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Abstract. The recent development in nanotechnology resulted in growing of various nanoplate like structures. 

High attention was devoted to graphene sheet nanostructure, which enforced the scientist to start developing 

various theoretical models to investigate its physical properties. Magnetic field effects on nanoplates, 

especially graphene sheets, have also attracted a considerable attention of the scientific community. Here, by 

using the nonlocal theory, we examine the influence of in-plane magnetic field on the viscoelastic orthotropic 

multi-nanoplate system (VOMNPS) embedded in a viscoelastic medium. We derive the system of m partial 

differential equations describing the free transverse vibration of VOMNPS under the uniaxial in-plane 

magnetic field using the Eringen’s nonlocal elasticity and Kirchhoff’s plate theory considering the viscoelastic 

and orthotropic material properties of nanoplates. Closed form solutions for complex natural frequencies are 

derived by applying the Navier’s and trigonometric method for the case of simply supported nanoplates. The 

results obtained with analytical method are validated with the results obtained by using the numerical 

method. In addition, numerical examples are given to show the effects of nonlocal parameter, internal 

damping, damping and stiffness of viscoelastic medium, rotary inertia and uniaxial in-plane magnetic force on 

the real and the imaginary parts of complex natural frequencies of VOMNPS. This study can be useful as a 

starting point for the research and design of nanoelectromechanical devices based on graphene sheets. 

 

Key words: Nonlocal viscoelasticity; orthotropic nanoplates; magnetic field; multi-layered graphene sheets. 

 

1. Introduction 
 

Complex nanoscale systems are made of nanostructures with superior thermal, electric, mechanical, 

magnetic and other physical properties [1-5] that makes them convenient for potential application in nano-

electromechanical systems (NEMS) and micro-electromechanical systems (MEMS) [6-11]. Nanoplate-like 

nanostructures can be synthetized from different materials to make gold nanoplates, silver nanoplates, boron-

nitride sheets, ZnO nanoplates, graphene sheets [12-18]. Studying the vibration behavior of such nanoscale 

structures may be important step for their optimal application in nanoengineering.    

Under complex nanostructure systems we usually mean on nanoscale systems composed of multiple 

nanorods, nanobeams or nanoplates embedded in certain type of medium. Special class of these systems is 

multi-nanoplate like system such as multi-layered graphene sheets bonded with certain type of medium. 

Different studies and research methodologies applied to such systems are presented in the literature by 

different authors [19-26]. In theoretical continuum models of graphene sheets, they are observed as both, 

isotropic and orthotropic materials. Behfar et al. [27] analyzed the vibration behavior of multi-layered 

graphene sheets system as an orthotropic multi-nanoplate system embedded in elastic medium, where natural 

frequencies and corresponding modes are found. Arghavan [28] performed an extensive study on mechanical 

properties and vibration behavior of graphene sheets also using an orthotropic continuum plate theory to 

model observed nanostructures. Further, Pradhan et al. [29] employed numerical differential quadrature 

method to study the vibration of single layered graphene sheets using the nonlocal orthotropic plate theory. 

Finally, Bu et al. [30] observed graphene sheets as anisotropic structures and concluded that such properties 

are attributed to the hexagonal structure of graphene unit cells. They performed molecular dynamics 
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simulations and demonstrated different fractures in longitudinal and transverse modes. However, under 

certain assumptions and for specific applications, graphene sheets can be observed as isotropic nanoplate 

structures [31-35]. In this paper, we adopted an orthotropic nonlocal plate theory to model graphene sheets. 

When magnetic field is exerted on a conducting nanoplate structure, it can exhibit various dynamical 

behaviors depending of the magnitude of the field, magnetic permeability of the continuum and deformation 

regime. Vibration response of carbon nanotubes (CNTs) in the presence of magnetic field is widely examined 

by many investigators. Murmu et al. [36] examined the vibration behavior of a double-walled carbon nanotube 

subjected to an externally applied longitudinal magnetic field. Based on the nonlocal elasticity theory, Euler–

Bernoulli beam model and Maxwell’s classical relations, the authors derived a set of two governing equations 

for transverse vibration of a double walled CNT system. By using the method of separation of variables, they 

obtained analytical solution for transverse displacements, natural frequencies and amplitude ratios.  They 

have shown that the applied longitudinal magnetic field has a strong influence on the dynamic behavior of a 

double-walled CNT system.  In [37], the same authors presented a mechanical model of two single-walled 

CNTs coupled with elastic medium and influenced by the longitudinal magnetic field. They derived governing 

equations for the free vibrations and analytically obtained nonlocal natural frequencies of the system using the 

Eringen’s nonlocal elasticity theory, Euler–Bernoulli beam model and Maxwell’s relations. Kiani [38] analyzed 

the vibration and instability behavior of a single-walled CNT under a general magnetic field. By using the 

nonlocal Rayleigh beam theory and Maxwell’s relations, the dimensionless governing equation for the free 

vibration of the system is derived considering a general magnetic field. The longitudinal and flexural 

frequencies are obtained analytically and effects of the longitudinal and transverse magnetic fields are shown 

through several numerical examples. Further, Narendar et al. [39] studied the wave propagation in a single-

walled CNT under longitudinal magnetic field. The authors derived nonlocal governing differential equation 

considering the Maxwell’s equations, nonlocal elasticity theory and Euler–Bernoulli beam model. The wave 

propagation analysis is performed using the spectral analysis. It is found that nonlocal effects reduces the 

wave velocity irrespective of the presence of a magnetic field and doesn’t have an influence on it in the higher 

frequency region. Recently, several theoretical studies of nanoplates under the influence of magnetic field are 

performed. Murmu et al. [40] studied the transverse vibration of a single-layer graphene sheet (SLGS) 

embedded in elastic medium and under the influence of in-plane magnetic field by using the nonlocal theory. 

The authors have examined the effects of nonlocal parameter and in-plane magnetic field on natural 

frequencies for different aspect ratios of SLGS. Explicit expressions for natural frequencies were derived 

analytically. Ghorbanpour Arani et al. [41] investigated the influence of in-plane two-dimensional magnetic 

field and biaxial preload on vibration of a double orthotropic graphene sheet system coupled with Pasternak 

type of elastic layer. The thermo-nonlocal elasticity theory and Maxwell’s relations are used to derive 

governing equations of the system. In addition, the differential quadrature method (DQM) is employed in 

order to solve the equations. The effects of magnetic field, in-plane preload, nonlocal parameter and different 

aspect ratios on frequencies of graphene sheets were examined. The free in-plane and out-of-plane vibration 

study of a rectangular nanoplate under the influence of unidirectional in-plane magnetic field was conducted 

by Kiani [42]. The authors employed Kirchhoff, Mindlin and higher order plate theories using the nonlocal 

elasticity theory.  The effects of small-scale parameter, magnetic field and aspect ratios on natural frequencies 

of the in-plane and out-of-plane vibrations were investigated. The reason for different properties and dynamic 

behavior of nanostructures in the presence of magnetic field is due to acting electromagnetic forces on each 

element of a structure. It should be noted that by considering the Maxwell’s equations and Lorentz’s forces, 

one could form relations between forces acting on each particle of a nanostructure and vector magnetic field. 

Until now, there is no experimental work reported in the literature regarding to the vibration behavior of 

multi-nano-beam/plates system under the influence of magnetic field. Nevertheless, some experiments have 

shown that certain physical and mechanical properties are changing and some specific phenomena’s appears 

in CNTs and graphene sheets when a magnetic field is applied on them [43-57]. In addition, there are some 

reports [58-60] about the alignment of carbon nanotubes (CNTs) when magnetic field is exerted on arbitrary 

placed ensembles of CNTs. In general, it is not an easy task to perform experiments on nanoscale level owing to 

the weak control of parameters. Atomistic simulation methods can be very efficient for the investigation of the 

mechanical behavior of nanostructures. However, such methods are computationally prohibitive for complex 

nanoscale systems since a large number of atoms need to be considered in the simulations. Finally, continuum 

based methods seems to be a logical tool utilized in the theoretical investigation of the mechanical behavior of 

complex nanostructure systems. Nevertheless, classical continuum theory neglects the interatomic 

interactions and thus, it needs to be modified to consider such effects. Such modifications were conducted by 

Kröner [61] and Eringen [62] using the integral forms in the stress-strain relation. Here, we will utilize the 

Eringen nonlocal differential form of equation [63], which accounts for the small-size effects trough a single 

parameter. In the literature, there are numerous of studies on vibration behavior of nanostructures using the 

nonlocal theory [64-72]. 
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By browsing the literature, it is found that the free vibration problem of a multiple-nanostructure system is 

analytically treated in a small number of papers. The presented dynamical model of a multiple graphene sheets 

system can be important step in design of complex NEMS devices and nanocomposites, so this paper aims to 

fill the gap by providing the analytical results for futures studies in nanoengineering practice. In the following, 

we utilize the nonlocal theory to investigate the free vibration behavior of VOMNPS embedded in a viscoelastic 

medium and subjected to the in-plane magnetic field. For the mechanical model of a graphene sheet, we used a 

nonlocal Kirchhoff’s plate theory. Lorentz forces induced in nanoplates by an applied magnetic field are 

determined through Maxwell’s equations. In this study, we adopted the simply supported boundary conditions 

for nanoplates. By using the trigonometric method, we obtain closed form expressions for complex natural 

frequencies of the free transversally vibrating VOMNPS coupled in three different “chain” conditions, 

“Clamped-Chain”, “Cantilever-Chain” and “Free-Chain”. In addition, an asymptotic analysis is performed in 

order to determine critical complex natural frequencies of the system. Analytical results are validated with the 

results obtained by using the numerical method. Further, a detailed parametric study is conducted for 

VOMNPS representing the system of multiple graphene sheets embedded in a polymer matrix. The effects of 

change of nonlocal parameter, magnitude of magnetic field and a number of nanoplates on complex natural 

frequencies of VOMNPS are investigated for variety of parameters.   

2. Maxwell’s relation 

According to the classical Maxwell relation [41], the relationships between the current density	�, 
distributing vector of magnetic field	�, strength vectors of the electric fields � and magnetic field permeability η are represented by Maxwell’s equations in differential form and can be retrieved as  

� = ∇	× �	, ∇ 	× � = −η ���� 	,							∇ 	 ∙ 	� = 0,																																																																	(1) 

where vectors of distributing magnetic field	� and the electric field � are defined as 

� =	∇ 	× (� × �)	,					� = −� ����� × ��.																																																																										(2) 
In the above equation, ∇= ��� � + ��� � + ���   is the Hamilton operator, �(!, ", #) = $%&�� + '̅&�� + )*&�k is the 

displacement vector and � = (,� , 0,0) is the vector of the in-plane magnetic field. It is assumed that the in-

plane magnetic field acts on VOMNPS in the x - direction of each nanoplate. We can write the vector of the 

distributing magnetic field in the following form 

� = −,� -�'̅&��" + �)*&��# . � + ,� �'̅&��! � + ,� �)*&��!  .																																																													(3) 
Introducing Eq. (3) into the first expressions of Eq. (1) one obtains 

� = ∇	× � = ,� -−�0'̅&��!�# + �0)*&��!�". � − ,� -�0'̅&��"�# + �0)*&��!0 + �0)*&��#0 . � + ,� -�0'̅&��!0 + �0'̅&��"0 + �0)*&��#�". .			(4) 

Further, using Eq. (4) into the expressions for the Lorentz forces induced by the in-plane uniaxial magnetic 

field, yields  

234�, 4�, 4�5 = η(� × �) = η 60� + ,�0 -�0'̅&��!0 + �0'̅&��"0 + �0)*&��#�". � + ,�0 -�0)*&��!0 + �0)*&��#0 + �0'̅&��#�". 7.										(5) 
Here 4�, 4� and 4� are the Lorentz forces along the !, "	and # directions, respectively of the form 

4�,& = 0,																																																																																																(6a)           
4�,& = �,�0 -�0'̅&��!0 + �0'̅&��"0 + �0)*&��#�".,																																																																										(6b) 
			4�,& = �,�0 -�0)*&��!0 + �0)*&��#0 + �0'̅&��#�"..																																																																									(6c) 

In this study, we assume Kirchhoff displacement field -$%&� =	−# �=>(�,�,?)�� ,			 '̅&� =	−# �=>(�,�,?)�� ,			)*&� =
)&(!, ", �).	and the Lorentz forces as 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

4 

. 
 

4�,& = 0,																																																																																																(7a)           
4�,& = −#�,�0 -�A)&�"A + �A)&�!0�".,																																																																							(7b) 
			4�,& = �,�0 -�0)&�!0 − �0)&�"0 ..																																																																												(7c) 

Now, it is possible to obtain generated in-plane force BC = D 2	E#F/0HF/0  and bending moment IC = D #	2E#F/0HF/0 , 

which acts on the i-th nanoplate	as 

BC = J 2	E#F/0
HF/0

= 0� + 0� + 	�ℎ,�0 -�0)&�!0 − �0)&�"0 . ,																																																															(8a) 

IC = J #	2E#F/0
HF/0

= 0� − �ℎA,�012 -�A)&�"A + �A)&�!0�". � + 0 .																																																							(8b) 
It should be note that influences of the bending moments Eq. (8) can be neglected since in the following we 

consider only thin plate theory for nanoplates, as shown in [44]. 

 

3. Nonlocal viscoelastic constitutive relation 

In this section, we will consider the basic equation of nonlocal elasticity and viscoelasticity in the general 

and two-dimensional case. In [62], a constitutive relation for nonlocal stress tensor at a point x is derived in its 

integral formulation based on the assumption that the stress at a point is a function of the strains at all points 

of an elastic body.  Fundamental form of the nonlocal elastic constitutive relation for a three-dimensional 

linear, homogeneous isotropic body is expressed as   

M&N(O) = JP(|O − OR|, S)T&NUVWUV(OR)EX(OR), ∀O ∈ X,																																										(9a) 
M&N,N = 0,																																																																																																(9b) 

W&N = 12 3$&,N + $N,&5,																																																																																					(9c) 
where	T&NUV  is the elastic modulus tensor for classical isotropic elasticity; 	M&N  and W&N  are the stress and the 

strain tensors, respectively, and $&  is the displacement vector. With P(|! − !R|, S)	we denote the nonlocal 

modulus or attenuation function, which incorporates nonlocal effects into the constitutive equation at a 

reference point ! produced by the local strain at a source	!R. The above absolute value of the difference |! − !R| denotes the Euclidean metric. The parameter S is equal to S = (\] _̂)/` where ` is the external 

characteristic length (crack length, wave length), _̂ describes the internal characteristic length (lattice 

parameter, granular size and distance between C-C bounds) and \] is a constant appropriate to each material 

that can be identified from atomistic simulations or by using the dispersive curve of the Born-Karman model of 

lattice dynamics. 

Because of difficulties arising in the analytical analysis of continuum systems with integral form of 

constitutive equation, in [63] this form has been reformulated into the differential form of constitutive 

equation by adopting specific kernel functions. Differential form is proved to be very efficient, simple, and 

convenient for analytical techniques of solving different vibration and stability analysis problems in 

nanostructure based systems. The differential form of the nonlocal constitutive relation is given as (1 − a∇2)Mbc = �bc,																																																																																										(10) 

where	∇0= ∆= efe�f + efe�f is the Laplacian;		a = (\] _̂)0 is the nonlocal parameter; and �bc = Tbcg`Wg`  is the 

classical stress tensor. From Eq. (10), the constitutive relations for homogeneous elastic nanoplates can be 

expressed as 
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(1 − a	∇0) hM��M��S��i = jk
kk
l m1 − n0 nm1 − n0 0nm1 − n0 m1 − n0 00 0 opq

qq
r hW��W��s��i,																																																					(11) 

where m, o and n are the Young’s modulus, shear modulus and Poisson’s ratio, respectively.  

The nonlocal viscoelastic constitutive relation for Kelvin-Voigt viscoelastic nanoplate proposed in paper 

[73] is a combination of nonlocal elasticity and viscoelasticity theory. For the case of two - dimensional 

nonlocal viscoelastic orthotropic nanoplates constitutive relations are given as 

(1 − a	Δ) hM��M��S��i =
jk
kk
kk
kl mu(1 + Se ���)1 − nu0n0u

nu0mu(1 + Se ���)1 − nu0n0u 0
nu0m0(1 + Se ���)1 − nu0n0u

m0(1 + Se ���)1 − nu0n0u 0
0 0 ou0(1 + Se ���)pq

qq
qq
qr
hW��W��s��i,																		(12) 

where Se  is the internal damping coefficient of nanobeam, mu , m0 and nu0, n0u	are Young’s modulus’s  and 

Poisson’s ratios, respectively in two orthogonal directions. If Se = 0 i.e. by neglecting the internal viscosity, we 

than obtain the constitutive relation for nonlocal elasticity. In the follow, we use the constitutive relation for 

nonlocal viscoelasticity in Eq. (12) to derive governing equations of motion. 

 

4. Structural problem formulation 

Here, we consider the free vibration of VOMNPS composed of m orthotropic viscoelastic nanoplates 

embedded in Kelvin-Voigt-type viscoelastic medium and under the in-plane uniaxial magnetic field, as shown 

in Fig.1. The VOMNPS is modeled as a stack of rectangular simply supported orthotropic nanoplates with same 

material and geometrical characteristics, with elastic modulus mu and	m0, Poison coefficients nu0 and	n0u, shear 

modulus	ou0, internal damping parameter	Se , mass density	v, length	^, width w  and thickness	ℎ. Viscoelastic 

medium located between nanoplates of VOMNPS is modeled via continuously distributed pairs of parallelly 

connected springs and dampers, also known as Kelvin-Voigt model of viscoelasticity, with stiffness coefficients g&  and damping coefficients	w& . It should be noted that each nanoplate in VOMNPS is subjected to the in-plane 

uniaxial magnetic field in the x direction. We assume that transversal displacements of nanoplates 

are	)u(!, ", �), )0(!, ", �), 	)A(!, ", �), )x(!, ", �)… )y(!, ", �). 
 

 
Fig. 1 VOMNPS embedded in a viscoelastic medium and under the influence of uniaxial in-plane magnetic  

field	,� . 
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Using the classical plate theory, displacement components in	!, " and # direction for an arbitrary point of 

the i-th nanoplate can be expressed as [74]: 

$%&� = $&(!, ", �) − # �)&(!, ", �)�! ,			 '̅&� = '& − # �)&(!, ", �)�" ,			)*&� = )&(!, ", �),																						(13) 
where $& , '&  and	)& 	are the displacements of nanoplates in the !, " and # directions, respectively. By using Eq. 

(13), the strain - displacement relations of the linear strain theory [74] are 

W�� = �$&�! − # �0)&�!0 ,			W�� = �'&�! − # �0)&�"0 ,			s�� = �$&�" + �'&�! − 2# �0)&�!�" ,																											(14^) 
W�� = �)&�# = 0,			s�� = �$%&��# + �)*&��! = 0,			s�� = �'̅&��# + �)*&��" = 0,																																				(14w) 

where W��, W�� and W�� are the normal strains, and s�� , s�� and s�� are the shear strains. Based on the Newton’s 

second law for the infinitesimal element of the i-th nanoplate, equilibrium equations can be obtained in the 

following form 

z + �{��! + �{��" = vℎ �0)&��0 ,																																																																								(15^) 
�|���! + �|���" + vℎA12 �A)&��0�! = {� ,																																																														(15w) 
�|���" + �|���! + vℎA12 �A)&��0�" = {� ,																																																														(15}) 
�~���! + �~���" = vℎ �0$&��0 ,																																																																									(15E) 
�~���" + �~���! = vℎ �0'&��0 ,																																																																									(15\) 

in which �)&/�! and �)&/�" are angles of rotation, vℎA	 12⁄  is the rotary inertia,  ~�� , ~�� and  ~�� are the in-

plane stress resultants |� ,	|� and |�� are the moment resultants, and {�  and  {�  are the transverse shearing 

resultants, which are defined as 

3~�� , ~�� , ~��|�, |� , |�� , {� , {�5 = J (M�� , M�� , S�� , #M�� , #M�� , #S�� , S�� , S��)F/0
HF/0 E#.													(16) 

Introducing Eqs. (15b) and (15c) into the Eq. (15a), and neglecting the in-plane displacements $&  and '& , we 

obtain the following motion equation of the i-th nanoplate in terms of the stress couple resultants 

z + �0|���!0 + �0|���"0 + 2�0|���!�" = vℎ �0)&��0 − vℎA12 - �x)&��0�!0 + �x)&��0�"0.,																															(17) 
in which z(!, ", �) is external force caused by viscoelastic medium and in-plane uniaxial magnetic force (Fig. 

1b) of the form 

z(!, ", �) = �U& − �U&Hu + �ℎ,�0 -�0)&�!0 − �0)&�"0 .,																																																(18) 
where 

�U& = g&()&�u − )&) + w&()� &�u − )� &),				�U&Hu = g&Hu()& − )&Hu) + w&Hu()� & − )� &Hu).											(19) 
Introducing Eq. (14a) into Eq. (12) and using expression (16), yields  
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(1 − a	Δ)|�� = −�uu �1 + Se ���� �
0)&�!0 − �u0 �1 + Se ���� �

0)&�"0 ,																																		(20^) 
(1 − a	Δ)|�� = −�u0 �1 + Se ���� �

0)&�!0 − �00 �1 + Se ���� �
0)&�"0 ,																																	(20w) 

(1 − a	Δ)|�� = −2��� �1 + Se ���� �
0)&�!�" ,																																																																	(20w) 

where �uu, �u0, �00 and ��� are the bending rigidities of orthotropic viscoelastic nanoplates which are 

expressed as 

�uu = muℎA12(1 − nu0n0u) , �u0 = nu0m0ℎA12(1 − nu0n0u) , �00 = m0ℎA12(1 − nu0n0u)	,				��� = ou0ℎA12 	.						(21) 
Finally, by using Eqs. (17) and (20), we obtain governing equations of motion in terms of transversal 

displacement of the i-th nanoplate in the following form 

vℎ �0)&��0 − vℎA12 - �x)&��0�!0 + �x)&��0�"0. − �ℎ,�0 -�0)&�!0 − �0)&�"0 . 

+g&()& − )&�u) + w& �)&�� −	)&�u�� � + g&Hu()& − )&Hu) + w&Hu �)&�� −	)&Hu�� � 

+�uu �1 + Se ���� �
x)&�!x + �00 �1 + Se ���� �

x)&�"x + 2(�u0 + 2���) �1 + Se ���� �0)&�!0�"0 

= a - �0�!0 	+ �0�"0. 6vℎ �
0)&��0 − vℎA12 - �x)&��0�!0 + �x)&��0�"0. 

−�ℎ,�0 -�0)&�!0 − �0)&�"0 . + g&()& −)&�u) + w& �)&�� −	)&�u�� � + g&Hu()& − )&Hu) + w&Hu �)&�� −	)&Hu�� �7 , (22) 
or in the dimensionless form 

�0)*&�S0 − �012- �x)*&�S0��0 + �0 �x)*&�S0��0. − |�-�0)*&��0 − �0 �0)*&��0 . 

+�&()*& − )*&�u) + �& �)*&�S −	)*&�u�S � + �&Hu()*& − )*&Hu) + �&Hu �)*&�S −	)*&Hu�S � 

+�1 + �e ��S� �
x)*&��x + �00�x �1 + �e ��S� �

x)*&��x + 2�0(�u0 + 2���) �1 + �e ��S� �0)*&��0��0 

= �0 - �0��0 + �0 �0��0. 6�
0)*&�S0 − �012- �x)*&�S0��0 + �0 �x)*&�S0��0. 

−|� -�0)*&��0 − �0 �0)*&��0 . + �&()*& − )*&�u) + �& �)*&�S −	)*&�u�S � + �&Hu()*& − )*&Hu) + �&Hu �)*&�S −	)*&Hu�S �7 , (23) 
for b = 1,2,3… ,�, where dimensionless parameters are defined as 

�& = g& ^x�uu ,						�& =	w& ^0�vℎ�uu , �e = Se� �uu^xvℎ , �0 = â0 ,						S = �� �uu^xvℎ ,			|�	 = �ℎ,�0^0�uu , 
�00 = �00�uu ,					�u0 = �u0�uu 	,					��� = ����uu ,					� = ŵ 	,				� = ℎ̂ 	,			)*& = 	)&^ 			,				� = !̂ ,							�	 = "w 	.									(24) 

Assuming the simply supported boundary conditions for all nanoplates in VOMNPS, we can write the following 

mathematical expressions  

	)&(!, 0, �) = )&(!, w, �) = 0,																		)&(0, ", �) = )&(^, ", �) = 0,						b = 1,2,3, . . , �.									(25^) |��&(0, ", �) = |��&(^, ", �) = 0, |��&(!, 0, �) = |��&(!, w, �) = 0.																																			(25b) 
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From a physical point of view, this means that the deflections and moments at all four edges of nanoplates are 

equal to zero. 

 

5. Exact solutions for complex natural frequencies 

In this study we assumed analytical solutions in the form of double Fourier series in which transverse 
displacement )&  is expanded into a double trigonometric series in terms of unknown parameters as shown in 

[76, 77]. Considering that the nanoplates in VOMNPS are simply supported Eq. (25), assumed solution for the i-

th nanoplate is of the form 

  

)*&(�, �, S) =���&��
�
��u

�b�(P��) �b�(	���) \N��� �
��u

	 , b = 1,2,3, . . , �,																																			(26) 
where		c = √−1, P� = ¢£; 	�� = �£		(¢, � = 1,2,3, … ); �&�� , Ω��	(	b = 1,2,3, . . , �)	 are amplitudes and complex 

natural frequencies, respectively. In the papers [27, 74, 75] assumed displacement field satisfies the given 

boundary conditions, and it is independent of the influence of other nanoplates in multi-nanoplate system.  

In the continuation of this study, we will consider three cases of coupling of VOMNPS with a fixed base and 

corresponding exact closed form solutions for complex natural frequencies. 

5.1. “Clamped-Chain” system 

In the case of “Clamped-Chain” system, the first and the last nanoplate in the model of VOMNPS are 

connected with the fixed base through the viscoelastic medium represented by layers with stiffness 

coefficients g] and	gy and damping coefficients  w] and	wy   as shown in Fig. 2. Coupling conditions for this 

chain system in dimensionless form are 

	)*](�, �, S) = 0,								)*y�u(�, �, S) = 0.																																																																		(27) 

 

Fig. 2 Side view of VOMNPS embedded in the viscoelastic medium and under the influence of uniaxial in-plane magnetic 

field, “Clamped-Chain” system. 

By introducing expression for coupling condition (27) and assumed solution Eq.(26) into the equation of 

motion Eq. (23) of VOMNPS and assuming that the stiffness and damping coefficients of viscoelastic medium 

are identical	�] = �u = ⋯ = �y = �	 and �] = �u = ⋯ = �y = �, we obtain the system of algebraic equations  

in the following form 

§̈���u�� − '©���0�� = 0,							b = 1,																																																			(28^) 
−'©���&Hu�� + §̈���&�� − '©���&�u�� = 0,							b = 2,3, . . , � − 1,																														(28w) 
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−'©���yHu�� + §̈���y�� = 0,							b = �,																																																		(28}) 
or in the matrix form 

 

jk
kk
kk
kk
kl 	§̈�� −'©�� 0 . . . 0 0 0 … 0 0 0−'©�� §̈�� −'©�� … 0 0 0 … 0 0 0… … … … … … … … … … …0 0 0 . . . §̈�� −'©�� 0 … 0 0 00 0 0 … −'©�� §̈�� −'©�� … 0 0 00 0 0 … 0 −'©�� §̈�� … 0 0 0… … … … … … … … … … . .0 0 0 … 0 0 0 … 0 §̈�� −'©��0 0 0 … 0 0 0 … 0 −'©�� §̈�� pq

qq
qq
qq
qr

ª«
«««
¬
«««
«­

�u���0���A��…�&Hu���&���&�u��. . .�yH0���yHu���y�� ®«
«««̄
«««
«°

=

ª«
««
¬
««
«­
000…000. . .000 ®«
««̄
««
«°

,				(29) 

where 

§̈�� = −Ω��0 4�� − �012Ω��0 (P�0 + �0��0)4�� + 2'©�� +|�(P�0 − �0��0)4�� + 

+(1 + cΩ���e)±P�x + �00�x��x + 2(�u0 + 2���)�0P�0��0²,																																			(30a) '©�� = (� + cΩ���)4��,																																																																											(30b) 4�� = 1 + �0(P�0 + �0��0).																																																																										(30}) 
In [76], the methodology of obtaining the analytical solutions for natural frequencies of homogeneous elastic 

and viscoelastic complex systems is presented. Based on that, we supposed the solution of the i-th algebraic 

equation in (19) as �&� = ~}³�(b	´µµ) + 	|	�b�(b	´µµ), b = 1,3, … ,�.																																			(31) 

Introducing assumed solution (31) into the b − �ℎ algebraic equation of the system (29), we obtain two 

algebraic equations, where constants M and N are not simultaneously equal to zero 

~¶−'©��	}³�±(b − 1	)´µµ² + §̈��	}³�(b	´µµ) − '©��	}³�±(b + 1	)´µµ²· = 0,												b = 2,3, … ,� − 1,															(32a) 
|¶−'©��	�b�±(b − 1	)´µµ² + §̈���b�(b	´µµ) − '©��	�b�±(b + 1	)´µµ²· = 0,													b = 2,3, … ,� − 1,														(32b) 

After some algebra we obtain 

3§̈�� − 2'©��}³�´µµ5~}³�(b	´µµ) = 0,																																																																							(33a) 

3§̈�� − 2'©��}³�´µµ5|�b�(b	´µµ) = 0,																																																																							(33b) 

in which, ~ ≠ 0	 and }³�(b	´µµ) ≠ 0 or | ≠ 0	 and �b�(b	´µµ) ≠ 0 for the case when the system has an 

oscillatory behavior, for	b = 2,3, … ,� − 1. Now, from Eq. (33), we get the complex natural frequency equation 

of the form  

§̈�� = 2'©��}³�´µµ ,																																																																																					(34) 

where ´µµ  is unknown parameter determined from the first and the last equation of the system of algebraic 

equations (29) i.e. from the boundary conditions of the “Clamped –Chain” system. 

Using the Eq. (21) for the first and for the last equation of the system (29) i.e.		�u�� = ~}³�´µµ + 	|	�b�´µµ  

and �0�� = ~}³�(2´µµ) + 	|	�b�(2´µµ) into the first equation and �yHu�� = ~}³�±(� − 1)´µµ² +	|	�b�±(� − 1)´µµ² and �yHu�� = ~}³�(�´µµ) + 	|	�b�(�´µµ) into the last equation, we obtain the system of 

algebraic equations, from which we can find unknown parameter ´µµ , as 

~¹§̈��}³�´µµ − '©��}³�(2´µµ)º + |¹§̈���b�´µµ − '©���b�(2´µµ)º = 0,																																												(35a) 
~ »§̈��}³�(�´µµ) − '©��}³�±(� − 1)´µµ²¼ + | »§̈���b�(�´µµ) − '©���b�±(� − 1)´µµ²¼ = 0.																							(35b) 

Finally, non-trivial solutions of the system of trigonometric equations (35) are 

½ 1 0}³�±(� + 1)´µµ² �b�±(� + 1)´µµ²½ = 0						 ⇒ 				�b�±(� + 1)´µµ² = 0,																														(36) 

from which we have 
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´µµ,¿ = �	£� + 1 ,							� = 1,2, … ,�.																																																															(37) 
Substituting expression for ´µµ,¿	 Eq. (37) into Eq. (34), we obtain the complex natural frequency equation as, 

−©̂Ω��0 + cwÀΩ�� + }̂ = 0,			(¢, �) = 1,2,3, …,																																																								(38) 
where 

©̂ = 61 + �012 (P�0 + �0��0)7 4��,																																																													(39a) 
wÀ = 2�4��31 − }³�´µµ,¿5 + �e±P�x + �00�x��x + 2(�u0 + 2���)�0P�0��0²,															(39b) }̂ = 2�4��31 − }³�´µµ,¿5 + |�(P�0 − �0��0)4�� + ±P�x + �00�x��x + 2(�u0 + 2���)�0P�0��0².					(39c) 

Solutions of Eq. (38) are complex natural frequencies of VOMNPS given as 

Ω��µµ,¿ = +c wÀ2 ©̂ ± �4 ©̂}̂ − wÀ04 ©̂0 ,					� = 1,2, … ,�,																																																							(40) 
where the imaginary part of Eq. (40) represents damping ratio and the real part represents damped natural 

frequency. 

5.2 “Cantilever - Chain” system 
 

For “Cantilever - Chain” system we assume that the first nanoplate is connected to the fixed base through the 

viscoelastic medium with stiffness coefficient  g] and damping coefficient w] while the last nanoplate in the 

system is free on the top face where gy = 0 and wy = 0.  Therefore, in this case we have the following 

coupling conditions in the dimensionless form 

 )*](�, �, S) = 0,								)*y�u(�, �, S) = 0		and					�y = 0, �y = 0,																																															(41) 

    

Fig. 3. Side view of VOMNPS embedded in the viscoelastic medium and under the influence of uniaxial in-plane magnetic 

force, “Cantilever-Chain” systems 

Substituting coupling conditions (41) and assumed solutions Eq. (26) into Eq. (23), for identical 

nanoplates and properties of viscoelastic medium between them, we obtain a homogeneous system of m 

algebraic equations of the form §̈���u�� − '©���0�� = 0,							b = 1,																																																			(42^) 
−'©���&Hu�� + §̈���&�� − '©���&�u�� = 0,							b = 2,3, . . , � − 1,																														(42w) 

−'©���yHu�� + 3§̈�� − '©��5�y�� = 0,							b = �,																																																		(42}) 
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or in the matrix form 

 

jk
kk
kk
kk
kl 	§̈�� −'©�� 0 . . . 0 0 0 … 0 0 0−'©�� §̈�� −'©�� … 0 0 0 … 0 0 0… … … … … … … … … … …0 0 0 . . . §̈�� −'©�� 0 … 0 0 00 0 0 … −'©�� §̈�� −'©�� … 0 0 00 0 0 … 0 −'©�� §̈�� … 0 0 0… … … … … … … … … … . .0 0 0 … 0 0 0 … 0 §̈�� −'©��0 0 0 … 0 0 0 … 0 −'©�� §̈�� − '©��pq

qq
qq
qq
qr

ª«
«««
¬
«««
«­

�u���0���A��…�&Hu���&���&�u��. . .�yH0���yHu���y�� ®«
«««̄
«««
«°

=

ª«
««
¬
««
«­
000…000. . .000 ®«
««̄
««
«°

,				(43) 

where §̈�� and −'©��	are defined in Eq. (30). 

Applying Eq. (31) into the b − �ℎ algebraic equation of the system (43), we obtain the same two 

trigonometric expressions as in the previous case, which leads to a complex natural frequency equation	§	Å�� =2'©��}³�´µÆ� . Different chain conditions of coupling for the first and the last nanoplate in VOMNPS with a fixed 

base leads to a change in the system of algebraic equation (43). Therefore, it is necessary to find new value of 
unknown parameter  ´µÆ� from the first and the last equation of the system (43). Introducing �u� =~}³�´µÆ� + 	|	�b�´µÆ� and �0� = ~}³�(2´µÆ�) + 	|	�b�(2´µÆ�) into the first equation and �yHu� =~}³�±(� − 1)´µÆ�² + 	|	�b�±(� − 1)´µÆ�² and �yHu� = ~}³�(�´µÆ�) + 	|	�b�(�´µÆ�) into the last equation 

of (43), we obtain the new system of algebraic equations as 

~±§��}³�´µÆ� − '��}³�(2´µÆ�)² + |±§��b�´µµ − '���b�(2´µÆ�)² = 0,																																												(44a) 
~¹(§�� − '�)}³�(�´µÆ�) − '��}³�±(� − 1)´µÆ�²º + 

+|¹(§�� − '��)�b�(�´µÆ�) − '���b�±(� − 1)´µÆ�²º = 0.																																									(44b) 

The non-trivial solutions for constants ~ and 	| are obtained from the above system, which yields the 

following trigonometric relation 

½ 1 0}³�±(� + 1)´µÆ�² − }³�(�´µÆ�) �b�±(� + 1)´µÆ�² − �b�(�´µÆ�)½ = 0	 ⇒ }³� 6(2� + 1)2 ´µÆ�7 = 0		(45) 
where unknown  ´µÆ�,¿  is obtained  for the “Cantilever-Chain“ system as 

´µÆ�,¿ = (2� − 1)	£2� + 1 ,							� = 1,2, … ,�.																																																		(46) 
Introducing the parameter ´µÆ�,¿	into Eq. (34) instead of	´µµ 	, the complex natural frequency equation is 

obtained as in the previous case  

−©̂Ω��0 + cwÀΩ�� + }̂ = 0,			(¢, �) = 1,2,3, …,																																																								(47) 
where the only difference is in the parameter ´µÆ�,¿ and 

©̂ = 61 + �012 (P�0 + �0��0)7 4��,																																																													(48a) 
wÀ = 2�4��31 − }³�´µÆ�,¿5 + �e±P�x + �00�x��x + 2(�u0 + 2���)�0P�0��0²,															(48b) }̂ = 2�4��31 − }³�´µÆ�,¿5 + |�(P�0 − �0��0)4�� + ±P�x + �00�x��x + 2(�u0 + 2���)�0P�0��0².					(48c) 

The solution of Eq. (47) represents the complex natural frequency of VOMNPS of the form 

Ω��µÆ�,¿ = +c wÀ2 ©̂ ± �4 ©̂}̂ − wÀ04 ©̂0 ,					� = 1,2, … ,�.																																																							(49) 
5.3. “Free-Chain” system 

Next, we consider the system where the first and the last nanoplate are without coupling with the fixed 

base, where coupling conditions in dimensionless form are  
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�] = 0	, �y = 0							and								�] = 0	, �y = 0,																																																										(50)   

 

Fig. 4 Side view of VOMNPS embedded in the viscoelastic medium and under the influence of uniaxial in-plane magnetic 

force, “Free-Chain” systems. 

Using the chain coupling conditions for the “Free-Chain” system Eq. (50) and assumed solution (26), from the 

equation of motion Eq. (23) we obtain the following system of algebraic equations  

3§̈�� − '©��5�u�� − '©���0�� = 0,							b = 1,																																																			(51^) 
−'©���&Hu�� + §̈���&�� − '©���&�u�� = 0,							b = 2,3, . . , � − 1,																														(51w) 

−'©���yHu�� + 3§̈�� − '©��5�y�� = 0,							b = �,																																																		(51}) 
or in the matrix form 

jk
kk
kk
kk
kl	§̈�� − '©�� −'©�� 0 . . . 0 0 0 … 0 0 0−'©�� §̈�� −'©�� … 0 0 0 … 0 0 0… … … … … … … … … … …0 0 0 . . . §̈�� −'©�� 0 … 0 0 00 0 0 … −'©�� §̈�� −'©�� … 0 0 00 0 0 … 0 −'©�� §̈�� … 0 0 0… … … … … … … … … … . .0 0 0 … 0 0 0 … 0 §̈�� −'©��0 0 0 … 0 0 0 … 0 −'©�� §̈�� − '©��pq

qq
qq
qq
qr

ª«
«««
¬
«««
«­

�u���0���A��…�&Hu���&���&�u��. . .�yH0���yHu���y�� ®«
«««̄
«««
«°

=

ª«
««
¬
««
«­
000…000. . .000 ®«
««̄
««
«°

, (52)     

 

where expressions §̈��	and	'©�� are defined in Eq. (30).  

By using assumed solution Eq. (31) into b − �ℎ algebraic equation of the system (52), we get the complex 

natural frequency equation in the same way as in the previous cases. We have that §̈�� = 2'©��}³�´Çµ ,		where ´Çµ  is unknown parameter determined from the first and the last equation of the system of algebraic equations 

(52) i.e. boundary conditions of the “Free-Chain” system. Applying solutions for the first and the second 

amplitude,		�u�� = ~}³�´Çµ + 	|	�b�´Çµ and	�0�� = ~}³�32´Çµ5 + 	|	�b�32´Çµ5, into the first equation and �yHu� = ~}³�¹(� − 1)´Çµº + |	�b�¹(� − 1)´Çµº and �yHu� = ~}³�3�´Çµ5 + |	�b�3�´Çµ5 into the last 

equation of system (52), and after some algebra we obtain 

 

~¹3§̈�� − '©��5}³�´Çµ − '©��}³�32´Çµ5º + |¹3§̈�� − '©��5�b�´Çµ − '©���b�32´Çµ5º = 0,																	(53a) 
~ »3§̈�� − '©��5}³�3�´Çµ5 − '©��}³�¹(� − 1)´Çµº¼ + | »3§̈�� − '©��5�b�3�´Çµ5 − '©���b�¹(� − 1)´Çµº¼ = 0. 

(53w) 
Where the non-trivial solution leads to the trigonometric equations in the following form 
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È 1 − }³�´Çµ −�b�´Çµ}³�±(� + 1)´µµ² − }³�3�´Çµ5 �b�±(� + 1)´µµ² − �b�3�´Çµ5È = 0				 ⇒ 				�b�3�´Çµ5 = 0,					(54) 
where unknown  ´Çµ,¿ is equal to 

´Çµ,¿ = �	£� ,							� = 0,1, … ,� − 1.																																																															(55) 
Introducing the parameter  ´Çµ,¿	 into Eq. (34) instead of	´µµ 	, the complex natural frequency equation is 

obtained as  

−©̂Ω��0 + cwÀΩ�� + }̂ = 0,			(¢, �) = 1,2,3, …,																																																								(56) 
where the only difference is in the parameter ´Çµ,¿ and 

©̂ = 61 + �012 (P�0 + �0��0)7 4��,																																																													(57a) 
wÀ = 2�4��31 − }³�´Çµ,¿5 + �e±P�x + �00�x��x + 2(�u0 + 2���)�0P�0��0²,															(57b) }̂ = 2�4��31 − }³�´Çµ,¿5 + |�(P�0 − �0��0)4�� + ±P�x + �00�x��x + 2(�u0 + 2���)�0P�0��0².					(57c) 

Finally, the solution of Eq. (56) represents the complex natural frequency of VOMNPS in the form 

Ω��Çµ,¿ = +c wÀ2 ©̂ ± �4 ©̂}̂ − wÀ04 ©̂0 ,					� = 1,2, … ,�.																																																							(58) 
5.4. Asymptotic values of complex natural frequency 

      Here, we consider the case when a number of viscoelastic orthotropic nanoplates tends to infinity i.e. we 

introduce �⟶ ∞	into the expressions for complex natural frequency (40), (49) and (58). Since the 

expressions for the parameter ´ are equal to zero in all cases	3´µµ,¿, ´µÆ�,¿, ´Çµ,¿5 = 0, we conclude that there is 

an independent critical value of the complex natural frequency, also called fundamental complex natural 

frequency, regardless to the chain coupling conditions, defined as 

Ë ��y→� = Im »Ë ��y→�¼ c ± Re »Ë ��y→�¼,				(	¢, �) = 1,2, …,																																				(59) 

where 

Im »Ë ��y→�¼ = wÑ2 ©̂ 	,				and					Re »Ë ��y→�¼ = �4 ©̂}̿ − wÑ04 ©̂0 ,																																					(60a) 
©̂ = 61 + �012 (P�0 + �0��0)7 4��,																																																													(60b) 

wÑ = �e±P�x + �00�x��x + 2(�u0 + 2���)�0P�0��0²,																																							(60c) 

}̿ = |�(P�0 − �0��0)4�� + ±P�x + �00�x��x + 2(�u0 + 2���)�0P�0��0²,																	(60d) 
The real parts of complex natural frequencies represent the critical damped natural frequencies of VOMNPS, 

while imaginary parts of complex natural frequencies represent the critical damped ratios. In the case when 

the real parts of critical complex natural frequencies are equal to zero, we can obtain the critical values of 

internal damping as 

Re »Ë ��y→�¼ = 0,			 ⇒ 

	(�e) µ�y→� = Ó4 Ô1 + �012 (P�0 + �0��0)Õ 4��±|�(P�0 − �0��0)4�� + P�x + �00�x��x + 2(�u0 + 2���)�0P�0��0²±P�x + �00�x��x + 2(�u0 + 2���)�0P�0��0² ,						(61) 
It should be noted that both parts of critical complex natural frequencies are functions of nanoplates material 

parameters and are independent of a number of nanoplates, chain coupling conditions and influences of the 

viscoelastic medium.  
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6. Validation and numerical results 

In this section, we validate our results for complex natural frequencies by solving the systems of 

algebraic equations (29), (43) and (52) analytically using the trigonometric method and numerically using the 

corresponding function in Wolfram Mathematica software. In addition, a detailed parametric study is 

conducted by investigating the effects of dimensionless nonlocal parameter, internal viscosity, magnetic field 

parameter and aspect ratios on dimensionless real and imaginary parts of complex natural frequency. 

Obtained results are discussed and some conclusions are made.    

6.1. Validation of the results 

 

In order to illustrate the accuracy of the proposed trigonometric method, we performed numerical 

simulations for three and five nanoplates in simply supported VOMNPS embedded in viscoelastic medium and 

for three different chain conditions “Clamped-Chain”, “Cantilever-Chain” and “Free-Chain”. By browsing the 

literature, the authors have found that some researchers [27-31, 77, 78], based on different approaches 

(molecular dynamic simulation, lattice structure, nonlocal continuum mechanics), investigated elastic 

properties of a single layer graphene sheet. They obtained two values of Young elastic modulus for two 

perpendicular/orthogonal directions, i.e. in that case the graphene sheet can be considered as orthotropic 

plate [74]. Based on that fact, the authors adopted continuum model for a single layer graphene sheet as thin 

orthotropic plate, where size effects are introduced through Eringen’s nonlocal elasticity theory. Moreover, in 

the present work we investigate the system of multiple graphene sheets embedded in polymer matrix as a 

system of multiple viscoelastically coupled orthotropic nanoplates, where such model is more general than 

using the isotropic nanoplate model. However, present model can be easily modified to investigate a system of 

isotropic nanoplates only by using the following assumptions mu = 	m0 = m and nu0 = n0u = n.  

In given numerical examples, the following values of parameters are adopted: length ^ = 9.519	±��² 
and width w = 4.844	±��², elastic modules of orthotropic nanoplates as mu = 2.434	±��^² and	m0 =2.473	±��^², Poisson's ratios nu0 = n0u = 0.197, thickness of nanoplates ℎ = 0.129	±��² and mass density v = 6316	±gÖ/�A², [77, 78]. The coefficients of viscoelastic media, magnetic field parameter and internal 

damping coefficient are considered as dimensionless parameters � = 100, � = 10, |� = 10 and	� = 0.01. 

These material and geometric parameters for orthotropic viscoelastic nanoplates are adopted from the paper 

[73]. 

 One can notice an excellent agreement between the results obtained from the analytical and the 

numerical method (Table 1). Further, it can be noticed that the highest complex natural frequency in the 

“Clamped-Chain” system is the same and does not depend on the number of nanoplates in VOMNPS. The 
lowest value of the complex natural frequency, determined for	� = 1, decreases with an increase of the 

number of nanoplates. In the case of “Cantilever-Chain” system, the highest complex natural frequency 

increases while the lowest one (also for	� = 1) decreases for an increase of the number of nanoplates in 

VOMNPS. Finally, for the case of “Free-Chain” system, the lowest complex natural frequency determined for � = 0 is the same while the highest one increases for an increase of the number of nanoplates in VOMNPS. The 

lowest value of complex natural frequency in the last case is equivalent to the fundamental complex natural 

frequency of the system obtained from asymptotic analysis when the number of nanoplates tends to infinity.  

Table 1 Validation of dimensionless damped natural frequencies	Ëuu,¿ of VOMNPS for three chain systems and 

varying number of nanoplates. 
  Clamped-Chain Cantilever-Chain Free-Chain 

r=1 

n=1 

 Trig. method 

Eq. (40) 

Num.  method 

Eq. (29) 

Trig. method 

Eq. (49) 

Num.  method 

Eq. (43) 

Trig. method 

Eq. (58) 

Num.  method 

Eq. (52) 

m=3 

1 10.2543 + 17.4012 I 10.2543 + 17.4012 I 9.19994 + 1.32308 I 9.19994 + 1.32308 I 8.15325 + 0.33293 I 8.15325 + 0.33293 I 

2 10.7013 + 3.26138 I 10.7013 + 3.26138 I 10.8086 + 16.5652 I 10.8086 + 16.5652 I 11.4680 + 15.3305 I 11.4680 + 15.3305 I 

3 12.6419 + 10.3313 I 12.6419 + 10.3313 I 12.5037 + 8.10644 I 12.5037 + 8.10644 I 11.7532 + 5.33211 I 11.7532 + 5.33211 I 

m=5 

1 8.89413 + 18.9901 I 8.89413 + 18.9901 I 8.61057 + 0.73793 I 8.61057 + 0.73793 I 8.15325 + 0.33293 I 8.15325 + 0.33293 I 

2 9.51734 + 1.67246 I 9.51734 + 1.67246 I 9.13770 + 18.7424 I 9.13770 + 18.7424 I 9.43553 + 18.4201 I 9.43553 + 18.4201 I 

3 11.4680 + 15.3305 I 11.4680 + 15.3305 I 11.0130 + 3.78376 I 11.0130 + 3.78376 I 9.98740 + 2.24245 I 9.98740 + 2.24245 I 

4 11.7532 + 5.33211 I 11.7532 + 5.33211 I 11.8243 + 14.4848 I 11.8243 + 14.4848 I 12.1748 + 13.4209 I 12.1748 + 13.4209 I 

5 12.6419 + 10.3313 I 12.6419 + 10.3313 I 12.5991 + 8.90837 I 12.5991 + 8.90837 I 12.3418 + 7.24163 I 12.3418 + 7.24163 I 

*   	I = √−1 –imaginary unit 
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6.2. Parametric study 

We must note that all values of parameters used in the following simulations are same as in the 

previous case except those parameters that are varied to examine its effect on complex natural frequencies. 

Fig. 5 illustrates the effects of internal viscosity �e  and nonlocal parameter � on the real and imaginary parts of 

the lowest complex natural frequency for different number of nanoplates in VOMNPS. In the case of “Clamped-

Chain” system, it can be observed that the real part of complex natural frequency i.e. damped natural 

frequency decreases significantly for an increase of nonlocal parameter. The imaginary i.e. damping ratio part 

of the complex natural frequency increases significantly for an increase of the internal viscosity and it 

decreases for an increase of the nonlocal parameter. In the case of “Cantilever-Chain” system, the real and the 

imaginary part of complex natural frequency decreases for an increase of the nonlocal parameter. In addition, 

the real part of complex natural frequency slightly decreases whereas the imaginary part increases for an 

increase of internal viscosity. The same influence of internal viscosity and nonlocal parameter can be 

recognized in the case of “Free-Chain” system. An increase of nonlocal parameter decreases complex natural 

frequency whereas an increase of internal viscosity decreases the real part of frequency and increases the 

imaginary part. However, for the last chain conditions the lowest complex frequency is the same for different 
numbers of nanoplates in VOMNPS and it is obtained for	� = 0. Thus, we conclude that the lowest frequency is 

in fact the fundamental complex natural frequency. Therefore, on the same figure we plotted the complex 

natural frequency of “Free-Chain” system for � = 1 and observed that for a significant increase of a number of 

nanoplates complex frequency tends to the fundamental frequency, which is in line with the asymptotic 

analysis. Next, the common conclusion is that the complex natural frequency decreases for an increase of a 

number of nanoplates in VOMNPS.  

In Fig. 6, the real and imaginary part of complex natural frequency are plotted for changes of magnetic 

field parameter MP and aspect ratio � and other parameters same as in Table 1. One can notice that when no 

or weak magnetic field is applied to VOMNPS, the real part of complex natural frequency increases for an 

increase of aspect ratio starting from low values of frequency. However, for applied stronger magnetic field the 

real part of complex natural frequency decreases significantly for an increase of aspect ratio � starting from 

much higher values of frequency. This effect can be recognized for all three cases of chain conditions. In 

addition, for the “Clamped-Chain” and “Free-Chain” systems the imaginary part of complex natural frequency 

slightly increases for an increase of aspect ratio whereas it is constant for changes of magnetic field parameter. 

In the “Cantilever-Chain” system, an increase of the imaginary part of complex natural frequency for an 

increase of aspect ratio is more pronounced than in the previous two cases while the frequency is constant for 

changes of magnetic field parameter. Further, in all three cases of chain conditions the value of complex 

natural frequency decreases for an increase of a number of nanoplates in VOMNPS.   

Next, we illustrate the influence of aspect ratio � and damping coefficient B of the viscoelastic medium 

on the complex natural frequency of VOMNPS. The values of other parameters are same as in the previous 

cases. In Fig. 7, it can be noticed that an increase of damping coefficient almost has no visible effects on the real 

part of complex natural frequency except for the slight decrease of frequency for lower number of nanoplates 

in VOMNPS, especially in the case of “Free-Chain” system. The imaginary part of complex natural frequency 

increases for an increase of damping coefficient for all cases of chain conditions. The effect of increase of 

aspect ratio � is a decrease of complex natural frequency. In general, an increase of a number of nanoplates in 

VOMNPS decreases the complex natural frequency.   
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Fig. 5 Effects of nonlocal η and internal viscosity TÛ parameters on complex natural frequency of VOMNPS. 
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Fig. 6 Effects of magnetic field parameter MP and aspect ratio R on complex natural frequency of VOMNPS. 
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Fig. 7 Effects of damping coefficient of the viscoelastic medium B and aspect ratio δ on complex natural frequency of 

VOMNPS. 

 

Further, we show the influence of nonlocal parameter, different chain conditions and significant 

change of a number of nanoplates in VOMNPS on the real and imaginary part of the lowest complex natural 
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frequency.  As stated before, from Fig 8. it is obvious that an increase of nonlocal parameter decreases both 

parts of complex natural frequency. For results in Table 1 we mentioned that the lowest frequency of “Free-

Chain” system is for � = 0 and it is equal to the fundamental frequency of the system obtained from asymptotic 

analysis. In the case of “Clamped-Chain” and “Cantilever-Chain” systems, the lowest frequency is obtained for � = 1. For curves of “Clamped-Chain” and “Cantilever-Chain” it can be noticed that they are approaching to the 

curve of the lowest complex natural frequency of “Free-Chain” system i.e. the fundamental frequency, for an 

increase of the number of nanoplates in VOMNPS. 

 
Fig. 8 Effect of increase of the number of nanoplates on complex natural frquency of VOMNPS with different chain 

conditions. 

 

From the detailed parametric study, it can be noticed that the influence of magnetic parameter on the 

real part of complex natural frequency i.e. the damped natural frequency of VOMNPS is significant. However, 

an increase of aspect ratio by increasing the length or height of nanoplate in the direction of magnetic field can 

reduce its influence on the real part of complex natural frequency of the system dramatically. This effect is also 

recognized in theoretical studies analyzing the vibration behavior of CNTs with applied magnetic field in the 

direction of the length of nanotube. The results presented in this study may be significant for the future 

investigations of complex nanostructure systems exploited in the presence of magnetic field.  

Conclusion 

 

In this paper, we summarized current advances in the field of theoretical analysis of mechanical 

behavior of complex nanostructure systems such as nanoplate-like structures in the presence of magnetic 

field. Further, we performed the free vibration study of VOMNPS embedded in the viscoelastic medium and 

under the influence of in-plane magnetic field by using nonlocal theory. Explicit equations for complex natural 

frequencies are determined via trigonometric method. In addition, by performing the asymptotic analysis we 

determined critical values of complex natural frequency and internal damping. From obtained numerical 

results, characteristic behaviors of complex natural frequencies are identified for changes of nonlocal 

parameter, internal damping parameter, magnitude of a magnetic field, damping coefficient of the layers and 

different numbers of nanoplates in VOMNPS. The results revealed that the influence of magnetic field on the 

real part of complex natural frequency is significant but it strongly depends on the dimension of a 

nanostructure in the direction of magnetic field i.e. an increase of aspect ratio decreases the influence of 

magnetic field parameter. The methods used in this work can be useful for the future vibration studies of 

complex nanostructure systems that consider models with included influence of different physical fields.  
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• Influence of in-plane magnetic field on the vibration of orthotropic multi-nanoplate system is 

examined. 

• The nanoplate system is embedded in a viscoelastic medium. 

• Nonlocal elasticity theory is used. 

• Closed form solutions for complex natural frequencies are derived. 

• Analysis shows that the influence of magnetic field on the real part of complex natural frequency 

is significant. 
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field. 

 

 


