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Abstract The influence of an aortic aneurysm on blood
flow waveforms is well established, but how to exploit this
link for diagnostic purposes still remains challenging. This
work uses a combination of experimental and computa-
tional modelling to study how aneurysms of various size
affect the waveforms. Experimental studies are carried out
on fusiform-type aneurysm models, and a comparison of
results with those from a one-dimensional fluid—structure
interaction model shows close agreement. Further math-
ematical analysis of these results allows the definition of
several indicators that characterize the impact of an aneurysm
on waveforms. These indicators are then further studied in
a computational model of a systemic blood flow network.
This demonstrates the methods’ ability to detect the loca-
tion and severity of an aortic aneurysm through the analysis
of flow waveforms in clinically accessible locations. There-
fore, the proposed methodology shows a high potential for
non-invasive aneurysm detectors/monitors.
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1 Introduction

Cardiovascular disease is responsible for the death of over
eight million people worldwide every year. Among these
deaths, aortic aneurysms alone are responsible for more than
100,000 deaths, with about 6000 occurring in England and
Wales as a result of rupture. An aortic aneurysm is a dila-
tion of the aorta, usually exceeding the normal diameter by
more than 50%. The abdominal aortic aneurysm (AAA) is the
most prevalent type of aortic aneurysm, and it is often asymp-
tomatic. As it increases in size, the aneurysm is more likely
to rupture and becomes a life-threatening condition. The
symptoms are rarely noticed before rupture of the aneurysm,
which prompted the healthcare systems to investigate various
screening programs based on ultrasound and MRI. A Mul-
ticentre Aneurysm Screening Study (MASS) was one of the
first large screening programmes for AAA in the UK. The
results from the MASS programme showed that detection of
AAA reduced risk of death in a 4-year period from 0.33 to
0.19% (Ashton et al. 2002).

Opportunistic detection of asymptomatic AAAs during
clinical examination is the most common way of diagnosis.
An abdominal palpation has only a moderate overall sen-
sitivity for detecting AAAs (unless they are large enough
to warrant elective intervention), especially in overweight
people (see for instance the work by Fink et al. (2000)).
Symptoms usually only occur near to or at the point of rup-
ture. Although scanning the elderly population for aneurysms
provides an excellent opportunity to reduce potential mortal-
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ities, developing cheaper and faster methods is an important
challenge for medical and biomedical engineering.

In a clinical setting, ultrasound (US) is currently the most
practical, non-invasive and inexpensive modality in screen-
ing for and surveillance of AAA, with a sensitivity and
specificity of more than 98% (see among others Ashton et al.
(2002); Wilmink et al. (2002); Sprouse et al. (2004); Barkin
and Rosen (2004); Walker et al. (2004); Fleming et al. (2005);
Catalano and Siani (2005); Brekken et al. (2011)). Some
common limitations of US diagnosis include: suboptimal
imaging, attenuation and inaccurate measurements, often due
to bowel gas, obesity, artery tortuosity and/or calcification.
Inter-observer variability can also be a problem. The shape
and size of the aneurysm can be determined most accurately
by means of 3D CT or MRI (Sparks et al. 2002; Lee et al.
1984; Litmanovich et al. 2009; McBride et al. 2015) meth-
ods.

The goal of the paper is to develop cost-effective AAA
detection methods based on accessible measurement and
analysis of human pressure and/or velocity waveforms. These
waveforms can be easily computed using a framework of 1D
systemic circulation models.

One-dimensional systemic circulation models have been
the topic of intense research over the last 10 years (Barnard
et al. 1966; Hughes and Lubliner 1973; Avolio 1980; For-
maggia et al. 1999; Franke et al. 2002; Urquiza et al.
2006; Alastruey et al. 2007; Steele et al. 2007; Mynard
and Nithiarasu 2008; Blanco et al. 2012; Chen et al. 2013;
Watanabe et al. 2013; Miiller and Toro 2013, 2014; Blanco
et al. 2015; Boileau et al. 2015; Huang and Muller 2015).
Recent explosion of more robust and benchmarked models
has demonstrated the accuracy and usefulness of these mod-
els in predicting various blood flow quantities. Therefore,
it makes sense to investigate the applicability of such sys-
temic circulation models for the non-invasive detection of
aneurysms. Preliminary attempts as proposed in (Low et al.
2012) show very encouraging results and illustrate a clear
link between aneurysm shape and changes in the flow wave-
form as it appears that the pulse reflections are pronounced
in the presence of aortic aneurysms. A general analysis of
reflections as a result of disturbances has been analysed and
discussed in several publications (Khir et al. 2001; Hughes
and Parker 2009). In the work by Swillens et al. (2008), an
aneurysm detection method is proposed based on a reflection
coefficient by measuring pressure and flow rate waveforms.
The pressure waveforms may be measured via arterial tonom-
etry or cuff pressure measurements obtained from the wrist
or carotid. The arterial velocity may be measured with ultra-
sonic echography.

The modelling, analysis and measurements carried out in
the past (Swillens et al. 2008; Low et al. 2012) clearly indi-
cate that an accurate analysis and decomposition of measured
pressure waveforms may provide an indication of existence
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of an aortic aneurysm. Thus, in the present work we deter-
mine and analyse the pressure waveform changes caused by
reflection from an aneurysm. We study dependence of the
reflection coefficient on aneurysm size and also compare the
results with the pressure waveform in a healthy vessel. We
also propose a method of determination of parameters indi-
cating existence of an aneurysm depending on its location
and its rate of change in cross-sectional area. To experimen-
tally model a blood vessel with and without aneurysm, we
have developed an experimental set-up, representing a part of
the cardiovascular system. The arrangements and the param-
eters of this set-up are also used in the numerical simulations.
After a thorough analysis of the experimental and numerical
results, the indicative parameters of an aneurysm, identified
from the simplified experimental and numerical model, are
put into practice in a full systemic circulation model.

The paper is organized into the following sections. In
Sect.2, we describe the experimental set-up, method of
measuring the pressure and velocity waveforms and the
experimental results. In Sect.3 the governing equations are
presented and the numerical scheme is briefly described as
well as the definition of the boundary conditions. The numeri-
cal results are compared with the experimental data in order to
validate the numerical model. The wave analysis is discussed
in Sect.4. Here, the waveform is decomposed into forward
and backward waves, and the formulation of the aneurysm
indicators is presented. The method developed is then applied
to the experimental and numerical data described in Sects. 2
and 3, respectively, and then, in Sect.5, to a human arte-
rial model network. Section 6 draws some conclusions and
discusses the challenges and unresolved problems. Some
auxiliary material is presented in Appendix including details
of the numerical scheme (“Appendix 1) and the waveform
generated by the pump (“Appendix 27).

2 Experimental set-up and measurements

The experimental set-up includes a pump representing the
heart and system of tubes characterizing the blood vessels.
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Fig. 1 Laboratory set-up scheme: / pump, 2 inlet rigid tube, 3, 4 main
tube, 5 “aneurysm”, 6 transparent box, 7, 8 fitting, 9 long tube, /0
reservoir, /7 branch for the pressure catheter
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Fig. 2 Pulse-generating pump

One of those tubes has a bulge to represent an aneurysm
as shown in Fig. 1. Water is used as a working liquid. The
pump, 1, generates pulses propagating through the system
of tubes. It is directly connected to a rigid tube, 2, which
through a rigid fitting, 7, is connected to the main tube, 3—4,
located in a transparent box, 6. The tube segment with the
artificial aneurysm, 5, is cut into the main tube. The outlet
of the main tube through the fitting, 8, located in the wall
of the box is connected to a 6.5-m-length pipe, 9, and its
outlet is connected to a collecting reservoir, 10. This allows
us to minimize the wave reflection. The rigid inlet tube has
a branch, 11, through which the pressure measuring catheter
is inserted.

The main tube has an internal diameter of 17 mm, a
wall thickness of 2mm and a full length of 2 m. The mea-
sured Young modulus of the wall material is 2.8 MPa.
The measured pulse wave propagation speed in the tube is
21 m/s. Its proximal to the aneurysm part is of 50 cm length.
Pump 1 represents an engine rotating a wheel connected
through the crank to the piston in a cylinder (see Fig.?2).
The cylinder diameter is 5 cm. The piston stroke equals the
double distance from the wheel centre to the joint with the
crank (5 cm in length), which results in a stroke volume
of approximately 100 cm?. In the absence of the load from
the piston and liquid, the pump and the wheel would rotate
uniformly and move from one dead point to another, pro-
ducing a half-sine pressure pulse. It should be noted that the
load causes a non-uniform rotation of the wheel, which will
affect the generated waveform. Such waveforms are anal-
ysed in Sect. 2. The pump is operated for only one cycle for
every measurement in order to avoid reflections from the
TESErvoir.

Four different samples of artificial aneurysms of different
sizes have been prepared, see Fig. 3, with maximal internal
diameters of 24, 34, 44 and 50 mm, respectively.

The aneurysms are axially symmetric with the generatrix
having the shape of a circular arc of radius R4 smoothly
conjugated to the constant area parts of the tube. Conjugating
radii are R; = 10 mm. The length of the aneurysmis L4 =
9 cm. It is located in the middle of the tube segment having a
length L = 14 cm. Wall thickness, £, is kept uniform for all
parts of the segment and 4 = 2 mm. The elastic properties of
the aneurysm tube segment are measured to be close to those

"/
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Fig. 3 Top four tube segments with various aneurysm sizes. Middle

geometric definition of the artificial aneurysms. Bottom Shapes of all
the aneurysms considered. The dimensions are given in mm

of the main tube. Besides the aneurysm, similar experiments
and measurements have been conducted on a control setting:
auniform main pipeline. The fitting is an approximately rigid
tube with an internal diameter of 12 mm.

Pressure was measured using a 6 F pressure transducer-
tipped catheter (Gaeltec, Scotland, UK), which was inserted
into the tube through a Y-junction at the inlet of the tube
or outlet of the tube. The flow rate was measured using
ultrasound flow probes (Transonic System Inc, Ithaca, NY,
USA). All measurements of the pressure and flow rate are
taken in tube segment 3 shown in Fig.1 in four sites: at
a distance 2, 10, 25 and 50cm from the inlet of the main
tube.

Repeated measurements for every aneurysm in every site
are taken from 8 to 15 for every combination of aneurysm
size/site, resulting in more than 200 measurements overall.
The basic sampling frequency is 500 Hz, but 1 kHz is also
used in some measurements to ensure that pressure wave-
forms are properly captured. First, the measured waveforms
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Fig. 4 Comparison of experimental (black) and numerical (red) pressure waveforms. The aneurysm diameter is indicated in every plot. The site
is indicated below every column of plots

are smoothed by convolution with a Gaussian function at a
width of two time steps. As the recording is not synchro-
nized with the pump, it is necessary to align all waveforms
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to start the main pulse at the same instant. Then the measured
waveforms are averaged in the sample rate S00Hz in order
to decrease the influence of noise further.
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The averaged measured pressure waveforms are presented
in Fig.4 indicated by black curves for all 20 cases: five
aneurysm sizes (including the control tube) times four sites.
We can observe strong oscillations at sites downstream from
the inlet in the set-up with aneurysms. The further from the
aneurysm the stronger the oscillations are. For those tests
without an aneurysm (the first row of plots), we observe much
smaller oscillations of similar amplitude in all the sites. Also
we see that the greater aneurysm size the lower is the max-
imal pulse amplitude. The next stage of experimental data
processing is described in Sect.4.2.

3 Numerical simulation
3.1 Governing equations

A one-dimensional approximation is employed for the
numerical simulation. This approximation is mainly based
on Stergiopulos’s model (Stergiopulos et al. 1992) with some
modifications adopted from Wang and Parker’s model (Wang
and Parker 2004) to avoid large reduction in arterial material
properties. In this approximation, the governing continuity
and momentum equations can be written in the following
form (Formaggia et al. 2001; Sherwin et al. 2003b; Mynard
and Nithiarasu 2008)

A+ (Au), =0 ()

1 1
U +utty + —py — =7, =0 (2)
P P

where subscripts ¢ and x denote the partial derivatives with
respect to time ¢ and coordinate along the pipe x, respectively;
A is the cross-sectional area of the lumen; u, pandp are,
respectively, the average velocity, density and pressure of the
liquid, whilst 7 is the wall shear stress. Assuming cylindrical
vessels and a Poiseuille flow we find:

8mpu
A

3

Ty =

where p is the dynamic viscosity of the liquid. Equations
(1), (2) and (25) are supplemented with the commonly used
pressure—area relation (Franke et al. 2002; Sherwin et al.
2003b; Mynard and Nithiarasu 2008)

P = peu+ B (VA— V) )

where

. 5)

Here E and o are the Young modulus and Poisson ratio for
the wall material, respectively; Ag is the initial tube inner
area; E’ is an analogue of the Young modulus for plates and
shells. Now Egs. (1)—-(4) form a closed system.

3.2 Characteristic variables

Equations (1)—(25) can be rewritten in the standard form Low
et al. (2012) as

U +F, =S (6)

where the variables term, U, the flux term, F, and the source
term, S, are

A uA 0
U= , F=|u?2 p|, S=| 8ruu|. (@)
u — 4+ =

2 p

p A

The characteristic speed of the system of variables of the
equations can be given as

A O _Ju+c O » Adp B
A‘[o xh]_[ 0 u—c] C_pBA_Zpﬂ

where ¢ is the pulse wave speed in the tube. Under phys-
iological flow conditions, it is known that the pulse wave
speed is higher than the fluid velocity u (Formaggia et al.
2002, 2003; Sherwin et al. 2003a, ¢). Therefore, the system
is strictly hyperbolic and subcritical with A y > Oand 4, < 0.
The characteristic variables of the system are well known to
have the form

wr =u+4c, wp =u —4c (8)

satisfying the first-order advection equations

(wp)+2pwp)e =0, (wp) + Ap(wp)x = 0. ©)
Thus, characteristic wy describes a forward propagating
wave (away from the heart) at a speed of u + ¢, whereas
w corresponds to a backward propagating wave (towards
the heart) at a speed u — ¢ which can appear after reflection
due to impedance changes in the cardiovascular system at
bifurcations, aneurysms, and so on. The waves are nonlinear
as u and ¢ are amplitude dependent. If the characteristics are
calculated, the physical variables can be easily restored via:

2
wr + wp o[ Wr— wp
w=-—-"1"- pzpm—wAﬁg(f—)'

2 2
(10)

With the characteristic variables, wy and wp, appropri-
ate boundary conditions may now be imposed. Moreover,
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because the two characteristic speeds of the system have
opposite signs (Formaggia et al. 2002; Sherwin et al. 2003a;
Formaggia et al. 2003), a single boundary condition needs to
be specified each at the inlet and exit of a segment.

Variables w s and w, are actively employed in the numer-
ical scheme in order to impose the boundary conditions.
Equation (9) may be integrated to produce necessary forward
and backward moving waves as

with(xn) = w'}“(xi“ — MAD).

where superscript n denotes the nth time step for any vari-
able and wy is the characteristic variable computed from
prescribed pressure or velocity.

3.3 Boundary conditions

At the connections between tubes the continuity of the flow
rate O = Au and the total pressure p + % pu? are imposed
(Mynard and Nithiarasu 2008). The boundary condition at
the outlet (reservoir) is not essential as we are dealing with
a single pulse at a time period (less than 1 s) shorter than the
time required for a wave to propagate from the pump to the
reservoir and back (about 1 s). Nevertheless, we modelled the
reservoir as a wide tube with a non-reflecting outlet boundary
condition.

Most challenging is to determine the inlet conditions, i.e.
the waveform produced by the pump. The wave generated
by the pump can partly reflect from the aneurysm, producing
a backward propagating wave, which may be reflected by
the piston to form a forward propagating wave. The wave is
generated only whilst the piston is in motion. Its waveform
shape is determined completely by the piston velocity vari-
ation. The piston motion is subjected to load generated by
the fluid resistance and motion. This load exists even in the
absence of reflection (such case is considered in Appendix 2),
but in the presence of the aneurysm, the reflected wave
imparts an additional load on the piston motion. Thus, the
generated waveform heavily depends on the aneurysm size.
Note that when the piston is at rest, the backward velocity
wave reflected from the aneurysm and reflected from the pis-
ton/rigid pipe should cancel each other at the point of contact.
This not true, however, for the pressure. Thus, measuring the
velocity waveform near the piston gives the actual piston
motion. As the pipes connecting the pump and the main tube
are rather rigid, the velocity close to the inlet of the main
tube has almost the same velocity wave shape as that of the
one generated by the piston but scaled by the piston/pipe area
ratio.

One can see in Fig. 5 (green curve) that at 2cm from the
inlet, the velocity almost vanishes after # > 0.6, i.e. when the
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Fig. 5 Pressure (red) and velocity (multiplied by pcg) (green) wave-
forms at a distance of 2 cm from the inlet of the control tube
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Fig. 6 Initial waveforms for all four aneurysm sizes (indicated in the
legend in mm) and the control tube (indicated by letter C)

piston stops its motion. At the same time, the pressure tends
to have a low-frequency harmonic oscillation. Its period is
about 2 s that is four times that of the wave propagation time
from the piston to the reservoir.

Therefore, the velocity waveform measured at the interval
[0, 0.6 s] can be taken as the actual load adjusted waveform.
As this wave is forward propagating one, the generated pres-
sure waveform can be calculated by multiplying the velocity
by pco in the linear approximation. This pressure waveform
is set as the inlet boundary condition in the numerical model.
The somewhat uncommon two-humped shape is explained
in “Appendix 1”. The load depends on the aneurysm size;
therefore, for every aneurysm, the initial waveform is calcu-
lated independently. All the initial waveforms extracted from
the experimental data and utilized in the numerical modelling
are shown in Fig. 6.
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3.4 Numerical results

The results of the numerical simulations are shown in Fig. 4
by red curves. One can see that despite some discrepancies,
the waveforms generally coincide. The frequency and the
phase of oscillation are in better agreement than the ampli-
tude. The fact is that the frequencies are determined by the
time of wave propagation from the pump to a reflecting
object (aneurysm, second fitting) and back. The amplitudes
of the oscillations depend mainly on the reflection coeffi-
cients which are more sensitive to the set-up parameters, and
it is not easy to measure some of them accurately. The dis-
crepancies can also be attributed to the lack of the 1D model’s
ability to accurately describe the process in the pump, losses
in the tube, parameters of the fittings, transverse motion of
the tube and other phenomena.

4 Wave separation and reflection coefficient
4.1 Transposition into forward and backward waves

There are two approaches on the separation of the wave-
form into forward and backward travelling waves. The first
approach is based on the fact that nonlinear and viscous
effects are relatively small. The second is based on the water-
hammer equation and is valid for finite amplitude waves
(wave intensity analysis) (Parker and Jones 1990; Khir et al.
2001; Swillens et al. 2008; Hughes and Parker 2009). We
actively use the first approach by assuming that nonlinear and
viscous effects are weak and can cause a noticeable change in
the wave amplitude and shape only after propagation over a
sufficiently large distance, i.e. beyond the domain of interest.
Now we set forth the basic statements of the linearized
approach. Consider a tube of a constant cross section and
with the constant wall thickness and stiffness. Also consider
the case when the time averaged velocity is small compared to
atypical velocity during pulse propagation. Finally let pex; =
B+/Ao, then p = B+/A. Following the standard perturbation
technique, we represent the area as A = Ag + AA with
AA < Ag and substitute them into (1), (25) and (4). Keeping
the first-order terms after some manipulations we obtain:

Pt + pcguy =0 (11)
1
R (12)

where ¢ is the unperturbed wave speed given by

BVA,  hE
20 2pap’

g = (13)

Here ag is a radius of the tube assuming that the tube is cir-
cular, Ag = wa} and E’ = E /(1—0?). Eliminating u, from
Eq. (12) by substituting (11) we obtain the classical wave
equation for the pressure: p,, — (l/c(z))Pn = 0. It admits
a general analytical (d’ Alembert’s) solution, representing a
sum of two waves preserving their shape and propagating in
the opposite directions, i.e.

px, 1) =pr(t —x/co) + pp(t +x/co)

1 1
u(x, 1) = ——pyst —x/co) — —pp(t + x/co).
pco pco

Here the forward p  and backward p, waves are:

1 1
Pr=3 (p+pcou), pp= 3 (p — pcou) . (14)

In a real cardiovascular system, the tube is inhomoge-
neous: Ag = Ap(x) and c9 = co(x), and the equation
for the pressure is more complicated, p,y + (Ax/A)px —
(1/¢?)py; = 0, which only holds analytical solutions for a
limited number of cases.

4.2 The aneurysm as a localized reflector

Note that typically the in vivo experimental wave shapes are
given in terms of up to 20 harmonic components. If the period
of the main harmonic is approximately 1 s, then the wave-
length of the 20th harmonic is approximately 1 m, which
is greater than the length of a typical aneurysm. Such long
waves can sense the aneurysm as a localized inhomogeneity
(0D object) characterized by a lumped parameter: its com-
pliance. We can therefore introduce an excess of the vessel
compliance caused by the aneurysm

dVy dV,
ACy=Cyp —Cy=—— — ,
dp dp

15)

which acts as an indicator for detecting artificial or real
aneurysms. In the above equation, C4 = dV,/dp is the
compliance of the vessel with the aneurysm, C, = dV, /dp
is the healthy vessel compliance, V4 is the volume of the ves-
sel with the aneurysm, and V), is the volume of an equivalent
healthy vessel. Thus, ACy4 is an additional vessel compliance
caused by presence of an aneurysm. Hereinafter, we will call
parameter ACy4 the additional aneurysm compliance.

The additional aneurysm compliance, ACy4, can be
expressed through the cross-sectional compliance of the ves-
sel wall C(x)

L
AQ=/7Q@—@Mx (16)
0
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where L4 is the aneurysm length and the x-coordinate is
referenced from the aneurysm inlet. The cross-sectional com-
pliance is defined as

- dA  2JA  2md(x)
=0 =T T Eoh® 4

where a(x) = 4/Ag/m is the lumen radius. Substituting (17)
into (16) we obtain

271ai"(x) 2na3) (18)

Ly
AC, = / ( _ ey
A7 )y \E,™hatx)  Ejh,

where a4 (x) and a, (x) are the radii of the lumen of the vessel
with and without aneurysm, respectively; E’, (x) and &4 (x)
are, respectively, the elastic module and wall thickness of the
aneurysm; E and h, are the same parameters for the healthy
vessel.

The artificial aneurysms used in the experiments carried
out are designed to have a constant wall stiffness coinciding
the wall stiffness of main tube in which the aneurysm is
embedded. Substituting E/,hs = const = E h, into (18)
we obtain the simplified expression which we will use in this
work

27 [La 3 3
ACy = E/h/(.) (aA(x)—av)dx. (19)

and which we rewrite in the following form

2rail 1 (b fa)
ACAme, K =— aA(x)—l dx.
E'h LaJo a’

(20)

The non-dimensional K parameter is the ratio of the addi-
tional aneurysm compliance to that of the compliance of the
healthy vessel of same length. It can easily be calculated
numerically, but for the model aneurysms used in the exper-
iment it can be calculated analytically as well by directly
integrating Eq. (20). Both calculations give the same values
as displayed in Table 1 for different aneurysm diameters (D)
studied here. We use these values as reference ones. They
are compared below with the values of K evaluated from the
waveform analysis.

4.3 Reflected waves from an aneurysm

Now we consider the wave reflection from an aneurysm by
treating it as a OD object with compliance AC 4. As the wave
changes its shape after the reflection, we consider first the
reflection of a harmonic wave having an angular frequency,
w, and a wavenumber, k = w/cg.
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Table 1 Comparison of reference parameters with parameters obtained
by fitting p s * R into numerical and experimental waveforms

D (mm) 24 mm 34 mm 44 mm 50 mm
At, ms Refer. 57.9 57.9 579 57.9
Numer. 574 56.8 56.6 56.5
Exper. 61.8 52.0 53.1 55.6
XA, CM Refer. 55.0 55.0 55.0 55.0
Numer. 54.5 53.9 53.8 53.6
Exper. 58.7 494 50.5 52.8
T, ms Refer. 2.62 9.29 20.5 30.0
Numer. 3.98 11.4 26.2 40.6
Exper. 4.59 20.8 41.6 45.8
K, ms Refer. 1.11 3.92 8.66 12.7
Numer. 1.68 4.82 11.1 17.2
Exper. 1.94 8.79 17.6 19.3
ACy, Sn Refer. 627 22 49.0 716
Numer. 9.50 27.3 62.6 97.1
Exper. 11.0 49.7 99.3 109

The reference parameters are obtained from direct measurements and
calculations via Egs. (25) and (20)

Consider an infinitely long tube and an aneurysm located
at distance x4 from the origin (left side). From the left side
of the aneurysm there will be two waves: the incident wave
propagating to the right exp{ikx —iwt} (let it have an ampli-
tude of unity) and the reflected wave R exp{—ikx — iwt},
where R is the complex reflection coefficient that needs to
be determined. To the right (exit), there will be a propagat-
ing wave S exp{ikx — iwt} with the unknown amplitude S.
Omitting the common factor exp{—iwt}, we can write the
solutions as

Pl — eikx + Re—ik}c p2 — Seikx (21)
A/ : A .
0 = E(akx _ Re—lkx) 0) = Esezkx (22)

where subscripts 1 and 2 correspond to the tube part before
and after the aneurysm, respectively. At the point x = x4
they should satisfy the matching conditions

dv  dVdp .
01— 0r=—=——=ACs(~iwp).

p1 = p2, ar = dp di
(23)

The first condition is the continuity of the pressure across
the aneurysm, and the second one indicates that the difference
of the flow rates is compensated by the aneurysm volume
change per unit of time. Substituting Egs. (21) and (22) into
(23) we obtain equations with respect to unknown amplitudes
R and S. Solving Eqs. (21) and (22) reflection coefficient R
can be written in the following form
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iot
R(w) = ———e' @A, (24)
l—iwt
in which all the parameters are grouped into two variables
At and T having dimension of time:

2 L
At =2 andr = POAc, = 24K = oK. (25)
(&) 2A0 2C()

Here At is the time for the wave to travel from the origin to
the centre of the aneurysm and back, and 7o = (L 4/2)/co is
the time for the wave to propagate over a distance equal to
the half-length of the aneurysm. For the experiments carried
out, 7o ~ 2.3 ms, At ~ 58 ms.

Applying the Fourier transform to the incident pulse

pr():

+00 )
prlw) = / predi (26)

—00

we can express the reflected pulse through the inverse Fourier
transform:

1 +00 )
pu(t) = o / pr@Re " do. (27)
T

—00

Performing the inverse Fourier transform (or the inverse
Laplace transform after substitution s = —iw) from (24), we
obtain the following function

1
R(t: T, At) = —8(t — A1) + H(t — At)—e 172D/T (28)
T

where §(¢) is Dirac’s delta function and H (¢) is the unit-
step Heaviside function. This allows the computation of the
reflected pulse directly in the time domain through the con-
volution,

t—At

pu(t) = pr(t) % R(t) = / pr@RG—1ydi'.  (29)

—00

If pulse pr(t) starts at instant ¢ = 0, then the measured
waveform can be split into a few stages. At the time interval
0 <t < At, i.e. until the pulse reflected from the aneurysm
arrives (recall At = 2x4/cp), only the wave generated by
the pump, p, can be registered. Beginning with the instant
t = At until that time when a pulse reflected from distal
inhomogeneities (from the second fitting in our case) arrives,
the measured waveform will contain the incident pulse p ¢
and the reflected wave from the aneurysm pulse. If aneurysm
parameters are unknown, they can be determined by a best fit-
ting (by the least square method, for example) of the reflected
pulse calculated by Eq. (29).

Note that the time-domain computation (despite it is
much more cumbersome) has advantages over the frequency

domain due to the fact that in the time domain the pulses
reflected from different objects can be easily separated as
they have different arrival times. In the frequency domain
all the reflections are mixed together that complicates the
analysis and parameter determination.

Results of wave separation performed at the location 2 cm
from the inlet are shown in Fig. 7 for both the numerical and
experimental data. Here, the results for the least squares fit
of the py(t) * R(t) function are also presented. Parameters
T and At extracted from the fit are displayed in Table 1. In
this table, one can also find other parameters calculated via
At: distance from the 2cm location to the midpoint of the
aneurysm (should be x4 = 55 cm) and also parameters cal-
culated via t: the dimensionless parameter K (see (20)) and
the aneurysm compliance measured in cm?® per MPa.

Thus, the proposed method allows for detecting both the
aneurysm location and its compliance. The accuracy of the
procedure can be seen from the comparison of reference
values, which are denoted as “Refer.”” in Table 1, with the
results following from the signal processing procedure. One
can see from Table 1 that the distance to the aneurysm can
be determined rather accurately from the described fitting
procedure applied to both the numerical and experimental
data. As for the aneurysm compliance, the procedure gives
enhanced values, in some cases more than two times higher
than the analytical values. The discrepancy is greater for the
experimental results due to unavailability of precise values of
elastic properties of the model aneurysms. The discrepancy
between analytical and numerical data is less clear and needs
additional analysis. Note that the fitting procedure is sensible
to the wave separation and noise.

5 Application to human arterial system model
5.1 The model

Now we apply the proposed method of aneurysm detection
to a human arterial network that is modelled numerically.
For the modelling, we use the arterial network ADAN 55
proposed in the work by Blanco et al. (2015) and thoroughly
described in the work by Boileau et al. (2015) with some
minor modifications in the segments containing the Abdom-
inal Aorta. It comprises 55 arteries and 77 arterial segments.
A small part of the ADAN 55 network is presented in Table 2
where the monitored segments are shown, i.e. segments in
which pressure and velocity waveforms are outputted for the
analysis. These are the segments comprising the aorta and
also left and right common carotids. The segment number-
ing is taken from (Boileau et al. 2015). The segments with
modified length (adjusted to model areal size AAA) are high-
lighted by an asterisk. The segment parameters necessary for
our study are also listed in Table 2.

@ Springer



1. Sazonov et al.

Num. D = 24mm Exp. D = 24mm

N

o
N
o

=y
(&)}

=y

(6]

o

—
©

—
o ©
e T 4
© 10 2
2 g
%]
0] 7] 5r
= (%]
o [0}

—

Q.

]

~

i
¢

0 0.1 02 03 04 05 06 0 0.1 02 03 04 05 06

time (s) time (s)
Num. D = 34mm Exp. D = 34mm
20 r
20+
~ 157 15}

pressure (kPa
(4]

pressure (kPa)
(¢}

/N °- A/

0 /\
\V/ 5|
-5 [ \ . . . . . 10}
0 0.1 0.2 0.3

0.4 0.5 0.6 0 0.. 1 0..2 0..3 0..4 0..5 0..6
time (s) time (s)
Num. D =44mm Exp. D =44mm

-
(]

=y
o

o

pressure (kPa)
(¢
pressure (kPa)

PNEA\
V/VV

-10 X X . . \ X X X R X
0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6
time (s) time (s)
Num. D = 50mm Exp. D = 50mm
15 +
15+ S
T 10¢ . or
X ©
= o |
o 5 < °
> (]
[} pud
2 0 A\ z 0
5 \/ 3
5t g 51
A0} . . . -10 B . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6
time (s) time (s)

Fig. 7 Results of separation the waveform into the forward and backward waves. Black pressure waveform p(t); red forward wave py; blue
backward wave py; magenta the least square fitting of convolution p,(t) = ps(t) * R(t)
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Table 2 Segments of the human arterial network selected for monitor-
ing: L is the segment length, D1, D, are the segment inlet and outlet
diameters, and ¢ is the averaged wave speed

N°  Name L,cm Dy,mm Dy, mm ¢y, m/s
1 Aortic Arch I 7.44 31.9 25.9 4.03
3 Aortic Arch II 0.96 25.9 25.1 4.08
15 Aortic Arch IIT 0.70 25.1 24.6 4.09
19a  Aortic Arch IV 4.31 24.6 21.1 4.12
19b  Thoracic Aorta I 0.99 21.1 20.7 4.15
27  Thoracic Aorta II 0.79 20.7 20.4 4.15
29  Thoracic Aorta III 1.56 20.4 19.8 4.16
31 Thoracic Aorta IV 0.53 19.8 19.6 4.17
33a  Thoracic Aorta V 12.16 19.6 15.1 4.23
33b Thoracic Aorta VI 0.32 15.1 15.0 4.30
35  Abdominal Aorta I 1.40 15.0 14.6 431
41  Abdominal Aortall ~ 0.43 14.6 14.5 4.32
43 Abdominal Aorta Il  1.20 14.5 14.2 4.32
45  Abdominal Aorta IV~ 10.60* 14.2 12.9 4.36
47  Abdominal Aorta V. 1.00* 12.9 11.8 443
5 R. Common Carotid  8.12 9.0 6.7 4.89
14 L. Common Carotid 12.13 9.0 6.7 4.89

Segments with modified length are marked by asterisk. Segment num-
bering is taken from (Boileau et al. 2015)

The wall thickness is determined from the relation (Blanco
et al. 2015)

h = ap(0.2802¢ 7505390 40,1324 0-1114a0) (30)

where the local unperturbed radius ag(x) in every segment is
determined via linear interpolation between inlet a; = D1 /2
and outlet a = D;/2 radii. Young’s modulus of the arte-
rial system is assumed to be constant for the entire network:
E = 225 kPa; the Poisson ratio, o = 0.5 as the wall
material is regarded as incompressible; the standard blood
parameters used are: density p = 1.04 g/cm?, blood viscos-
ity u = 4.0 mPa s (Boileau et al. 2015). The parameters
E, o, p, h(x),ap(x) enable the calculation of local (unper-
turbed) wave speed co(x) and the wave speed averaged over
a segment (listed in Table 2).

Segment 45 (Abdominal Aorta IV) is chosen to model the
AAA. Aneurysms of two sizes are modelled: two and three
times wider than the healthy vessel in its widest part. We will
refer to them as AAA-2 and AAA-3, respectively. The shape
is assumed to be the same as in the work by Low et al. (2012),
ie.

1 X —x
a(x) = ap(x) + Aa(x) 3 (1 — cos (271 /i ))

A
X € [x1,x2] 3D

20

mm
0 20 40 60 80 100

Fig. 8 Aneurysms used in human arterial network modelling: AAA-2
(grey), AAA-3 (black). The dashed line indicates the healthy vessel

Pressure in Aortic Arch IV (mmHg)

130 1
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Fig. 9 Pressure variation in Aortic Arch IV

where ag(x) = aj + (a2 — a1)(x — x1)/Ly is the radius
of the healthy vessel; L = 10.6 cm is the segment length,
L4 = 10.4 cm is the aneurysm length; x; = (L — L4)/2 =
1 mm and x, = x1 + L4 are, respectively, the aneurysm
start and end points; and Aa(x) is the radius increment:
Aa(x) = ag(x) for AAA-2 and Aa(x) = 2 ap(x) for AAA-
3. The aneurysm shape is shown in Fig.8. The calculated
parameters for AAA-2 are: T = 35.0ms, K =2.94, AC4 =
22.3 cm’/MPa, for AAA-3: T = 1192 ms, K = 10.0,
AC, = 75.8 cm®/MPa.

The flow rate Q™(¢) is imposed at the inlet of the first
segment as in (Blanco et al. 2015; Boileau et al. 2015) with
the heartbeat period of T = 1 s. The three-element Wind-
kessel (lumped) model is applied to all terminal arteries. The
simulation runs for three cycles to generate a periodic solu-
tion, which takes about 3 min. The third cycle is used for
the analysis. The pressure p(t), average velocity u(¢) and
area variation A(z) are monitored at the centre of the seg-
ments indicated in Table 2 (aorta and left and right common
carotids). An example of the computed pressure waveform
in segment 19a (Aortic Arch IV) is shown in Fig.9.

As seen, the presence of an aneurysm results in a pressure
drop at a certain time interval after the main peak. This is
particularly pronounced in the case of the AAA-3 aneurysm.
The graphs clearly show the main feature of the large AAA’s
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presence, i.e. a pressure drop just after the main peak followed
by a distinct second peak after that.

5.2 AAA detection based on aortic waveform analysis

We apply the proposed aneurysm detection method to the
sites located in aortic segments. First, eight segments listed
in Table?2 are selected for that: from 1 to 31 (from Aortic
Arch I to Thoracic Aorta IV). Equation (14) is applied to
separate the forward p s and backward p, waves. Then the
convolution p ¢ (t)* R(t) is calculated. This function has to be
fitted into the backward wave pj, via the least squares method.
In the experimental and numerical modelling described in
previous sections, the analysis was easier when the pulses
reflected from the aneurysm and other parts of the network
are separated in time. As a result, the pulse reflected from
the aneurysm was the first to reach the monitoring point as a
backward wave. In the case of a full human arterial network,
however, the pressure pulse exerts multiple reflections from
bifurcations proximal to the aneurysm, and, hence, there is
no such time interval where the only pulse reflected from the
aneurysm exists. The reflections here are mixed with other
reflections. Therefore, the aneurysm detection is more com-
plicated, and the aneurysm detection procedure has to be
modified.

According to Eq. (24), the reflection coefficient is small
for low frequencies. Hence, the signal reflected from the
aneurysm will not contain the lowest harmonic components.
So it is useful to filter the lowest frequency components as
they are likely caused by other parts of the network rather than
by the AAA. We perform the high-pass filtering by employ-
ing Gaussian smoothing, i.e.

exp{—(r/aﬁ}.

it (32)

P, =pb— G *pp, where G =

Here § is the Gaussian function width and 6 ~ 6t gives a
suitable result where an expected value of 7 is used, but note
that the procedure is not sensitive to this parameter.

Another challenge is that the background noise of the
waves reflected from locations other than the AAA remains.
Therefore, we fit the function p, = py * R + B into the p,,
function where B is the parameter to be found. The B parame-
ter approximates the background of the remaining reflections,
noise and the forward wave pulse. A simple constant value
for this parameter is sufficient here.

Now we minimize the following functional with respect
to the three parameters, 7, At and B:

5]
/ (p}, — pr)*dt — min (33)
1
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Fig. 10 Results of fitting reflected waveform for model AAA-2 (top)
and AAA-3 (bottom) for site located in Aortic Arch IV. Black pres-
sure waveform p(t) — p(to); Red forward wave py; Blue backward
filtered wave p); Magenta the least square fitting of the function
pr(t) = py(t) * R(t) + B

where t; = fop + At equals the sum of the pulse starting
instant ¢y and the expected time of propagation from the site
to the aneurysm and back At, tp = t; + T /3. The choice
of T'/3 for the width of the interval gives satisfactory results
in all the cases considered. Note that the procedure is more
sensitive to the time interval [¢1, £2].

Examples of the waveform fit for segment 19a (Aortic
Arch IV) are shown in Fig. 10.

The results of function fitting for all eight monitored
segments are listed in Table3. The results show that the
determination of the aneurysm parameters, its additional
compliance AC and time lag At, is quite possible for the
human network as well. The accuracy can be estimated by
comparing At in the 3rd and 5th columns with the A¢™f in
the second column. It is also can be estimated by compar-
ing AC in the 4th and 6th column with that indicated in the
second raw of Table3. The accuracy is not perfect but still
provides a correct order of magnitude for the value. Note that
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Table 3 Comparison of the reference parameters of a model AAA and
parameters evaluated through waveform analysis: A¢, ms and ACy,
cm? /MPa

N° Arref AAA-2 AAA-3
AC™T=223 ACTT=75.8
At ACy At ACy
1 163 178 13 220 48
3 143 137 19 179 58
15 139 126 21 163 72
19a 126 105 26 132 90
19b 113 90 32 109 83
27 109 84 33 103 83
29 104 76 35 95 84
31 99 69 38 87 86
5 194 151 13 172 48
14 189 145 16 161 71

The reference propagation time Ar™ is calculated based on average seg-
ment wave speed given in Table 2. The reference values of the aneurysm
compliance for AAA-2 and AAA-3 calculated via Eq. 19 are given in
the top of the table. Results of velocity wave fitting in carotids (segments
5 and 14) are shown in the last two rows of the table

the value of aneurysm parameter AC depends monotonically
on the position of the monitoring point: the closer it is to the
AAA—the greater the value of AC. The exact value of the
AC parameter is obtained in segment 15 (Aortic Arch III)
for both the AAA-2 and AAA-3. For the proximal sites to
that segment, the procedure underestimates the t value and
for the distal sites overestimates it. Similar results are also
obtained for the time lag A¢, which allows for the calculation
of the distance to the AAA. Accuracy in finding Af becomes
noticeably worse for the larger aneurysm.

5.3 AAA detection based on carotid waveform analysis

Finally, we consider the case that is most relevant when
targeting this technology for non-invasive assessments in
clinical practice, i.e. the determination of the AAA param-
eters by measuring the waveforms at more accessible sites
such as the carotid artery. Here we will use the waveforms
computed in the middle of the right common carotid (RCA)
(segment 3) and left common carotid (LCA) (segment 14).
This case is more complicated because the wave separation
does not help, as the forward pulse and the pulse reflected
from the AAA propagate in the same direction. Therefore,
aneurysm detection based on the carotid waveform requires
a more sophisticated approach of signal processing. The
approach should be based on the possibility to calculate the
shape of pulse reflected from the aneurysm and then to recog-
nize it on the background of the main signal, other reflections

velocity (cm/s)

0.2 0.4 0.6 0.8 1
time (s)

velocity (cm/s)

0 0.2 0.4 0.6 0.8 1
time (s)

Fig. 11 Results of fitting reflected waveform for model AAA-2 (top)
and AAA-3 (bottom) for site located in LCA (solid line) and RCA
(dotted line). Blue filtered velocity wave u); Magenta the least square
fitting of the function u, (t) = u'(¢) * R(t) + C

and noise. Our proposed signal processing solution to this
problem is described next.

We propose to apply the above method to the veloc-
ity waveform. This makes sense as the velocity waveform
peak has a shorter duration, and therefore, the reflected wave
from the AAA pulse should be easier to distinguish on the
background signal consisting of the direct pulse and other
reflections. Thus, we take the velocity (or flow rate) wave-
form, filter it using ¥’ = u — G * u where G is given by
Eq. (32) and fit the function u, = u’ * R + B using least
squares with respect to the same three parameters: aneurysm
characteristic time 7, time lag Az and pulse background B.

In the case of the LCA, the time lag is the time of pulse
propagation from the LCA inlet to the AAA and back. In
the case of the RCA, the time lag is the duration of pulse
propagation from the brachiocephalic trunk inlet (segment 2
in (Boileau et al. 2015)) to the AAA and back. Calculated
values of the time lag for these cases are listed in the second
column in Table 3. The results of the least squares fit of the
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u, function are shown in Fig. 11. From Table 3 we see that
the proposed method underestimates the T parameter and the
time lag At but nevertheless gives reasonable values for the
AAA parameters. Note that in the absence of the aneurysm,
the method gives a value of AC < 2 cm?®/MPa. This indicates
the method is highly sensitive to the presence of an aneurysm.

6 Discussion and conclusion

A new method is developed to detect and characterize aor-
tic aneurysms using the pulse reflections caused by those
aneurysms. An experimental set-up is used to: 1) investigate
waveform changes caused by aneurysms of various severity,
2) to validate our 1D computational model in the presence of
aneurysms. The results obtained allow us to develop a new
method of aneurysm detection based on waveform analysis.
These results are then successfully employed to a numerical
model of a human arterial system to evaluate the potential for
detecting aneurysms. Analysis of the waveforms observed in
the carotid arteries shows that aneurysms can be detected in
terms of location and severity through our new method.

The proposed method, which incorporates the reflected
waveform computation p ¢ * R or u * R with the subsequent
least squares fitting procedure, looks promising for aneurysm
detection and determination of its main parameters. The
novel parameter introduced is the aneurysm compliance as
defined by Eq. (19) and can be determined via this procedure.
Moreover, if we are working in the frequency range in which
the 1D theory is applicable and accurate enough, the ACy
parameter looks to be the only parameter of an aneurysm that
can be determined through the waveform analysis. To extract
finer details of an aneurysm (its more detailed geometrical
and elastic parameters) it is necessary to register and pro-
cess the waveform in the higher frequency range where the
wavelength is comparable to the aneurysm dimension. The
1D theory may be inadequate for this.

The aneurysm compliance given by Eq. (15) is a very
useful parameter. As it is proportional to the integral of the
vessel diameter cubed (see Eq. (19)), the wider parts of the
aneurysm strongly contribute to its value. This can help to
evaluate the aneurysm diameter for most of aneurysm geo-
metrical shapes.

Note that in this work we focus on the effect of aneurysm
geometries on the pulse wave reflections. Therefore, the arti-
ficial aneurysms have been produced to keep the complexities
to a minimum by adapting constant thickness and stiffness.
We use identical settings in the numerical simulations. If the
wall thickness 4 and its elastic modulus E’ also vary along
the vessel, then Eq. (18) should be used instead of Eq. (19).

Observe that the wall stiffness & A(x)Ej4 (x) is in the
denominator in (18). Therefore, the AC,4 parameter is very
sensitive to the local wall softness: the softer/thinner parts of
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the wall strongly contribute to the integral (18). Hence, rapid
increase in time of the aneurysm compliance AC 4 can indi-
cate that some parts of the wall are very thin and soft. This can
potentially allow aneurysm monitoring, especially when the
proposed method is employed in parallel to other modalities,
for example, ultrasound (US). This may provide an oppor-
tunity to evaluate the elastic parameters of an aneurysm and
predict its rupture.

One of the advantages of the proposed method is that it
can be implemented in the time domain where it is easier to
distinguish pulses reflected from different parts in the cardio-
vascular system. Another advantage is that there is no need
to calculate the reflection coefficient as the pulse reflected
from an aneurysm definitely changes its shape. Therefore, if
we define the reflection coefficient, for example, as a ratio of
peak values of reflected and incident pulses, it will depend
on the shape of the incident pulse, i.e. it will not be invari-
ant with respect to incident pulse shape and parameters. The
same remark can be directed to the pulse intensity analy-
sis(Parker and Jones 1990; Khir et al. 2001; Swillens et al.
2008; Hughes and Parker 2009). In the frequency domain,
at any particular frequency all the reflected pulses are mixed
together, and it is difficult to outline the contribution of the
aneurysm. So those approaches can at best help to detect the
presence of an aneurysm, but they can hardly help to deter-
mine its geometrical/elastic properties accurately.

The results of the work are very promising and show that
the proposed method has a real potential to be further devel-
oped into a powerful technique that will be adopted in a
clinical setting some day.

6.1 Limitations

In this subsection, the limitations of the proposed method
of detecting aneurysms are briefly highlighted. Although
the limitations are less severe when comparing the pro-
posed model to the in vitro experimental data, the limitations
become prominent when the model is applied to in vivo data
of patients. This is due to the fact that the in vitro experi-
mental parameters are controlled but the patient data come
with many unknowns. Some of the specific limitations of the
work are briefed below.

The ability of the model to correctly determine the
aneurysm size depends on the aneurysm wall stiffness Eh
as demonstrated by Eq. (18). Although a large number publi-
cations on aneurysm wall properties are constantly appearing
in the literature, the uncertainty related to patient specificity
will be extremely difficult to eliminate. The question on rela-
tionship between the aneurysm size and material property
is also not completely answered with contradicting reports
in the literature. For example, Sekhri et al. (2004) found
that the aneurysm wall becomes stiffer with an increase in
aneurysm size whilst Kolipaka et al. (2016) did not con-
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firm this. Therefore, if the vessel wall stiffens with the an
increase in aneurysm size, then the aneurysm compliance
grows at a slower rate than that is described by equation
(19), which will underestimate the aneurysm diameter. More-
over, if the wall stiffness grows proportionally to the cube of
the aneurysm diameter, then the aneurysm compliance will
remain very small and the proposed method may not detect
the aneurysm. On the other hand, if the aneurysm is very
compliant locally, which can occur just before the rupture,
then the pronounced reflection will immediately indicate the
presence of an aneurysm. In addition to these limitations,
assumed parameters of the healthy vessels can also contribute
to the inaccuracy in predictions.

It is also important to mention that Eqs. (24) and (28)
are derived for a tube with a constant cross-sectional area
and an embedded aneurysm. Such conditions can be easily
reproduced using an in vitro experimental set-up. Neverthe-
less, for accurate aneurysm detection, these equations need
generalization to the in vivo cases that have tapered blood
vessels and varying vessel stiffness. We will consider such
generalizations in a subsequent, future work. However, if the
tapering and stiffness variations are small, then the effects of
such variations on the results will be much lower than that of
the uncertainties due to other parameters.
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Appendix 1: Numerical scheme

The numerical scheme applied to solve the equations is sim-
ilar to that described in Low et al. (2012). Equations (6),
(7) are discretized by adopting second-order Taylor—locally
conservative Galerkin (LCG) finite element method.

Ut = U" + At (S" — F})

At? 9
5 s -1 - L (et - ) |
) F" 98"
here F' = & Fr = & gn = &>
WHETE B = S TUT QU U T U

The fully discrete form using LCG can be written as
M AU = Ar( (K FY + Lo (S)" + {£r,}")  34)

where [M,], [K], [L¢] and {fr,}" are the elemental mass
matrix, elemental convection matrix, elemental source matrix
and elemental boundary flux vector, respectively.
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where Ax, is the length of an element e, 5{3 and F% are the
average values over the elemental subdomain. Vector {f T, }n
is used to link information between subdomains, which for
the element ¢ bounded by nodes i and j takes the form

[
f == ’é’n 35
e = | % &

where F is the average value of F from adjacent elements with
F representing the computed boundary flux. It is computed
in a small post-processing step.

Equation (34) is solved individually and independently
over the individual elements. However, this will result in mul-
tiple solutions for each node, which is non-unique. To achieve
a unique and continuous solution throughout the domain,
the values of adjacent elements are averaged. This continu-
ous solution can then be used for computing the numerical
boundary flux of Eq. (35) for the following time step in a
small post-processing step. Note that for elements at a global
boundary, which are situated at both ends of each vessel seg-
ment, boundary conditions need to be specified for { f pe} as
there is no adjacent element. The stability criterion used in
the current study is given as (Mynard and Nithiarasu 2008;
Low et al. 2012)

. Axe
At < 0.9min
¢ ()\f)e

where (A 7). is the elemental forward eigenvalue.

Appendix 2: Initial pulse
Consider a simplified scheme of the pump shown in Fig. 12.

If the radius of rotation of the joint between the wheel and the
crank is b, then the piston stroke is 2b. If the current angle
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of the wheel 0 and the current piston position x are x =
b (1 — cos 0), then the piston u, velocity equals u, = X =
6 b sinf. Let the cross-sectional area of the piston, fitting
pipe and the main tube be A,, Ay, Ao, respectively, then
the velocity in the fitting pipe willbe u y = (A, /A f)up, and
velocity in the inlet of the main tube willbe u = (A, /Ag)up.
If we neglect the reflection from the aneurysm, second fitting
and others, then only the out going wave will be generated in
the main tube. Hence, if we neglect the nonlinear and viscous
effects, then the inlet pressure will be

Ap
p = pelu,. (36)

The pressure at the inlet of the fitting willbe p+p (A, /Ap) ¢
X, whereas the pressure at the piston p,, = p+p (A,/Ap Ly
X+ pp—x)X, where X = 6 bsind + (6)2bcosb is the
piston acceleration, [, is the cylinder length: [, > 2b.

The piston acts with the force F, = A, p, and produces
the moment M = F,l where [ = bsin6 is the length of the
lever arm. If the engine produces a constant torque 7', the
moment balance equation reads as

T=f0+M @7

where f is the friction coefficient. Here we neglected the pis-
ton and the crank mass compared to the mass of the moving
liquid. The second term on the RHS of (37) describes the
load from the liquid on to the engine.

In the absence of the liquid load (M = 0), the engine
would rotate uniformly with the constant angular velocity

R=60=

z (38)
7

Therefore, the duration of the positive (or negative) pulse will
be equal to the half-period of the wheel rotation

A= =T (39)
T e T
Ap
¥ H D
2b = 2b Iy
Ip

Fig. 12 Simplified scheme of the pump, initial fitting pipe and part of
the main tube
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Fig. 13 Flow velocity u(¢) (normalized by the maximal velocity with-
outload, umax,0) versus time ¢ (normalized by the pulse duration without
load Aty

The velocity in the inlet of the main tube would be

A
UQ = Umax.0 SIN(21), Where umax.0 = A—” b$2. (40)
0

In the presence of the load pulse becomes wider and its
maximal velocity becomes lower. To account qualitatively for
influence of the liquid load, we neglect inertia of the liquid in
the cylinder and the fitting pipe. Then obtain the first-order
ODE

) A2 )
T=f6+ ,ocA—pb2 sin? 6 6 41)
0

which can be rewritten in the form with minimal number of
parameters:

_pe A3 b?

42
Ao f (42)

6 (1 +§sin20> ol
Dimensionless parameter ¢ characterizes the fluid load on
the engine.

The results of numerical integration are plotted in Fig. 13.
Here the waveform becomes two humped if the load from
the piston tube system is high enough. Accounting for more
parameters of the set-up makes the waveform more compli-
cated and makes the humps non-symmetrical.
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