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ABSTRACT: Hypoxia is a global and increasingly important stressor in
aquatic ecosystems, with major impacts on biodiversity worldwide. Hypoxic
waters are often contaminated with a wide range of chemicals but little is
known about the interactions between these stressors. We investigated the
effects of hypoxia on the responses of zebrafish (Danio rerio) embryos to
copper, a widespread aquatic contaminant. We showed that during continuous
exposures copper toxicity was reduced by over 2-fold under hypoxia compared
to normoxia. When exposures were conducted during 24 h windows, hypoxia
reduced copper toxicity during early development and increased its toxicity in
hatched larvae. To investigate the role of the hypoxia signaling pathway on the
suppression of copper toxicity during early development, we stabilized the
hypoxia inducible factor (HIF) pathway under normoxia using a prolyl-4-
hydroxylase inhibitor, dimethyloxalylglycine (DMOG) and demonstrated that
HIF activation results in a strong reduction in copper toxicity. We also
established that the reduction in copper toxicity during early development was independent of copper uptake, while after
hatching, copper uptake was increased under hypoxia, corresponding to an increase in copper toxicity. These findings change our
understanding of the current and future impacts of worldwide oxygen depletion on fish communities challenged by
anthropogenic toxicants.

■ INTRODUCTION

Hypoxia is one of the most significant stressors affecting aquatic
systems worldwide, and its severity and prevalence are
projected to rise due to increases in nutrient input and climate
change.1 With rapid industrialization and population growth,
agricultural, industrial and domestic effluents containing a wide
range of potentially toxic chemicals and nutrients are also
increasingly being discharged into aquatic systems, with long-
term consequences for aquatic organisms.2 Therefore, environ-
mental pollutants and hypoxia often co-occur in aquatic
systems and, consequently, their potential interacting effects
on wildlife must be considered.
To date, few studies have investigated whether chemical

toxicity to fish is modified by the availability of oxygen in the
water. The chemicals considered in existing studies include
polyaromatic hydrocarbons,3 polychlorinated biphenyls,3−9

phenols,10,11 ammonia,10,12 estrogenic chemicals13 and toxic
metals,10,14−18 and evidence suggests that alterations in
chemical toxicity are highly likely to occur. However, data are
often contradictory and hypoxia-induced changes in chemical

toxicity appear to vary widely as a function of the chemicals
being considered, the model species and its life stage,
highlighting this as an essential area for further research.
Among aquatic contaminants, metals are particularly wide-

spread and reach highly toxic concentrations in areas associated
with mining and industrial activities.19 Recent analysis of the
relative threat posed by metals to aquatic organisms has
identified copper as the most significant metal pollutant in UK
waters.20 Existing studies focusing on the toxicological effects of
metals in combination with hypoxia have included copper,2

cadmium,15,16 zinc,10,21 nickel17 and lead,10 and have found a
suppression of the natural response to hypoxia in the presence
of metals, or increased metal toxicity. For copper (Cu), limited
data is available but, generally, an increase in toxicity has been
suggested. For example, for carp, copper toxicity was shown to
increase when exposures occurred under hypoxia,2,22 and
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similarly, in the mayfly, Ephoron virgo, copper-induced mortality
increased under hypoxia.23 However, these studies have not
provided any insight on the mechanisms responsible for
hypoxia-induced alterations in the observed toxicity.
Here, we present the first study, to our knowledge,

investigating the influence of combined exposure to hypoxia
and copper on embryonic development, using the zebrafish
(Danio rerio) as a model fish species. Embryos are particularly
vulnerable to chemical exposures due to the sensitive nature of
the developmental processes during embryogenesis. In
addition, fish embryos are more likely to be exposed to hypoxic
conditions than other life stages: eggs of many fish species are
deposited in areas of slow water flow and/or high nutrient
input, where the co-occurrence of environmental contaminants
and hypoxia are likely. Furthermore, embryos lack the ability to
avoid unfavorable conditions by moving away from contami-
nated areas, and rely principally on biochemical response
pathways to survive periods of hypoxia. This study aimed to
determine the effects of hypoxia on copper toxicity throughout
this vulnerable life stage, and the relative susceptibility of
developing embryos at various stages of development to these
combined stressors. Further, the mechanisms responsible for
the effects of hypoxia on copper toxicity were investigated in
order to generate a mechanistic understanding of the
interactions between copper toxicity and hypoxia, helping to
support predictive toxicology in the future.

■ MATERIAL AND METHODS
Copper Exposures under Normoxia and Hypoxia. Eggs

were collected from a breeding population of zebrafish (wild-
type WIK strain) according to the procedures described in SI.
Fertilized embryos (20 embryos per tank, triplicate tanks per
copper concentration) were exposed to concentrations of
copper ranging from 0 to 0.1 mg Cu/L from 4 to 100 hpf, to
generate cumulative mortality curves under normoxic and
hypoxic conditions. For exposures conducted under normoxia
(98.4% ± 0.12 air saturation), water was aerated for 1 h before
the start of the exposures, and allowed to equilibrate to 28 °C.
For exposures conducted under hypoxia (45.3% ± 0.21 air
saturation), water was aerated with nitrogen for 1 h, to remove
dissolved oxygen, allowed to equilibrate to 28 °C and then
mixed with aerated water at the appropriate proportion to
obtain the desirable level of air saturation. All tanks were filled
with 600 mL of water containing the appropriate air saturation
and copper concentration. A large volume of water (30 mL of
water per embryo) was used to avoid changes in the water
characteristics caused by the metabolic activity of the embryos.
For hypoxia treatments, tanks were sealed with a glass plate to
prevent gas exchange and reoxygenation of the water. After
each 24 h exposure period, the percentage of air saturation was
immediately measured in each exposure tank using a calibrated
oxygen meter, according to the manufacturer’s instruction
(Stathkelvin Instruments Oxygen Meter, model 781, UK).
Mortalities and hatching (for the 76 and 100 hpf observations)
were recorded for each tank. After observations were completed
at the end of each 24 h period, water was completely replaced
with freshly made exposure water at the appropriate air
saturation and copper concentration, as described above.
To investigate the susceptibility of the various stages of

embryo development to combinations of copper and hypoxia,
exposures were conducted during specific developmental
windows at 24 h intervals (4−28, 28−52, 52−76 and 76−100
hpf) to form mortality curves, using a range of copper

concentrations (from 0.01 to 0.4 mg Cu/L), under hypoxia and
normoxia. These concentrations include environmentally
relevant concentrations common in contaminated environ-
ments. Embryos (20 per tank) were incubated under control
conditions (98.3% ± 0.16 air saturation, 0 mg Cu/L) up to the
start of the exposure period, and terminated immediately after
the experiments. The percentage of mortalities was recorded
after each 24 h exposure experiment, and the percentage of
hatched embryos was recorded for the 52−76 hpf exposure
window. All experiments were conducted in triplicate, with the
exception of the exposures conducted during the devel-
opmental period of 76−100 hpf period, which were carried
out in quadruplicate.

Effects of the Biochemical Activation of the HIF
Pathway on Copper Toxicity during Early Development.
We exposed embryos to copper in the presence of a prolyl-4-
hydroxylase inhibitor, dimethyloxalylglycine (DMOG), which
suppresses oxygen-induced HIF degradation, therefore activat-
ing the HIF signaling pathway independently of the presence of
oxygen.24 Embryos were exposed to either 0 or 0.07 mg Cu/L
in normoxic water or in water containing 20 μM DMOG
(D3695 SIGMA, UK). In parallel, embryos were also exposed
to hypoxia alone, and to hypoxia in combination with 0.07 mg
Cu/L. Each exposure tank contained 100 mL of exposure water
and 10 embryos, and 6 independent tank replicates were
included for each treatment group. The concentration of
DMOG used was chosen based on a preliminary experiment
where a range of concentrations (0.2 to 200 μM) were tested in
comparison with a range of hypoxia treatments. The
concentration selected was the highest concentration of
DMOG where no developmental effects were observed,
resembling the level of hypoxia used in this experiment
(49.6% ± 0.51 air saturation) that also does not cause any
measurable developmental effects in exposed embryos.

Copper Uptake and Quantification of Gene Expres-
sion. We hypothesized that hypoxia may cause changes in
copper uptake, resulting in differential toxicity. To investigate
this, embryos were exposed to 0 or 0.024 mg Cu/L (this
concentration caused approximately 10% mortality in the
continuous copper exposure) for 24 h under hypoxic or
normoxic conditions, for the 4−28, 28−52, 52−76, 76−100 hpf
developmental windows, as described above. Copper concen-
trations in exposed embryos and in the water were measured by
ICP-MS. A full description of the experimental setup, sample
collection and copper measurements is provided in SI.
Real-time quantitative PCR (RT-QPCR) was used to

quantify the transcript profiles of exposed embryos for target
genes known to be involved in the responses to copper and/or
hypoxia in fish. These included genes involved in pH regulation
and gas transport (carbonic anhydrase II (ca2), carbonic
anhydrase IX (ca9)), copper uptake, transport and/or storage
(cytochrome c oxidase copper chaperone (cox17), ATPase
Cu2+ transporting, alpha polypeptide (atp7a), metallothionein 2
(mt2)) and oxidative stress (catalase (cat), superoxidase
dismutase 1 (sod1), glutathione-s-transferase pi 1 (gstp1),
glutathione S-transferease alpha-like (gstaI) and glutathione
peroxidase 1 a (gpx1a)). Ribosomal protein l8 (rpl8) was used
as a control gene for normalization purposes. This gene has
been shown to remain stable across tissue types and
experimental conditions,25 including under hypoxia in cypri-
nids26 and during embryogenesis in zebrafish, in the presence
or absence of exposure to silver.27 Quantitative RT-QPCR
assays for each target gene were optimized as previously
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described28 and detailed information for each assay is provided
in Table S1. A detailed description of these methods is given in
SI.
Statistical Analysis. Statistical analysis to test for differ-

ences between the proportion of mortality and hatching
following exposure to copper under either hypoxia or normoxia
were conducted using generalized linear models in R.29 A
separate model was carried out for each time period after
fertilization, using a quasibinomial error structure and logit link
to test for effects of copper concentration on the proportion of
mortality (as a continuous variable), hypoxia or normoxia (as a
categorical variable) and the interaction between the two.
Minimum adequate models were derived by model simplifica-
tion using F tests based on analysis of deviance.30 A similar
approach of model simplification of generalized linear models
with quasibinomial error structure was used to test for the
effects on the proportion of hatching of copper, hypoxia or
normoxia and their interaction. F tests reported refer to the
significance of removing terms from the models.
For the data investigating the effects of DMOG, a Kruskal−

Wallis test was used to test for overall treatment effects,
followed by pairwise Wilcoxon tests correcting for multiple
comparisons using the Holm method. Gene expression data
was first scrutinized by Chauvenet’s criterion to detect outliers
for each gene and these were subsequently removed.31 For both
transcript profiles and quantification of copper in exposed
embryos, data that did not meet the normality and equal
variance criteria was log transformed before a one-way analysis
of variance was performed. When a significant effect was

identified, pairwise comparisons to determine which groups
differed were conducted using the Holm−Sidak post hoc test.
All data was considered statistically significant when p < 0.05.

■ RESULTS

Copper Toxicity throughout Development under
Hypoxic and Normoxic Conditions. Copper caused mortal-
ities to zebrafish embryos under both hypoxic (45.3% ± 0.21 air
saturation) and normoxic (98.4% ± 0.12 air saturation)
conditions. However, there were striking differences in the
effects of copper when exposures were conducted under
hypoxia compared to normoxia, with greater toxicity observed
under normoxia throughout development (P < 0.001; Figure 1;
Table S2). For exposures conducted under normoxic
conditions, the vast majority of copper-induced mortalities
occurred during the 4−28 hpf exposure period (Figure 1).
Between 4−52 hpf and 4−76 hpf, there were no additional
mortalities for either normoxic or hypoxic treatments (Figure
1). Under hypoxia, copper-induced mortality increased after 76
hpf, but remained significantly lower than under normoxia
throughout the experiment (Figure 1; Table S2).
Copper caused a significant delay in hatching for exposures

conducted under normoxia (P < 0.01), but not under hypoxia
(P > 0.05; Figure S1; Table S3a). This delay in hatching was
significantly greater for exposures conducted under normoxia
compared to hypoxia at 76 hpf (P < 0.05; Figure S1a) and at
the end of the exposure period (100 hpf; P < 0.001; Figure S1b;
Table S3a).

Figure 1. Embryo mortality curves following continuous exposure to copper under normoxia or hypoxia throughout development. Each point on the
graph represents the proportion of mortality in an individual replicate tank containing 20 embryos, black and white symbols represent groups
exposed to copper under normoxia (98.4% ± 0.12 air saturation) or hypoxia (45.3% ± 0.21 air saturation), respectively, and the lines represent the
best fit model for the data, calculated using generalized linear models in R (model output summarized in Table S1a). At the concentrations tested,
copper caused an increase in mortality both under hypoxia and normoxia over the whole exposure period (P < 0.001). There was a significant
difference in copper-induced mortality under normoxia compared to under hypoxia for all time points (P < 0.001) and the slope of the dose response
curves also differed for all time points (P < 0.001).
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Stage-Dependent Copper Toxicity under Hypoxia
and Normoxia. For the experiments conducted during the
24 h time windows, similarly to that reported for the
continuous exposures, during the 4−28 hpf exposure period
copper was more toxic to embryos under normoxia than under
hypoxia (P < 0.001; Figure 2; Table S2b). In contrast, for
exposures conducted during the 28−52 hpf interval, there was
no significant difference in copper toxicity between the two
different oxygen concentrations (P = 0.39; Figure 2).
Furthermore, for both normoxic and hypoxic conditions,
copper was less toxic during this developmental stage than
during the 4−28 h exposure period (Figure 2). For example,
0.1 mg Cu/L caused 13% mortalities when exposures occurred
between 28 and 52 hpf for both hypoxia and normoxia, whereas
the same concentration resulted in 97% mortality under
normoxia and 49% mortality under hypoxia when exposures
to copper occurred between 4 and 28 hpf (Figure 2).
In contrast to the results for the 4−28 hpf, during the 52−76

hpf and 76−100 hpf exposure windows (which correspond to
the periods immediately prior and after hatching) copper
toxicity was greater when exposures occurred under hypoxia
compared to under normoxia (P < 0.01; Figure 2, Table S2b).
In addition, the sensitivity of zebrafish embryos to copper
increased until the 76−100 hpf period (immediately after
hatching), both under hypoxia and normoxia.
Similarly to that observed during the continuous exposure,

the effects of copper on hatching rate were greater in exposures

conducted under normoxia compared to under hypoxia. (P <
0.001; Figure S2; Table S3b).

Role of the HIF Signaling Pathway on the Suppres-
sion in Copper Toxicity under Hypoxia during Early
Development. Under normoxia, exposure to 0.07 mg Cu/L
resulted in 75.5% mortalities, whereas under hypoxia, copper-
induced mortalities did not occur (1.7%; similar to control
levels). In the presence of 20 μM DMOG, exposure to 0.07 mg
Cu/L under normoxia resulted in 0% mortalities (Figure 3),
supporting the hypothesis that the activation of the HIF
pathway is responsible for the decreased copper toxicity
observed under hypoxia, during the 4−28 hpf window of
development.

Quantification of Copper Uptake. There was a very
significant increase in the concentration of copper in whole
zebrafish embryos exposed to copper during 4−28 hpf window
of development, compared to nonexposed embryos (P < 0.001;
Figure 4a), independent of the oxygen concentration in the
water. Similar results were observed for the 28−52 hpf
exposure window (P < 0.001; Figure 4c). To determine the
relative contribution of the chorion to the copper accumulation
seen in exposed embryos, we analyzed the concentration of
copper in embryos that were dechorinated after exposure. For
both the 4−28 hpf and 28−52 hpf exposure windows, there was
no significant change in copper concentrations in dechorinated
embryos, irrespective of copper treatment or oxygen concen-
tration (P = 0.702 and P = 0.110; Figure 4b and Figure 4d,

Figure 2. Embryo mortality curves following exposure to copper under normoxia or hypoxia during specific developmental windows. Each point on
the graph represents an individual replicate tank containing 20 embryos, black and white symbols represent tanks exposed to copper under normoxia
(98.4% ± 0.12 air saturation) or hypoxia (45.3% ± 0.21 air saturation), respectively, and the lines represent the best fit model for the data, calculated
using generalized linear models in R (model output summarized in Table S1b). At the concentrations tested, copper caused an increase in mortality
both under hypoxia and normoxia in all exposure windows (P < 0.001). There was significantly higher mortality following exposure to copper under
normoxia compared to hypoxia for embryos exposed during the 4−28 hpf developmental window (P < 0.001), and the slope of the dose response
curve also differed for hypoxia versus normoxia (P < 0.001; Table S1b). In contrast, a significant increase in copper-induced mortality under hypoxia
compared to normoxia was observed for embryos exposed during the 52−76 and 76−100 hpf exposure windows (P < 0.01, P < 0.001 respectively;
Table S1b).
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respectively). Similarly, for exposures conducted during the
52−76 hpf exposure window, there were no significant
differences in copper concentration between any treatment
groups (P = 0.638; Figure 4e). For hatched embryos exposed
between 76 and 100 hpf, a significant increase in copper
concentration was observed in embryos exposed to copper
under hypoxia compared to the hypoxia control (P = 0.020;
Figure 4f), but no difference in copper concentration in
embryos exposed to copper under normoxia were observed (P
= 0.299; Figure 4f).
Transcript Profiling. The majority of the alterations in

transcript profiles observed occurred in embryos exposed to
copper during the 28−52 hpf exposure period and predom-
inantly under normoxia. Transcripts involved in the response to
oxidative stress were the most significantly affected by the
exposures. Significant down-regulations in transcript profiles
were measured for gstp1, gsta1 gpx1a, following exposure to
copper during the 28−52 hpf exposure period, under normoxia,
but not under hypoxia (Figure 5; Figure S4). In contrast, for
cat, a significant down-regulation was observed following
exposure to copper under hypoxia, but not under normoxia
(Figure 5; Figure S4). In addition, gstaI and gstp1 were
significantly down-regulated following exposure to copper
under normoxia, but not under hypoxia for the 52−76 hpf

and 76−100 hpf exposure periods, respectively (Figure 5;
Figures S5−6).
For transcripts involved in copper transport and binding, a

complex pattern of response was observed. The metal binding
protein, mt2, was significantly up-regulated in embryos
maintained under hypoxia alone compared to those kept
under normoxia, at the end of the 52−76 hpf exposure period,
but this gene was unaffected by the copper exposure
throughout this study (Figure 5; Figure S5). cox17, a gene
involved in metal coupling, was significantly down-regulated
following exposure to copper under normoxia but not under
hypoxia, during the 28−52 hpf period (Figure 4). In addition,
the copper transporter, atp7a, was not affected by the exposure
conditions at any of the developmental stages analyzed (Figure
5).
Genes involved in carbon dioxide (CO2) dynamics and pH

regulation were also investigated. ca9 was significantly down-
regulated as a result of exposure to copper under normoxia but
not under hypoxia during the first 24h developmental window
(Figure 5; Figure S3). In addition, ca2 was significantly down-
regulated following exposure to copper under hypoxia, but not
under normoxia during the 28−52 hpf period (Figure 5; Figure
S4).

■ DISCUSSION
The objective of this study was to determine the influence of
oxygen availability on copper toxicity in developing fish. Our
data demonstrate a strong influence of the concentration of
oxygen on the toxicity of copper to zebrafish embryos,
dependent on the embryonic stage of development, for both
the amplitude and direction of hypoxia-induced changes in
copper toxicity. During early development, hypoxia strongly
suppressed copper toxicity in a process mediated by the
activation of the HIF signaling pathway; whereas after hatching
this effect was reversed and copper toxicity increased in a
process likely related to increased copper uptake under hypoxia.
This is the first time that these contrasting effects of hypoxia on
copper toxicity are documented during embryogenesis in a
model fish species.

Effects of Hypoxia on Copper Toxicity during
Embryogenesis. Copper toxicity was significantly greater
under normoxia compared to hypoxia when exposures occurred
continuously throughout embryogenesis. In contrast, for
exposures conducted during specific developmental windows,
hypoxia suppressed copper toxicity during early development
but increased its toxicity after hatching, demonstrating that the
role of hypoxia on copper toxicity is fundamentally dependent
on the stage of development. Continuous exposures to hypoxia
through embryogenesis are likely in some natural environ-
ments, where hypoxic events can persist for long periods of
time. In seasonal environments, during the warm season,
hypoxia is associated with the formation of thermoclines and
increased primary production in surface waters, resulting in
excess oxygen consumption as organic materials decompose in
lower water layers.32 Hypoxia can also occur due to nocturnal
decreases in photosynthesis and continued respiration, resulting
in significant daily oxygen fluctuations in water bodies.33

Despite the widespread occurrence of hypoxia in water systems,
assessment of chemical toxicity for regulatory purposes does
not consider the influence of oxygen on the effects of chemicals
on aquatic organisms and guidelines for embryo testing request
oxygen to be constant and above 80% saturation.34 The very
pronounced shifts in toxicological responses to copper shown

Figure 3. Effects of HIF activation by dimethyloxalylglycine (DMOG)
on copper toxicity. Exposures to copper under normoxia, under
normoxia in combination with DMOG, and under hypoxia were
conducted during the 4−28 hpf developmental period. Six
independent tanks containing 10 embryos and 100 mL of exposure
water were included for each treatment group. The measured
concentrations of oxygen were 98.7% and 49.6% air saturation for
normoxia and hypoxia, respectively. Data is presented as mean
proportion of embryo mortalities during the exposure + maximum
value. For embryos incubated in the absence of copper, there was no
significant effect of the treatments on mortality (Kruskal−Wallis test,
χ2 = 2.13, DF = 2, P = 0.34), with no significant differences between
the three treatments (P > 0.05). For embryos incubated in the
presence of copper (0.07 mg Cu/L), there was a significant effect of
treatment on mortality (Kruskal−Wallis test, χ2 = 14.94, DF = 2, P <
0.001), with significant differences occurring between groups exposed
to copper under normoxia compared with (i) those exposed to copper
under normoxia in the presence of DMOG (P < 0.01), and (ii) those
exposed to copper under hypoxia (P < 0.01). No differences were
detected between groups exposed to copper under normoxia in the
presence of DMOG and groups exposed to copper under hypoxia (P =
0.41).
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here, demonstrate the strong influence of variable oxygen
concentrations on copper toxicity and highlight the importance
of considering more realistic environmental conditions, in
which variable concentrations of oxygen often occur, when
determining safety thresholds for chemical toxicity. This
information is fundamental for determining the most sensitive
set of environmental conditions and life stages for a given
chemical that poses a risk to aquatic organisms.
Interactions between Copper and Hypoxia during

Early Development. The most significant hypoxia-induced
differences in copper toxicity were observed during the first
24 h of exposure, when a significant suppression in embryo
mortality was observed. Furthermore, analysis of the effects of
hypoxia on copper toxicity during specific developmental
windows demonstrated that the decrease in copper toxicity
observed under hypoxia compared to normoxia was unique to
this stage of development. This suggests that during this early

developmental window (4−28 hpf) the physiological responses
to hypoxia protect embryos from the toxicological effects of
copper. We hypothesized that the activation of the HIF
signaling pathway in embryos exposed to copper under hypoxia
was responsible for the reduction in toxicity observed during
this early developmental period. HIF-1α acts as an oxygen
sensing molecule in the cytoplasm and is constitutively
expressed in vertebrates35 and strongly expressed in zebrafish
embryos during development.36 HIF-1α stability is partially
regulated by a group of oxygen-sensitive enzymes, prolyl
hydroxylases (PHDs).37 In the presence of oxygen (normoxia),
the family of HIF-PHDs modify the HIF-1α subunit, allowing
for HIF-1α recognition by a protein-ubiquitin ligase complex
containing the von Hippel−Lindau tumor suppressor protein
(pVHL), and leading to HIF-1α degradation by the
proteasome.38 However, when intracellular oxygen concen-
trations are low, PHD activity is inhibited, which, in turn,

Figure 4. Measured copper concentrations in zebrafish embryos exposed to copper under normoxia or hypoxia. Zebrafish embryos were exposed to
0 or 0.024 mg Cu/L for 24 h during 4 developmental windows (A, B: 4−28. C, D: 28−52. E: 52−76. F: 76−100 hpf), under hypoxia (43.2% ± 0.55
air saturation) or normoxia (98.9% ± 0.22 air saturation). For the first two time windows, embryos were sampled either as whole embryos (embryo
with chorion; A, C) or dechorinated (embryo without the chorion; B, D). Each treatment consisted of 4 replicate tanks containing 25 embryos in
600 mL of exposure water, and two pools of 5 embryos were collected from each replicate tank for determination of total copper content, by ICP-
MS (n = 8 pools of embryos for each treatment group). Data is presented as mean μg Cu/embryo ± standard error mean. Letters indicate significant
differences between treatment groups, with groups identified with different letters as significantly different (one-way ANOVA followed by pairwise
comparisons using the Holm−Sidak post hoc test; P < 0.05).
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results in the stabilization of HIF-1α. Accumulated HIF-1α
then dimerizes with the aryl hydrocarbon nuclear translocator
(ARNT, also known as HIF1-β39), and the HIF-1α-ARNT
dimer acts as a transcription factor, binding to hypoxia response
elements (HRE) and resulting in the regulation of transcription
of a wide range of hypoxia-responsive genes,40 which regulate
the physiological responses to hypoxia in vertebrate organisms.
We investigated the role of HIF-1α on the suppression of
copper toxicity under hypoxia during early embryogenesis by
using the prolyl-4-hydroxylase inhibitor, DMOG, to stabilize
HIF-1α and activate hypoxia signaling pathways under
normoxia.24 Our results showed that when exposures were
conducted in the presence of DMOG, copper toxicity was
greatly reduced, similarly to that observed when exposures were
conducted under hypoxia. The results demonstrate that the
biochemical and physiological responses resulting from the
activation of the HIF pathway confer protection from copper
toxicity during the 4−28 h developmental window.
Molecular responses to hypoxia include regulation of their

intracellular pH to compensate for the increased acidosis
caused by anaerobic metabolism, via up-regulation of ca9.41

This enzyme catalyzes the conversion of extracellular CO2 to
carbonic acid42 and is known to be induced by mild hypoxia in
tumor cells.43 The pH of the internal media is an important
factor contributing to copper speciation and toxicity. Cu
toxicity is known to be altered with changes in pH, for example
as a result of copper complexes forming at higher pH, reducing
the bioavailability of toxic copper ions. Plasma pH is influenced
by the proportion of circulating bicarbonate ions resulting from
CO2 conversion to bicarbonate, catalyzed by carbonic
anhydrase.44 Exposure to hypoxia did not induce alterations
in ca9 expression, but a significant down regulation of ca9
following exposure to copper under normoxia was observed,
suggesting that copper may have disrupted CO2 transport and
pH regulation under normoxia, but not under hypoxia. These
findings are supported by previous studies demonstrating a
significant inhibition of carbonic anhydrase activity following
copper exposure in vitro45 and in vivo,46,47 contributing to the
toxicological effects of copper via disruption of acid−base
balance.45 Interestingly, under hypoxia, copper did not affect
the transcription of carbonic anhydrase during early develop-
ment, suggesting that its adverse effect on pH regulation was
absent under hypoxia during this developmental window.
These findings have implications for the regulation of copper
speciation and bioavailability, which is known to be influenced
by the pH of circulating fluids.48

Hypoxia Induced Alterations in Copper Toxicity Are
Dependent on the Stage of Embryonic Development.
Analysis of the effects of hypoxia on copper toxicity during four
developmental windows comprising early embryogenesis to 24

Figure 5. Transcript profiles for selected target genes following
exposure to copper under hypoxia and normoxia during specific
developmental windows. Embryos were exposed to 0 or 0.024 mg Cu/
L under hypoxia (43.2% ± 0.55 air saturation) or normoxia (98.9% ±
0.22 air saturation) during specific 24 h developmental windows (4−
28, 28−52, 52−76 and 76−100 hpf). Immediately after the exposure
period embryos were sampled and grouped in pools of 5 embryos per
treatment group and transcript profiles were determined using RT-
QPCR. Ten target genes were analyzed including: carbonic anhydrase
II (ca2), carbonic anhydrase IX (ca9), cytochrome c oxidase copper
chaperone (cox17), ATPase Cu++ transporting, alpha polypeptide
(atp7a), metallothionein 2 (mt2), catalase (cat), superoxidase
dismutase 1 (sod1), glutathione-s-transferase pi 1 (gstp1), glutathione
S-transferase alpha-like (gstaI) and glutathione peroxidase 1 a (gpx1a).
Six pools of embryos were analyzed for each treatment group. Data are

Figure 5. continued

presented as average relative expression (normalized against the
expression of the control gene rpl8). Individual data points classified as
outliers, identified by Chauvenet’s criterion, and points for which the
expression was below the detection limit of the assay were excluded
from the analysis, resulting in a replication of n = 4−6 pools per
treatment group. Letters within each box indicate significant
differences between treatment groups, with groups identified with
different letters being significantly different from each other (one-way
ANOVA followed by pairwise comparisons using the Holm−Sidak
post hoc test; P < 0.05).
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h posthatching revealed that hypoxia influences copper toxicity
in contrasting ways at different developmental stages. During
early development, hypoxia significantly decreased copper
toxicity, followed by a period where hypoxia did not alter
copper toxicity (28−52 hpf) and finally hypoxia increased
copper toxicity in hatched embryos. In addition, we identified
time periods particularly sensitive to copper, namely during
early development (4−28 hpf) and immediately after hatching
(76−100 hpf).
At the transcriptional level, the most significant differences in

transcript profiles were observed in embryos exposed to copper
during the second developmental window tested (28−52 hpf),
which coincided with the time period where copper was least
toxic and where hypoxia did not influence its toxicity.
Furthermore, the majority of copper-induced transcriptional
changes observed occurred in embryos exposed to copper
under normoxia. These findings suggest that the ability of
embryos to deploy compensatory mechanisms in response to
copper may be responsible for the reduced toxicity occurring
during this time window. This is likely to be particularly
important for embryos exposed to copper under normoxia,
where the protective effects resulting from the activation of the
HIF-1α pathway are absent, and for which changes in gene
transcription were strongly evident.
Genes regulated by copper exposure during the 28−52 hpf

developmental windows include a down-regulation of tran-
scripts encoding for oxidative stress responsive genes (gst
isoforms and gpx) and the copper chaperone cox17 under
normoxia but not under hypoxia. These findings contrast with
some of the literature, where copper-induced increases in the
activity of glutathione S-transferase49 and glutathione perox-
idise enzymes50 have been reported. It is important to note that
the concentration of copper chosen for these exposures (0.024
mg Cu/L) was relatively low and well below those causing
mortalities during this developmental window. Many of the
copper responsive transcripts have non-monotonic dose
response curves with opposite effects at low and high
concentrations.51−53 This may explain the unusual changes in
transcript profiles measured here. Nevertheless, the fact that a
wide range of transcriptional changes occurred following
exposure to copper under normoxia but were limited to two
genes under hypoxia (decrease in the transcript encoding cat
and ca2), supports the hypothesis that, during this time
window, the ability of embryos to activate transcriptional
responses to copper increased their tolerance to this toxic
metal.
From 52 to 100 hpf, we observed a switch in the effects of

hypoxia from a protective role during early development to
increasing copper toxicity during late development. This switch
coincided with the initiation of hatching, where the metabolic
activity of vertebrate embryos is known to increase54 and the
protection of the chorion is removed. We hypothesize that the
switch in the effect of hypoxia on the toxicity of copper is likely
to be associated with the progressive change in hypoxia
tolerance threshold that occurs in zebrafish embryos as
development progresses. Zebrafish embryos have been shown
to progressively lose the ability to survive anoxia after 30 hpf,55

and the expression of HIF isoforms inducible by hypoxia also
changes progressively throughout development,36 with con-
sequent changes in the activation of hypoxia-responsive
downstream genes.
It is important to note that the most significant effects of

hypoxia on the toxicity of copper to zebrafish embryos occurred

during the stages of development where copper is most toxic
(during early development (4−28 hpf) and after hatching (76−
100 hpf)), and contrasting effects of hypoxia on copper toxicity
were observed during these windows of development. To
investigate if alterations in copper accumulation in exposed
embryos were associated with the differences in toxicity
observed, we measured the concentrations of copper in
embryos exposed to 0.024 mg Cu/L under hypoxia or
normoxia during each developmental window. The data
revealed that for 4−28 hpf and 28−52 hpf, there was a very
significant increase in copper concentration in embryos
exposed to copper, independent of the concentration of oxygen
in the water. This increase in copper content was linked with
the presence of the chorion, and in dechorinated embryos there
were no changes in copper concentration in exposed embryos
compared to controls. The chorion is known to bind copper,
providing a barrier preventing copper from reaching the
embryonic cells.56−58 In addition, hypoxia did not affect copper
concentrations in embryos with or without the chorion
demonstrating that this is unlikely to be the mechanism
responsible for the hypoxia-induced reduction in copper
toxicity during early development. This is supported by the
measured transcript profiles for atp7a, which indicated that
there were no alterations in the transcription of this key copper
transporter.59 For the final window of exposure, 76−100 hpf,
there was an increase in copper concentration in embryos
exposed to copper under hypoxia compared to embryos
exposed to hypoxia alone, but an increase in copper
concentration was not observed in embryos exposed to copper
under normoxia. This effect of hypoxia on copper uptake could
explain, at least in part, the increase in copper toxicity observed
under hypoxia in hatched embryos.
Overall, our study demonstrated that hypoxia caused very

significant changes in copper toxicity during the embryonic
development of a model fish species, in a stage-specific manner.
The changes observed included a strong decrease in copper
toxicity during early development followed by an increase in
toxicity during late development. We demonstrated that the
suppression in copper toxicity during early development was
associated with the activation of the HIF signaling pathway and
the increase in copper toxicity observed in hatched embryos
may be as a result of differential copper uptake.
The progressive increase in the incidence, severity and

prevalence of hypoxic events in both marine and freshwater
systems worldwide is likely to continue due to factors
associated with climate change, human population growth
and migration toward coastal zones. In parallel, chemical
contamination of aquatic systems continues to increase, and
consequently the likelihood of aquatic organisms being exposed
simultaneously to hypoxia and chemical pollutants during
development will continue to increase. The very strong
alterations in copper toxicity caused by hypoxia exemplify the
importance of considering the concentrations of oxygen in the
environment when defining the impact of chemical exposures
on aquatic organisms. In addition, it is important to consider
the tolerance to hypoxia of fish species, and within each species,
the relative tolerance of each life stage. As demonstrated here,
the effects of combined exposures during life stages with
different tolerances to hypoxia resulted in dramatically different
outcomes, with hypoxia strongly suppressing copper toxicity
during early development when embryos are able to tolerate
extended periods of anoxia, but increasing copper toxicity in the
relatively hypoxia sensitive hatched embryos. To protect better

Environmental Science & Technology Article

DOI: 10.1021/acs.est.6b01472
Environ. Sci. Technol. 2016, 50, 4502−4512

4509



the sustainability of aquatic ecosystems, it is fundamental to
generate a mechanistic understanding of the interactions
between the most environmentally relevant groups of chemicals
and hypoxia, for a range of teleost species with varying hypoxia
tolerance. This information will, in turn, facilitate accurate
predictions of the consequences of worldwide expansion in
oxygen depletion to fish communities challenged by anthro-
pogenic toxicants.
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