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Simulation of Mass Sensor Based on Luminescence
of Micro/Nano Electromechanical Resonator

Lijie Li, Senior Member, IEEE

Abstract—We report a novel mass sensor based on detecting
the luminescence from micro/nano electromechanical resonators.
Multi-physics simulation has been conducted to elucidate this
concept. It is found that the added mass affects both the
resonant frequency and oscillating amplitude of the mechanical
resonator. However we mainly use the change of oscillating
amplitude to detect the added mass by observing varied optical
intensity. For the device simulated, the sensitivity ((∆f/f0)/δm
per microgram) is 2% µg−1 if using frequency measurement
through electronic circuits, while the sensitivity ((∆IL/I0)/δm
per microgram) is 377% µg−1 using amplitude measurement
through the proposed optical method.

Index Terms—Mass sensor, Luminescence, Piezoelectric.

I. INTRODUCTION

RESEARCH on mass sensors made of micro/nano res-
onators has become a major subject due to their ability

of achieving high sensitivity [1] [2]. The working principle
of this type of sensors is detecting the mass of particles
landed on the resonator through monitoring the variation of
its resonant frequency [3] [4]. There have been two dominant
readout methods, namely electronic and optical readout. For
the electronic readout, requency measurement circuits are
needed to extract the frequency change of the resonator [5].
For the optical readout mechanism, quite often a precisely
aligned optical setup is required, i.e. shining an optical beam
onto the resonator surface and collecting the reflected optical
signal [6]. For the latter, the smoothness and roughness of
the sensor surface are critical as the reflected optical signal
can be deflected or weakened by the increasing roughness
due to landed particles. It is worth noting that the optical
method is able to avoid the heating effect and energy loss
caused by electronic circuits [7]. Our approach of using
luminescence of the resonator itself addresses the above issues,
as the frequency measurement circuits are not necessary, and
the surface properties of the mechanical structure do not
cause any significant degradation of the luminescence. The
proposed sensing mechanism is described as follows: As the
cantilever vibrates, piezoelectric charges are generated from
the mechanical strain and stress. These charges enhance the
intensity of the luminescence according to the stimulated
emission theory. When particles land on the cantilever, both
the amplitude and frequency of the oscillation are affected, of
which the amplitude change induces the variation of generated
piezoelectric charges. This is detected by the intensity of
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Fig. 1. Schematic of the new sensing mechanism. The piezoelectric cantilever
produces varied luminescence subjecting to deflections, which are affected by
the loaded mass.

photoluminescence. A systematic multi-physics simulation is
presented in this letter to demonstrate this hypothesis.

II. THEORY

The proposed sensor device is structured to a cantilever
shape with one end fixed and the other suspended (Figure
1). A piezoelectric material, zinc oxide (ZnO) is chosen to
form the cantilever, as it exhibits photoluminescence band
of (300nm-400nm) [8] as well as having piezoelectricity
property [9]. For this particular material we have chosen to
simulate, visible luminescence was demonstrated in [10] [11].
Measurement of the output light intensity can be achieved by
a spectrometer or CCD, through which piezoelectric induced
intensity change was observed in a prior reference [11].
There are two known parameters of the material affecting
the stimulated luminescence, one is the charge density, the
other is the bandgap of the material. For large dimension
bulk devices (in micro/millimetre range, such as thin film),
the charge density factor dominates. For nanoscale devices
(nanowires, nanosheet), strain induced bandgap variation be-
comes an important factor. For the micrometer sized device
described below, only the charge density factor needs to be
considered.

The length L, width w, and thickness g of the cantilever are
designated as 2 mm, 0.2 mm, and 20 µm in the numerical
modelling. ZnO is chosen as the piezoelectric material with
density ρ = 5606 kg/m3, and Young’s modulus Y = 100
GPa [12]. The dynamic motion of the cantilever can be
described based on Euler−Bernoulli beam theory, simplified
to a mass-spring-damper system [13]

mc
d2z

dt2
+ b

dz

dt
+ k1z + k2z

3 = Acos(ωt) (1)

where mc, b, k1, k2 are total effective mass ( 33
140 )Lwgρ,

damping coefficient, linear stiffness, and nonlinear stiffness
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respectively. z(t) denotes the tip displacement. The first
derivative of the z with respect to the time t represents the
velocity, and the second derivative denotes the acceleration.
A = mt ∗ a (mt is the total mass that is the sum of mc

and the added mass, and a is the applied acceleration) is
the amplitude of the external periodic driving force, and ω
is the driving frequency. When ω = ω0 (ω0 being the natural
frequency of the cantilever ω0 =

√
k1

mc
, here we only analyse

the fundamental resonance), the deflection of the cantilever
reaches its maximum. We set the driving frequency same as
the natural frequency of the cantilever for each added mass to
ensure an optimal energy transfer from the excitation to the
cantilever. The amplitude of the external driving acceleration a
is kept constant throughout the simulation process. In the small
deflection region (simulated maximum tip deflection is around
0.02 nm, while the thickness of the cantilever is 20 µm), the
curvature can be approximated at any point of the beam by
1
r = τ

Y I , where τ is the mechanical moment applied on the
beam, and I is the moment of inertia. The tip displacement
can be expressed as z = τL2

2Y I , hence the curvature at a time t
is derived as

1

r(t)
=

2z(t)

L2
(2)

where r(t) is the radius of the curvature. The axial strain on
the surface of the piezoelectric layer along the x-axis can be
obtained in terms of the curvature and tip deflection [13]

εx(t) =
g

2r(t)
(3)

The axial stress σ on the piezoelectric surface is derived
through the stress-strain relation, that is σx(t) = Y εx(t). The
piezoelectric constitutive equations connect four field variables
stress components Σ, strain components S, electric field
components E, and the electric displacement components D,

which can be described as
[
S
D

]
=

[
sE dt

d εT

] [
Σ
E

]
[14] [15].

The generated electric displacement D from the mechanical
stress Σ can be expressed as D = dΣ assuming no external
electric field is applied to the cantilever, where d represents
the piezoelectric constant. The electrical charges (here only
electrons either on top or bottom surface are considered)
generated from a tip deflection z(t) can be obtained as

Q(t) = wLd31σx(t) =
wd31Y g

L
z(t) (4)

where d31 is the piezoelectric constant, relating the strain in
the ’1’ direction (x-axis) to a generated field along the ’3’
direction (z-axis). In the simulation, we take d31=−3.3 pC/N.
An upward deflection (z > 0) corresponds to a compressive
stress on the top surface, therefore inducing negative charges.

Generated charges can be expressed as carrier density of
the cantilever (divided by the volume of the cantilever). To
simplify the problem for demonstration purpose, the material
is assumed intrinsic and there is no internal screening effect.

The chemical potential is required for arriving at Fermi-
Dirac distributions of electrons in both the conduction band
and valence band, in order to calculate the stimulated emis-
sion rate. The chemical potentials are calculated using the

iteration/self-consistent method [16] based on the expression
of the carrier density n [17]

n =

∫ ∞
0

D3(E)f0(E)dE

=
1

2π2
(
2m∗

h̄2 )3/2

∫ ∞
0

E1/2

exp (E−µkBT
) + 1

dE (5)

where D3(E) represents the density of state for 3-dimensional
bulk materials measuring numbers of electron states per unit
energy interval, which takes the form of 1

2π2 ( 2m∗

h̄2 )3/2E1/2

[18], where h̄ is the reduced Planck’s constant (1.05 ×
10−34Js), m∗ is the effective mass of electron me = 0.24m0

or hole mh = 0.59m0, where m0 is the bare electron mass
m0 = 9.11 × 10−31Kg. n is the carrier density, which is
varying upon deflection of the piezoelectric cantilever. f0(E)
is the Fermi distribution of electrons 1

exp ( E−µkBT
)+1

, where E is

the electron energy, µ stands for the chemical potential, kB is
the Boltzmann constant (8.62×10−5eV/K−1), and T denotes
the temperature.

The calculated chemical potentials are then used in the
equation for simulating the total stimulated emission based
on Fermi Golden rule, which is

Rs =
2π

h̄

(h̄ω)2n3
r

π2h̄3c3
1

exp ( h̄ω
kBT

)− 1
|Mfi|2

× 1

2π2
(
2mr

h̄
)3/2(h̄ω − Eg)1/2fc(1− fv) (6)

where Mfi is the perturbing potential during the electron
transition from initial to final state, and |Mfi|2 is the squared
matrix element coupling the initial and final states. For most of
semiconductor materials, |Mfi|2 can be treated as a constant.

1
exp ( h̄ω

kBT
)−1

is the Bose-Einstein distribution for photons, and
1

2π2 ( 2mr
h̄ )3/2(h̄ω−Eg)1/2 is the 3D density of electron states.

Where nr is the refractive index in the medium, h̄ω denotes
the photon energy, c is the speed of light in vacuum, and mr

is the combined reduced mass ( 1
mr

= 1
me

+ 1
mh

). fc and fv
give Fermi-Dirac distributions in conduction and valence band
respectively. As the effective electron mass and hole mass are
slightly different, the chemical potential µc deviates gradually
from the µh for large carrier densities. Equation (6) can be
written to a simple form by grouping all the constants, which
is

Rs = C
(h̄ω)2

exp ( h̄ω
kBT

)− 1
(h̄ω − Eg)1/2fc(1− fv) (7)

where C =
2
√

2n3
r|Mfi|2m3/2

r

π3c3h̄11/2 . Simulation is conducted in
the next section according to the theory and method described
above.

III. NUMERICAL SIMULATION

Results have been obtained from the numerical simulation.
The intensity of incident photon is kept constant. It is shown
in the Figure 2 that the resonant frequency reduces from 3444
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Fig. 2. Simulated resonant frequency and charge generation of the piezoelec-
tric resonator vs. added mass.
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Fig. 3. (a) Tip displacement in time domain for various values of added mass.
(b) Stimulated emission intensity in time domain when resonator is oscillating
for various values of added mass. The amplitude of the periodic external force
and the incident photon energy are constant.
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Fig. 4. Resonant frequency and emission intensity vs. added mass.
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Fig. 5. Spectrum and intensity of the stimulated emission for various bandgaps
for nanoscale resonators. The charge density is fixed at 1×1020 m−3 without
considering piezoelectric effect.

Hz to 2925 Hz, and the maximum generated charge increases
from 7.467 × 10−18 C to 1.436 × 10−17 C, when the value of
added mass increases from 0.11 µg to 4.2 µg. Figure 3a shows
the tip deflection of this piezoelectric cantilever for different
values of mass landed. It is seen that the added mass causes
the deflection amplitude to increase and resonant frequency to
decrease. Figure 3b displays the results on the intensity of the

luminescence in relation to the added mass, where the intensity
increases more significantly than the reduction of resonant
frequency. Figure 4 shows more detailed results relating the
emission intensity and the added mass. It is shown when the
added mass value increases around 200 times, the emission
intensity IL is enhanced around 80 times corresponding to
a sensitivity ((∆IL/I0)/δm per microgram) of 377% µg−1,
whereas the resonant frequency f is reduced to around 42% of
its original value, corresponding to a sensitivity ((∆f/f0)/δm
per microgram) of 2% µg−1. To calculate the sensitivity,
the emission intensity of no added mass has been calculated
(I0 = 1 a.u.). When a mass is added (δm = 21µg), the
luminescence is calculated to be IL = 80.3 a.u.. So the
resolution ( ∆IL/I0

δm = |IL−I0|/(I0)
δm per microgram) is obtained.

Same procedure is used to arrive at the frequency resolution.
The device proposed in this work has a larger dimension

of 2 mm × 0.2 mm × 20 µm, therefore the bandgap is
immune to the axial strain. The emission is mainly dependent
on increasing charge density due to piezoelectric effect. From
the simulation, the added mass leads to the increase of the
oscillation amplitude, inducing more piezoelectric charges,
subsequently increasing the charge density.

For nanoscale features such as ZnO nanowires, their lu-
minescence spectrum and intensity vary upon uniaxial strain
along c-axis direction and dimension along the radial direction
according to reference [19] [11], elucidated by the surface
effect and quantum confinement. Nanowires with smaller di-
ameters have wider bandgaps than those with larger diameters
due to increased surface-volume ratios, uniaxial tensile strain
shifts the bandgap downward. The impact due to strain is more
pronounced for nanowires with diameters smaller than 200 nm.
There are other compound semiconductor nanofeatures exhibit
strain dependent emissions such as GaAs nanowire [20], MoS2

nanosheet [21]. There is no report on this effect for ZnO bulk
or films.

Additional analysis has been conducted in this work for
revealing the relation of bandgap and emission spectrum for
the nanoscale resonators, in which the charge density remains
as a constant. It is seen from the Figure 5 that as the
bandgap decrease from 3.3 eV to 3.25 eV, the amplitude of
the peak emission shifts upward by around 6.6 times, with the
wavelength of the peak emission increases from 375 nm to
381 nm.

IV. CONCLUSION

A novel mass sensor based on detecting variation of stimu-
lated emission of the micro/nano resonators has been analysed
using the coupled electromechanical-quantum mechanics the-
ory. The results show that the change of emission intensity
subjecting to the added mass is more pronounced than the
change of the mechanical resonant frequency.
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