale et al. 2007, Stachowicz et al. 420 

2008, Reich et al. 2012). Further, in some of the longest-running BEF experiments, an effect of 

duration is clear after several years (Stachowicz et al. 2008, Reich et al. 2012). Second, time may 

have had variable effects among studies. We found that entry-level random effects for the scaling 

coefficient were required, and one of the main differences between entries within an experiment 

is the time of measurement. The persistence of the entry-level random effect for the BEF 425 

relationship could reflect temporal variation, that variation may not be linear through time in all 

studies, or that co-varying factors such as climate conditions explain effects associated with time. 

A similar argument could be made for the importance of total experimental duration (maximum 

duration, Table 1), which varies among studies and could therefore also be accounted for in the 
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study-level variance component. At the study-level, variation in study duration is typically 430 

confounded with variation in spatial scale and body size of the focal taxa (Cardinale et al 2011), 

such that time effects cannot be clearly distinguished.  

Among-study variation explained the majority of the variation in the random effects in 

our model (Table 4). Random, study-level variation is distinguishable from residual variation 

(error) and implies that in addition to the fixed effects that we modeled, there is still systematic 435 

variation in how richness affects function among studies. This variation could result from climate, 

site environmental parameters (e.g., soil pH), taxonomic groups studied, species or functional 

trait composition within those groups, or other ecological or scientific particularities of the 

research studies. Therefore, our model has captured sufficient variation to provide an estimate of 

how biomass scales with species richness and to apply the model to similar systems. 440 

 

Strengths and limitations of the empirical scaling relationship 

 The main insight supported by our analysis is that there is empirical evidence to support 

the use of a single value of b (in a power function) to describe how a change in species richness 

leads to a change in biomass for primary producers, and distinct values for aquatic herbivores 445 

and detritivores. The strength of this approach is a large database of experimental observations 

using the same experimental design and a range of taxa (Table 1). Based on this, we have 

confidence that the scaling value is not highly dependent on taxonomic differences, or on 

differences associated with researchers, studies, or experimental settings.  

 The implications of this finding for other trophic groups or for theoretical mechanisms 450 

remain limited for two reasons. First, some predictors in our analysis should be interpreted with 

caution. For example, studies differed widely in whether and how resources were controlled or 
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manipulated. Thus, our predictor of ‘resource level’ is coarse and does not represent resource 

limitation in these systems. Resource manipulation (addition, control or reduction) was included 

in a plausible (but unlikely) model (Table 3). Based on the model ranking and the coarseness of 455 

the biological meaning of the resource predictor, we do not reject the hypothesis that resource 

supply can change the BEF relationship. Our analysis was limited by sufficient resource 

limitation data to conclusively test this hypothesis. Previous studies have shown mixed results, 

with some individual studies finding that increased nitrogen availability led to greater diversity 

effects on aboveground production (Reich et al. 2001, Fridley 2003) and a meta-analysis, using 460 

some of the same data as our study finding the opposite (Hooper et al. 2012). Some of this 

variability, and that found in our current study, could result from different effects on 

aboveground versus belowground versus total production, effects of different resources (e.g., 

CO2 versus nutrients), different levels of resource addition, and compositional variation among 

communities (Reich et al. 2001, Fridley 2002, Hooper et al. 2012). More work is needed to fully 465 

test the dependence of the BEF scaling relationship on resource supply, ideally with studies that 

factorially manipulate both diversity and resource supply within expected ranges of 

environmental change. Even with the heterogeneity in the data and the coarseness of some 

predictor levels, the patterns we observe are consistent with previous findings from analyses that 

tested a subset of these predictors on smaller datasets. 470 

 The interpretation of the trophic level effect is complicated by biases in the available data. 

For example, this dataset includes no terrestrial herbivore manipulations for which herbivore 

biomass was reported, and we therefore have no basis for inference about scaling relationships 

for terrestrial herbivores. Similarly, we lacked sufficient estimates of carnivore biodiversity 

manipulations that reported effects on carnivore biomass to include them in this analysis. 475 
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 Finally, while not the objective of our study, the existence of a power law scaling 

relationship in other areas of ecology has been inferred to imply self-similar systems and a 

certain class of mechanistic driver (Brown et al 2002). We caution that our empirical study, 

fitting a power function to BEF data, does not imply such a mechanistic driver to a BEF 

relationship. To determine whether evidence of such a relationship exists would merit further 480 

theoretical development requires first determining whether a power law is indeed the best 

descriptor of the BEF relationship. Instead, we aimed to test for a general empirical pattern. It 

remains to be determined whether there is a single best functional form to describe the BEF 

relationship, and whether this relationship is predicted or explained by any single theoretical 

framework. 485 

 

Conclusion 

  Our analysis of the richness-biomass relationship allows practitioners to apply an 

empirically-derived, a priori prediction for the BEF relationship as a quantitative estimate for the 

expected importance of a change in biomass with a change in species richness. This estimate 490 

provides a starting hypothesis that investigators can use to determine whether additional factors 

modify the diversity-biomass relationship, or that they can attempt to falsify or improve. 

Furthermore, when biomass provides a good proxy for the processes and functions that underpin 

ecosystem services, this scaling relationship could be used as a step in modeling the production 

of ecosystem services and their dependency on biodiversity. For instance, this BEF relationship 495 

can be part of an ecosystem service production function (Isbell et al. 2014), where production 

functions describe the relationship between various inputs (e.g., ecosystem properties, harvesting 

effort, etc.) and the level of a service that is produced (Barbier 2007). These production functions 
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can support management decisions targeting provisioning of ecosystem services, such as by 

evaluating ecosystem service provisioning under different scenarios (Barbier 2007, Nelson et al. 500 

2009, Tallis and Polasky 2009). Such an approach can also determine how different estimates of 

this scaling parameter influence estimates of ecosystem service supply, and provide insight into 

the marginal value of maintaining diversity in terms of the value of an ecosystem service.  

However, for many services, standing biomass is not a direct proxy of many ecosystem services 

that directly contributes to human well-being (for example, secondary productivity or nutrient 505 

cycling). Therefore, there is a need to determine whether this scaling relationship holds more 

generally to other response variables that are also closely linked to human well-being (e.g., food 

production, water quality). If so, integrating such a scaling relationship into production functions 

could represent an important step towards the development of new tools to forecast the 

magnitude of change in important ecosystem services due to biodiversity loss, for a broader array 510 

of services.  In the meantime, there is sufficient evidence to support the application of this 

parameterized power function to efforts such as integrated ecosystem function models or the 

generation of production functions linking biodiversity change to ecosystem functions and 

services directly related to biomass. 

 515 
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Table 1. Summary of hierarchical dataset on the richness – biomass relationship and 

predictors analyzed in this study. The most basic unit of observation is an ‘entry’, which is a 

single response variable measured at a single time for a set of species richness levels with all 

other factors controlled. An ‘experiment’ is the richness manipulation within which all other 635 

factors are controlled, but multiple response variables might have been measured at more than 

one time point, thus there are often multiple entries within each experiment, and several 

experiments are often published within a single study, and might differ in the level of a factor 

such as consumer presence, resource supply, etc. Numbers in each column indicate the number 

of groups (entry, experiment or study) in the dataset for each level of each categorical predictor, 640 

and for each continuous predictor the range of values is given for the entire dataset. 

 

Categorical Predictors Levels Entry (n) Experiments (n) Studies (n) 

Ecosystem (Sys) Aquatic 134 73 26 

 Terrestrial 424 301 65 

Trophic Group (TG) Primary Producers 501 327 78 

 Herbivore 26 16 8 

 Detritivore 31 31 7 

Lab/Field Lab / greenhouse 178 121 36 

 Field enclosures or 

plots 

348 221 44 

 Outdoor 

mesocosms 

46 32 12 

Biomass estimator (Units) Biomass 501 339 86 

 Density 38 30 2 

 Percent Cover 19 3 3 

Resource Treatment (N) Control 381 241 88 

 Addition 172 128 22 

 Reduction 5 5 4 

 

Continuous Predictors Min Median Mean Max 

Experimental Duration 0.02 1.64 8.48 202.6 

Time of measurement (TG) 0.02 1.05 7.10 202.6 

Smax 3 6 9.67 43 

 

 

 645 
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Table 2. Results of model selection for Level-1 model. Models relate total estimated biomass 

(ln(Y)) to species richness (ln(S)) and experimental duration, estimated in terms of number of 

generations of focal taxa (ln(Tg)). Models are ranked by AICc, and compared using AIC weight 

(w) and AIC values and likelihood ratio tests. Likelihood ratio tests (P-values) compare each 650 

model with the top-ranked (lowest AICc value) model (first row) and facilitate interpretation of 

the significance of differences in similar AICc values. All models include variable slope and 

intercept coefficients at the entry, experiment and study level (Table A1). 

Model  AICc w df modLik  P 

2 ln(Y) = ln(S) + ln(Tg) 1451.5  0.49 13 -712.67 0.00 -- 

3 ln(Y) = ln(S)*ln(Tg) 1452.4 0.30 14 -712.13 0.95 0.30 

1 ln(Y) = ln(S) 1453.1 0.21 12 -714.50 1.65 0.09 



 
 

30 

Table 3. Comparison of alternative level-2 models for how richness (ln(S)) affects biomass. Model terms are as shown in 

Equations 4a and b (intercept term not shown here), ranked from left to right by their quality (high to low) as a description of this 655 

dataset. Models differed in fixed effects, indicated by ✓, but all included variable intercepts (μ0i,μ0j,μ0k) and slopes (μ1i,μ1j,μ1k) at the 

level of the study (i), experiment (j) and entry (k). Models were ranked based on AICc, and differences assessed using δAIC and 

Akaike weights (w) and likelihood ratio tests.  We used likelihood ratio test results (- P > 0.05, * P < 0.05, ** P < 0.01) to compare 

models with the top-ranked (lowest AICc) model only for comparisons in which one model can be derived from the other by 

constraining parameter values. When this was not possible, likelihood ratio tests were not performed. A significant p-value indicates 660 

that the model with the lower AICc value is a better description of the data. When the likelihood ratio test indicates no differences, the 

model with fewer parameters is preferred.  
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 665 

  Model 

Predictor  Term 4 5 6 4.2 9 2 9.1 3 8 7 

ln(S) γ10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Time (ln(TG)) Β2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Ecosystem (Sys) γ01 ✓ ✓ ✓ ✓ ✓  ✓      

Trophic group (TG) γ02 ✓ ✓ ✓ ✓ ✓  ✓      

Sys*TG γ03 ✓ ✓ ✓  ✓      

Resource treatment (N)  γ07   ✓ ✓   ✓   ✓    ✓ 

ln(max(Duration))  γ18     ✓   ✓   ✓   ✓ ✓ 

Lab vs field experiment  γ05         ✓   ✓   ✓  

Biomass estimator (Units)  γ04         ✓   ✓   ✓  

ln(Smax)  γ06         ✓   ✓   ✓  

ln(S)*ln(TG)  Β3               ✓   

ln(S)*Sys γ11  ✓ ✓ ✓ ✓ ✓   ✓     

ln(S)*Sys*ln(TG) γ13 ✓ ✓ ✓  ✓      
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ln(S)*TG  γ12 ✓ ✓ ✓ ✓ ✓   ✓     

ln(S)*N γ17    ✓ ✓   ✓   ✓    ✓ 

ln(S)* ln(max(Duration)) γ18     ✓   ✓   ✓   ✓ ✓ 

ln(S)*(lab vs field) γ15         ✓   ✓   ✓  

ln(S)* Units γ14         ✓   ✓   ✓  

ln(S)*Smax γ16         ✓   ✓   ✓   

 df 21 25 27 19 35 13 33 14 23 19 

 AICc 1437.8 1442.9 1443.1 1443.1 1443.5 1451.5 1452.3 1452.4 1455.4 1459.1 

 δ 0 5.13 5.33 5.34 5.70 13.72 14.52 14.67 17.68 21.30 

 w 0.784 0.060 0.054 0.054 0.045 0.001 0.001 0.001 0 0 

 logLik -697.7 -696.2 -694.3 -702.4 -686.2 -712.7 -692.7 -712.1 -704.5 -710.4 

 P   - - ** - **   **     
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Table 4. Coefficients for modeled effect of richness on standing stock. Mean (+95% CI) 

estimate from the best model with fixed effects (trophic level, duration, lab vs field tests, and 

ecosystem) and variable slopes and intercepts (Model 4). Estimates give effect sizes relative to 

plant biomass in a terrestrial ecosystem under nutrient control conditions. Values in bold indicate 

parameter estimates contributing to the slope term that differ significantly from zero and thus 670 

modify the relationship between richness and biomass. 

 Factor Term Model 4 

Fixed 

effects 

Intercept γ00 4.33 [3.45, 5.21] 

ln(S) γ10 0.26 [0.16, 0.37] 

 ln(TG) Β2 0.16 [0.03, 0.28] 

 Ecosystem - Terrestrial γ01 1.50 [0.48, 2.51] 

 TG - Herbivore γ02 -0.33 [-1.38, 0.66] 

 TG - Detritivore γ02 1.22 [-0.93, 3.39] 

 Terrestrial * Detritivore γ03 -1.93 [-5.11, 1.26] 

 ln(S)*ecosystem –Terrest. γ11 -0.07 [-0.18, 0.05] 

 ln(S)*TG – Herbivore γ12 0.21 [0.03, 0.38] 

 ln(S)*TG – Detritivore γ12 0.29 [0.01, 0.56] 

 ln(S)*Terrest.*Detrit. γ13 -0.58 [-0.98, -0.17] 

    

Random 

effects  

Entry - intercept Σ0k 0.38 

Entry – ln(S) Σ1k 0.03 

Experiment – intercept Σ0j 0.72 

Experiment – ln(S) Σ1j < 0.01 

Study - Intercept Σ0i 3.31 

Study – ln(S) Σ1i 0.03 

Residual σ2 0.02 

 

  

 

 675 
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Figure 1. A) Standing stock (biomass) plotted against species richness as a power function (Y = 

a*Sb) relating standing biomass (Y) to species richness (S) via an intercept (a) and scaling 

parameter (b) for each entry in our database (n = 558). Each entry is plotted in gray, dark lines 

indicate overlapping lines. Each entry was analyzed in a hierarchical mixed effects model using a 680 

linearized power function (Eqn 1, 2). B) Empirically estimated scaling parameters for BEF 

relationships vary among trophic groups and between aquatic and terrestrial systems. Estimates 

are based on model coefficients for the slope term (Β1.ijk) from the best model (Model 4, Table 3; 

black points). Standard errors shown in this figure are errors of the mean estimate from the 

distribution of fitted slopes for this dataset. Confidence intervals estimated from the model output 685 

are shown in Table 4. 

A) 
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Figure 2. Random effects (+ CI) estimated by the best level-1 model (model 4, Table 2) 

associated with entryk (plots A-B), experimentj  (panels C-D) and studyi (panels E-F) for 

intercepts (μ0) and slopes (μ1), ranked by slope random effects (μ1). Gray CI’s include 0, 

indicating that the estimated random effect cannot be distinguished from the fixed effect for slope 695 

or intercept. Random effects different from zero imply that the coefficient for that study can be 

estimated as the fixed effect plus the random effect.   

 

  



 

 
 

36 

A) Intercept random effects for Entry (μ0k)  B) Slope random effect for Entry (μ1k) 700 

 
C) Intercept random effects for Experiment (μ0j) D) Slope random effect for Experiment (μ1j) 

 
 

E) Intercept random effects for Study  (μ0i)  F) Slope random effect for Study (μ1i) 705 
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Figure 3: Expected change in biomass associated with changes in species richness. Distribution 

of species richness changes (top histogram), expressed as a response ratio (ln(STime1/STime2)), and 

the distribution of associated change in biomass (vertical histogram), expressed as 

ln(YTime1/YTime0) expected for A) primary producers and B) herbivores. The distribution of 710 

expected function was produced using Y = aSb (the plotted curve) for values of b = 0.26 (Table 

4). Solid blue lines indicate response ratios of 1 = no change in richness; and the red lines 

indicate the mean expected function. Dashed lines identify a 10% decline in standing biomass, 

and the intersection with the BEF curve identifies the change in richness expected to cause a 10% 

change in function: a 35% reduction in plant richness, and a 20% reduction in herbivore richness. 715 
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