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Abstract 

This paper presents a concise state-of-the-art review along with an exhaustive comparative 

investigation on surrogate models for critical comparative assessment of uncertainty in 

natural frequencies of composite plates on the basis of computational efficiency and 

accuracy. Both individual and combined variations of input parameters have been considered 

to account for the effect of low and high dimensional input parameter spaces in the surrogate 

based uncertainty quantification algorithms including the rate of convergence. Probabilistic 

characterization of the first three stochastic natural frequencies is carried out by using a finite 

element model that includes the effects of transverse shear deformation based on Mindlin’s 

theory in conjunction with a layer-wise random variable approach. The results obtained by 

different metamodels have been compared with the results of traditional Monte Carlo 

simulation (MCS) method for high fidelity uncertainty quantification. The crucial issue 

regarding influence of sampling techniques on the performance of metamodel based 

uncertainty quantification has been addressed as an integral part of this article.  

 

Keywords: composite plate; metamodel; sampling techniques; comparative study; stochastic 

natural frequency  
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1. Introduction 

    The exhaustive utilization of computational power has favoured the development of very 

high-fidelity finite element models to deal with industrial problems. In spite of advances in 

capacity and speed of computer, the enormous computational cost of running complex, 

intricate scientific and engineering simulations makes it impractical to rely exclusively on 

simulation codes for the purpose of uncertainty quantification. Hence these high-fidelity 

models come with the drawback that they can be very-time consuming so that only a few runs 

of the model can be affordable. Thus these models are practically unusable in 

computationally intensive methods like traditional Monte Carlo simulation (MCS) based 

stochastic analysis that requires thousands of realizations to be carried out. In general, such 

complicated models can be considered as a system (often referred to I/O system), for which 

the output quantity of interest (O) is evaluated corresponding to a particular set of values for 

the input parameters (I).  In case of analyses that require large number of model evaluation, it 

is a common practise to employ a computationally efficient surrogate or metamodel based 

approach, in which outputs are only evaluated for a limited set of algorithmically chosen 

input points and then an equivalent mathematical model is constructed to emulate the 

underlying mapping of the I/O system. The need of integrating the surrogate models and 

probabilistic approaches has significant demand for assessing the response characteristics of 

composite structures by accounting the uncertainties in the models as well as the random 

input parameters (e.g., geometrical parameters, fibre parameters and material properties) [1]. 

Application of laminated composites in various industries have witnessed tremendous growth 

in last few decades due to the benefit of light-weightiness without compromising its strength 

and stiffness requirement as shown in Figure 1. Due to the dependency on a large number of 

parameters in complex production and fabrication processes of laminated composite plate, the 

system properties can be random in nature resulting in uncertainty in the response of the  
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Fig. 1 Overview of stochastic dynamics for composite structures in different application areas 

laminated composite plate. Therefore, to well define the original problems and enable a better 

understanding and characterization of the actual behavior of the laminated composite 

structures, it is of prime importance that the inherent randomness in system parameters is 

incorporated in the analysis. While adopting a surrogate based approach for uncertainty 

quantification, an obvious question that a designer may have: which technique is superior to 

the other and on what basis should the various surrogate modelling techniques be selected. 

Some studies demonstrate the application of one metamodeling technique or the other, 

typically for a specific application exist; however, the present study reveals the 

comprehensive comparative studies of the various techniques in conjunction to composites to 

test the relative merits of different methods. Although the earlier studies investigated on the 

insights of the various approaches, the tests were restricted to a very small group of methods 

and test problems and in many cases only one problem due to the expense associated with 
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testing. Moreover, when using multiple test problems, it is often difficult to make 

comparisons between problems when they belong to different classes of problems. In the 

present study, multiple factors contribute to the success of a given metamodeling technique, 

ranging from the stochasticity and dimensionality of the problem to the associated data 

sampling technique and the internal parameter settings of the various modelling techniques. 

Overall, the knowledge of the performance of different metamodeling techniques with respect 

to different modelling criteria is of utmost importance to designers while choosing an 

appropriate technique for a particular application. A concise literature review on application 

of different surrogate modelling techniques is presented in the trailing paragraphs. 

A preferable strategy for the analyses requiring repetitive model evaluation is to 

utilize approximation models which are often referred to as metamodels (“model of the 

model” [2]) that effectively replace the expensive simulation model [3] in a computationally 

efficient manner. Metamodelling techniques have been widely used for design evaluation and 

optimization in many engineering applications; a comprehensive review of metamodelling 

applications in mechanical and aerospace systems can be found in the paper by Simpson et al. 

[4] and will therefore not be repeated here. For the interested reader, a review of 

metamodelling applications in optimization can be found in the articles by Barthelemy and 

Haftka [5] and Sobieszczanski-Sobieski and Haftka [6]. A variety of surrogate modelling 

techniques exist wherein response surface methodology [7-9] and artificial neural network 

(ANN) methods [10-11] are found as the two well-known approaches for constructing simple 

and fast approximations of complex computer codes. An interpolation method known as 

Kriging is widely utilised for the design and analysis of computer experiments [12-14]. The 

other promising statistical techniques, such as multivariate adaptive regression splines 

(MARS) [15-16] and radial basis function (RBF) approximations [17-18], moving least 

square (MLS) [19-20], support vector regression (SVR) [21-22] and polynomial neural 
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network (PNN) [23-24] have also drawn significant attention of many researchers. 

Previously, Simpson et al. [25] compared kriging methods against polynomial regression 

models for the multidisciplinary design optimization of an aerospike nozzle involving three 

design variables while Giunta et al. [26] compared kriging models and polynomial regression 

models for a test problem. In contrast, Varadarajan et al. [27] compared ANN methods with 

polynomial regression models for an engine design problem involving nonlinear 

thermodynamic behaviour. Yang et al. [28] compared four approximation methods such as, 

enhanced multivariate adaptive regression splines (MARS), stepwise regression, ANN, and 

the moving least square method for the construction of safety related functions in automotive 

crash analysis for a relatively small sample sizes. 

       In the literature, there are several successful applications of surrogate modeling 

techniques in the optimization of traditional composite laminates with straight fibers. Such as 

Radial Basis Functions [29], second order polynomials [30] and Neural Networks [31] are 

found to be effective in reducing the time to find the maximum buckling load of a composite 

stiffened panel. Liu et al. [32] used a cubic response surface combined with a two-level 

optimization technique to maximize the buckling load of a composite wing. Lee and Lin [33-

34] used trigonometric functions as the base functions to build a metamodel for the stacking 

sequence optimization of a composite propeller. Kalnins et al. [35] compared the 

performance of Radial Basis Functions, multivariate adaptive regression splines and 

polynomials for optimization of the post-buckling characteristics of damaged composite 

stiffened structure. In another attempt, Lanzi and Giavotto [36] compared the performance of 

Radial Basis Functions, Neural Networks, and Kriging metamodels in a multi-objective 

optimization problem for maximum post-buckling load and minimum weight of a composite 

stiffened panel. These methods are found to yield similar results and none of them is 

identified as being significantly superior. While there is a considerable amount of existing 
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research on the use of metamodels for constant stiffness composite design, only a few 

attempts look at their application in variable stiffness design. Among those worthy to mention 

are the following, the optimization of a variable stiffness laminate in vibration [37], the 

buckling load of a variable stiffness composite cylinder [38], and the simultaneous 

optimization of the buckling load and in-plane stiffness of a variable stiffness laminate 

ignoring the presence of defects, i.e. gaps and overlaps [39]. Of late, Arian Nik et al. [40-41] 

used the defect layer method and a Kriging metamodel to simultaneously maximize the 

buckling load and in-plane stiffness of a variable stiffness laminate with embedded defects. 

The above mentioned works are demonstrated as the potential method indicating that the 

surrogate model can be utilised as a beneficial tool for reduction of computational burden in 

optimization process. Based on literature review, it is found that in the following areas 

metamodeling can play a significant role: a) Model approximation. Approximation of 

computation-intensive processes across the entire design space, or global approximation, is 

used to reduce computation costs, b) Design space exploration. The design space is explored 

to enhance the engineers’ understanding of the design problem by working on a cheap-to-run 

metamodel, c) Problem formulation. Based on an enhanced understanding of a design 

optimization problem, the number and search range of design variables may be reduced; 

certain ineffective constraints may be removed; a single objective optimization problem may 

be changed to a multi-objective optimization problem or vice versa. Metamodel can assist the 

formulation of an optimization problem that is easier to solve or more accurate than 

otherwise, d) Optimization support. Industry has various optimization needs, e.g., global 

optimization, multi-objective optimization, multidisciplinary design optimization, 

probabilistic optimization, and so on. Each type of optimization has its own challenges. 

Metamodeling can be applied and integrated to solve various types of optimization problems 

that involve computation-intensive functions. The literature review presented above reveals 
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that there is no recommendation found regarding selection of surrogate model for analyses of 

composites and other applications. Furthermore, the performance of surrogate model is 

described as problem dependent and the best surrogate model is unknown at the outset. 

For surrogate model formation, few algorithmically chosen design points are 

evaluated using the expensive model/ experiments. Finally on the basis of the information 

gathered through these design points over the design space, a fully functional metamodel is 

constructed. The “Classic” experimental designs are originated from the theory of Design of 

Experiments when physical experiments are conducted. These methods focus on planning 

experiments so that the random error in physical experiments has minimum influence in the 

approval or disapproval of a hypothesis. Widely used “classic” experimental designs include 

factorial or fractional factorial design [9, 42-43], central composite design (CCD) [9], Box-

Behnken [9], optimal design [44, 45] and Plackett-Burman designs [9]. Mukhopadhyay et al. 

[46] presented a comparative assessment of different design of experiment methods in 

conjunction to a system identification problem using multi-objective optimization and 

suggested that D-optimal design and CCD perform better compared to other considered 

design of experiment methods. These classic methods tend to spread the sample points 

around boundaries of the design space and leave a few at the centre of the design space. As 

computer experiments involve mostly systematic error rather than random error as in physical 

experiments, Sacks et al. [47] stated that in the presence of systematic rather than random 

error, a good experimental design tends to fill the design space rather than to concentrate on 

the boundary. They also stated that “classic” designs, e.g. CCD and D-optimal designs can be 

inefficient or even inappropriate for deterministic computer codes. Jin et al. [48] confirmed 

that a consensus among researchers was that experimental designs for deterministic computer 

analyses should be space filling. Koehler and Owen [49] described several Bayesian and 

Frequentist “Space Filling” designs, including maximum entropy design [50], mean squared-
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error designs, minimax and maximin designs [51], Latin Hypercube designs, orthogonal 

arrays, and scrambled nets. Four types of space filling sampling methods are relatively more 

often used in the literature. These are orthogonal arrays [52-54], Latin Hypercube designs 

[55-59], Hammersley sequences [60, 61] and uniform designs [62]. Hammersley sequences 

and uniform designs belong to a more general group called low discrepancy sequences [63] 

wherein Hammersley sampling is found to provide better uniformity than Latin Hypercube 

designs. A comparison of these sampling methods is in less structured but offer more 

flexibility. If any knowledge of the space is available, these methods may be tailored to 

achieve higher efficiency. They may also play a more active role for iterative sampling-

metamodeling processes. Mainly due to the difficulty of knowing the “appropriate” sampling 

size a priori, sequential and adaptive sampling has gained popularity in recent years. Lin [64] 

proposed a sequential exploratory experiment design (SEED) method to sequentially generate 

new sample points. Jin et al. [65] applied simulated annealing to quickly generate optimal 

sampling points. Sasena et al. [66] used the Bayesian method to adaptively identify sample 

points that gave more information. Wang [67] proposed an inheritable Latin Hypercube 

design for adaptive metamodeling. Samples are repetitively generated fitting a Kriging model 

in a reduced space [68]. Jin et al. [69] compared a few different sequential sampling schemes 

and found that sequential sampling allows engineers to control the sampling process and it is 

generally more efficient than one-stage sampling. One can custom design the flexible 

sequential sampling schemes for specific design problems. 

Metamodeling evolves from classical Design of Experiments (DOE) theory, in which 

polynomial functions are used as response surfaces, or metamodels. Response surfaces are 

typically second-order polynomial models and therefore, they have limited capability to 

model accurately nonlinear functions of arbitrary shape. Obviously, higher-order response 

surfaces can be used to model a nonlinear design space. However, instabilities may arise, or it 
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may be difficult to take enough sample points in order to estimate all of the coefficients in the 

polynomial equation particularly in high dimensions. Hence, many researchers advocate the 

use of a sequential response surface modelling approach using move limits or a trust region 

approach. Besides the commonly used polynomial functions, Sacks et al. [70, 71] proposed 

the use of a stochastic model, called Kriging [72], to treat the deterministic computer 

response as a realization of a random function with respect to the actual system response. 

Neural networks have also been applied in generating the response surfaces for system 

approximation [73]. Other types of models include radial basis functions (RBF) [74, 75], 

multivariate adaptive regression splines (MARS) [76], least interpolating polynomials [77] 

and inductive learning [78]. A combination of polynomial functions and artificial neural 

networks has also been archived [79]. There is no conclusion about which model is definitely 

superior to the others. However, insights have been gained through a number of studies [80, 

81]. In recent years, Kriging models and related Guassian processes are intensively studied 

[82-87]. In general the Kriging models are more accurate for nonlinear problems but difficult 

to obtain and use because a global optimization process is applied to identify the maximum 

likelihood estimators. Kriging is also flexible in either interpolating the sample points or 

filtering noisy data. On the contrary, a polynomial model is easy to construct, clear on 

parameter sensitivity, and cheap to work with but is less accurate than the Kriging model 

[88]. However, polynomial functions do not interpolate the sample points and are limited by 

the chosen function type. The RBF model, especially the multi-quadric RBF, can interpolate 

sample points and at the same time is easy to construct. It thus seems to reach a trade-off 

between Kriging and polynomials. Recently, a new model called Support Vector Regression 

(SVR) was used and tested [89]. SVR achieved high accuracy over all other metamodeling 

techniques including Kriging, polynomial, MARS, and RBF over a large number of test 

problems. It is not clear, however, what are the fundamental reasons that SVR outperforms 
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Table 1 Sampling Techniques and metamodelling methods 
 

1. Sampling  

    Techniques 

a) Classic methods 
1 Factorial Design 
2 Central composite 
3 Box-Behnken 
4 Optimal designs 
5 Plackett-Burman 

b) Space-filling methods 
1 Simple Grids 
2 Latin Hypercube 
3 Sobol Sequence 
4 Orthogonal Arrays (Taguchi) 
5 Hammersley sequence 
6 Uniform designs 
7 Minimax and Maximin 

c) Hybrid methods 

d) Random or human selection 

e) Importance sampling 

f) Directional simulation 

g) Discriminative sampling 

h) Sequential or adaptive methods 

 

2. Modelling  

    Methods 

a) Polynomial regression (linear, quadratic, or higher) 

b) High dimensional model representation (HDMR) [cut-HDMR, RS-

HDMR, GHDMR] 

c) Polynomial Chaos Expansion (PCE) 

d) Splines [linear, cubic, Non-Uniform Rational B-splines (NURBS)] 

e) Multivariate Adaptive Regression Splines (MARS) 

f) Gaussian Process 

g) Kriging 

h) Radial Basis Functions (RBF) 

i) Least interpolating polynomials (Moving least square) 

j) Artificial Neural Network (ANN) 

k) Group Method of Data Handling - Polynomial Neural Network 

(GMDH - PNN) 

l) Knowledge Base or Decision Tree 

m) Support Vector Machine  (SVM) 

n) Weighted Least squares regression 

o) Best Linear Unbiased Predictor (BLUP) 

p) Multipoint approximation (MPA) 

q) Sequential or adaptive metamodeling 

r) Hybrid models  
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others. The Least Interpolating Polynomials use polynomial basis functions and also 

interpolate responses. They choose a polynomial basis function of “minimal degree” as 

described by [75] and hence are called “least interpolating polynomials.” This type of 

metamodel deserves more study. In addition, Pérez et al. [90] transformed the matrix of 

second-order terms of a quadratic polynomial model into the canonical form to reduce the 

number of terms. Messac and his team developed an extended RBF model [91] by adding 

extra terms to a regular RBF model to increase its flexibility, based on which an optimal 

model could be searched for. Turner and Crawford proposed a NURBS-based metamodel, 

which was applied only to low dimensional problems [92]. If gradient information can be 

reliably and inexpensively obtained, gradient information can be utilized in metamodeling 

[93, 94]. High dimensional model representation is found to be successfully applied in the 

problems related to optimization and system identification [94, 95]. A multipoint 

approximation (MPA) strategy has also received some attention [96-98]. MPA uses blending 

functions to combine multiple local approximations, and usually gradient information is used 

in metamodeling. Metamodels can also be constructed when design variables are modeled as 

fuzzy numbers [99, 100]. Each metamodel type has its associated fitting method. For 

example, polynomial functions are usually fitted with the (weighted) least square method; the 

kriging method is fitted with the search for the Best Linear Unbiased Predictor (BLUP). 

Simpson et al. [4] illustrated a detailed review on the equations and fitting methods for 

common metamodel types. In general computer experiments have very small random error 

which might be caused by the pseudorandom number generation or rounding [101]. Giunta et 

al. [102] found that numerical noises in computing the aerodynamic drag of High Speed Civil 

Transport (HSCT) caused many spurious local minima of the objective function. The 

problem was due to the discontinuous variations in calculating the drag by using the panel 

flow solver method. Madsen et al. [103] stated that noises could come from the complex 
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numerical modeling techniques. In case of physical or noisy computer experiments, it is 

found that Kriging and RBF are more sensitive to numerical noise than polynomial models 

[104]. However, Kriging, RBF, and ANN could be modified to handle noises, assuming the 

signal to noise ratio is acceptable [105].  

 

Fig. 2 General flowchart of Uncertainty Quantification (UQ) using metamodeling approach 

The different modelling methods and sampling techniques are summarized in Table 1. 

All of these techniques can be used to create approximations of existing computer analyses, 

and produce fast analysis modules for more efficient computation. These metamodeling 

techniques also yield insight into the functional relationship between input and output 

parameters. A designer’s goal is usually to arrive at improved or robust solutions which are 

the values of design variables that best meet the design objectives. A search for these 
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solutions usually relies on an optimization technique which generates and evaluates many 

potential solutions in the path toward design improvement; thus, fast analysis modules are an 

imperative. In the later stages of design when detailed information about specific solutions is 

available, highly accurate analysis is essential. In the early stages of design, however, the 

focus is on generating, evaluating, and comparing potential conceptual configurations. The 

early stages of design are characterised by a large amount of information, often uncertain, 

which must be managed. To ensure the identification of a ‘good’ system configuration, a 

comprehensive search is necessary. In this case, the trade-off between accuracy and 

efficiency may be appropriate. The creation of metamodels allows fast analysis, facilitating 

both comprehensive and efficient design space search at the expense of marginal loss of 

accuracy. Over the last few decades uncertainty quantification in complex structural systems 

including laminated composites has gained huge attention from the scientific community to 

realistically analyse and design the performance of the system [106-112]. A careful review on 

the literature concerning uncertainty quantification of laminated composites reveals that there 

are distinctively three different approaches in probabilistic modelling of such structures: 

random variable approach (structural and material attributes are same throughout the 

composite including each layers for a particular sample of Monte Carlo simulation), layer-

wise random variable approach (structural and material attributes are varied layer-wise for a 

particular sample of Monte Carlo simulation) and random field approach (structural and 

material attributes are varied spatially in all the dimensions for a particular sample of Monte 

Carlo simulation). Recently a non-probabilistic approach of fuzzy uncertainty propagation 

model is proposed for composites that is applicable to the situation where explicit probability 

distribution of the material properties are not available [113]. However, uncertainty 

quantification based on Monte Carlo simulation based approach relies on large number of 

simulations. The metamodeling techniques have gained popularity to alleviate the 
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computational burden [106-113]. A typical metamodel based algorithm for uncertainty 

quantification of a system is shown in figure 2. Performance assessment of different 

metamodels in uncertainty quantification of composite structures is particularly critical 

because of the fact that composite structures normally have a high dimensional input 

parameter space. Scientific literature concerning metamodeling approaches for uncertainty 

quantification in composite structures is not adequate. Moreover comparative assessment of 

different metamodeling techniques on the basis of accuracy and computational efficiency is 

very scarce to find in literature.      

 

Fig. 3 Surrogate modelling methods and corresponding sampling techniques 

The present study investigates on stochastic structural dynamics of laminated 

composite plates by exhaustive utilization of surrogate modelling for uncertainty 
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quantification. To fill up the apparent void on comparative assessment of surrogates on the 

basis of accuracy and computational efficiency, the this analysis employs a finite-element 

model that includes the effects of transverse shear deformation based on Mindlin’s theory in 

conjunction with a layer-wise random variable approach to study the stochastic free vibration 

characteristics of graphite–epoxy composite cantilever plates. An eight noded isoparametric 

quadratic plate bending element with five degrees of freedom at each node is considered in 

the finite element formulation. Both individual and combined variation of stochastic input 

parameters have been considered to account for the effect of dimensionality by employing the 

most prominent metamodeling techniques such as polynomial regression (PR), kriging, high 

dimensional model representation (HDMR), polynomial chaos expansion (PCE), artificial 

neural network (ANN), moving Least Square (MLS), support Vector Regression (SVR), 

multivariate adaptive regression splines (MARS), radial basis function (RBF) and polynomial 

neural network (PNN). For each of the surrogate modelling techniques, the rate of 

convergence with respect to traditional Monte Carlo simulation has been studied considering 

both low and high dimensional input parameter space. Different sampling techniques are used 

(namely 2k factorial designs, central composite design, A-Optimal design, I-Optimal design, 

D-Optimal design, Taguchi’s orthogonal array design, Box-Behnken design, Latin hypercube 

sampling and sobol sequence) to construct the surrogate models. The sampling technique for 

a particular surrogate modelling method is chosen on the basis of available literature (as 

furnished in Figure 3) to ensure best possible performance of each surrogate. As an integral 

part of this study, a comparative assessment of different design of experiment algorithms (2k 

factorial designs, central composite design, A-Optimal design, I-Optimal design, D-Optimal 

design, Taguchi’s orthogonal array design, Box-Behnken design) is presented considering 

polynomial regression method. To the best of authors’ knowledge, this is the first attempt to 

investigate the comparative performance of multiple surrogates (ten most prominent models 
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in scientific literature) in a comprehensive and exhaustive manner to provide a clear 

understanding of their prediction capability on the basis of accuracy and computational 

efficiency. This article is organized hereafter as, section 2: finite element formulation of 

laminated composite plate considering layer-wise stochasticity in the input parameters, 

section 3: general overview and mathematical concepts of different metamodels considered in 

this study, section 4: metamodel based stochastic free vibration analysis algorithm for 

laminated composite plates, section 5: results on comparative performance and discussion, 

section 6: conclusion.      

 

 

Fig. 4 Laminate composite cantilever plate 

2. Theoretical formulation for finite element modelling of composite plate 

In present study, a laminated composite cantilever plate with uniform thickness ‘t’ is 

considered as shown in Figure 4. Based on the first-order shear deformation theory, the 

displacement can be expressed as 

u(x, y, z) = u0(x, y) - z θx (x, y) 

v(x, y, z) = v0(x, y) - z θy (x, y) 

w(x, y, z) = w0(x, y) = w(x, y) 

(1) 
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where, u0, v0, and w0 are displacements of the reference plane and θx and θy are rotations of the 

cross section relative to x and y axes, respectively. Each of the thin fibre of laminae can be 

oriented at an arbitrary angle ‘θ’ with reference to the x-axis. The constitutive equations 

[114] are given by  

 {F} = [D(ω )]  {ε} (2) 

where Force resultant {F} = {Nx ,    Ny ,    Nxy ,     Mx ,     My ,     Mxy ,     Qx ,     Qy}
T 
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where ω  indicates the stochastic representation and αs is the shear correction factor (=5/6) 

and ][ ijQ  are elements of the off-axis elastic constant matrix which is given by 
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in which )(sin ωθ=m  and )(cos ωθ=n , wherein )(ωθ  is random ply orientation angle. 
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An eight noded isoparametric quadratic element with five degrees of freedom at each node 

(three translations and two rotations) is considered in finite element formulation. The 

Hamilton’s principle [115] is employed to study the dynamic nature of the composite 

structure. The principle used for the Lagrangian which is defined as 

 
WUTL f −−=  (7a) 

where T, U and W are total kinetic energy, total strain energy and total potential of the 

applied load, respectively. The Hamilton’s principle applicable to non-conservative system 

can be expressed as, 

 

∫ =−−=
f

i

t

t

dtWUTH 0][ δδδδ  (7b) 

The energy functional for Hamilton’s principle is the Lagrangian (Lf) which includes kinetic 

energy (T) in addition to potential strain energy (U) of an elastic body. The expression for 

kinetic energy of an element is given by 
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The potential strain energy for an element of a plate can be expressed as,   
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The Langrange’s equation of motion is given by 
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where {Fe} is the applied external element force vector of an element and Lf is the 

Lagrangian function. Substituting Lf = T – U, and the corresponding expressions for T and U 

in Lagrange’s equation, one obtains the dynamic equilibrium equation for each element in the 

following form  

 }{}{))](([}{)]([ eeee FKM =+ δωδω ��  (7f) 
 

After assembling all the element matrices and the force vectors with respect to the common 

global coordinates, the resulting equilibrium equation is obtained. For the purpose of the 

present study, the finite element model is developed for different element types and finite 

element discretization. Thus, using Hamilton’s principle and Lagrange’s equation, the 

dynamic equilibrium equation for motion of free vibration system ({Fe}=0 i.e., without 

applied external element force) with n degrees of freedom can be expressed as  

 [ ( )] [ ] [ ( )]{ } 0M Kω δ ω δ+ =��  (7g) 

In the above equation, M(ω ) ϵ nnR ×  is the mass matrix, [K(ω )] is the elastic stiffness 

matrix and {δ} ϵ nR  is the vector of generalized coordinates. The governing equations are 

derived based on Mindlin’s theory incorporating transverse shear deformation. For free 

vibration, the random natural frequencies [ωn )(ω ] are determined from the standard 
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eigenvalue problem [116] using QR iteration algorithm. The composite plate is assumed to be 

lightly damped and the natural frequencies of the system are obtained as: 

 
                                      

)(

1
)(2

ωλ
ωω

j

j =            where enj mod,........,3,2,1=                                      
(8) 

Here )(ωλ j  is the j -th stochastic eigenvalue of matrix )()(1 ωω MKA −=  and mod en  

indicates the number of modes retained in this analysis. 

3. Mathematical formulation of metamodels 

     In general, the metamodels can be used as surrogates of the actual computationally 

expensive simulation or experimental model (refer to figure 5) when a large number of 

evaluations are needed. The metamodels thus represent the results of the structural analysis 

(actual model evaluation) encompassing every possible combination of all input variables. 

From this, thousands of combinations of all design variables can be created and performed a 

pseudo analysis for each variable set, by simply adopting the corresponding predictive values. 

The formation of metamodel is typically a three-step process. First step is selection of 

representative sample points (which are capable of acquiring information of the entire design 

space in an optimal manner), based on which the metamodel is constructed. In the second 

step, outputs or responses are evaluated corresponding to each sample point obtained. After 

obtaining the set of design points and corresponding responses, the last step is constructing 

the mathematical or statistical model to map input-output relationship. There exists both 

several sampling techniques [9, 117-119] as well as metamodel formation methods [120] as 

discussed in section 1. One of the main concerns is selection of appropriate DOE method and 

metamodelling technique for a particular problem. All the sampling methods and 

metamodelling techniques have their unique properties and there exists no universal model 

that can be regarded as the best choice for all types of problems. Sampling method and 

metamodelling technique for a particular problem should be chosen depending on the 
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complexity of the model, presence of noise in sampling data, nature and dimension (number) 

of input parameters, desired level of accuracy and computational efficiency. Before using a 

particular metamodelling technique it is essential to check it rigorously for its quality of 

fitting and prediction capability [121-123]. Brief mathematical background of the 

metamodeling techniques considered in this study is presented next.  

 

Fig. 5 Simulation model (Here X and Y represent the sets of stochastic input and output 

parameters, while ω is used to denote the stochastic character). The simulation model is 

depicted for two different points in the design domain, indicated as 1 and 2. 

3.1 Polynomial Regression (PR) 

     On the basis of statistical and mathematical analysis, the metamodelling technique gives 

an approximate equation which relates the input features ξ and output features y for a  

particular system [46] 

                                                   y = f (ξ1, ξ2, . . . ,ξk ) + ε                                                        (9) 

where  f  denotes the approximate response function and ε is the statistical error term having a 

normal distribution with mean zero and k is the number of input parameters. ξ is usually 

coded as dimensionless variable having mean zero and a standard deviation of ξ. The 

commonly used first order and second order polynomials used for this purpose are of 

following shapes  
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(10)                 

 

The metamodel is fit approximately to a set of points in the design space (which may be 

chosen using design of experiment approach) using a multiple regression fitting scheme.  

Design of experiments (DOE) is an efficient procedure for planning experiments so 

that the data obtained can be utilized to achieve any particular goal. After selection of the 

design points using DOE, a response surface metamodel is constructed using the method of 

least squares. Method of least squares is a multiple regression technique and it is assumed in 

this method that random errors are identically distributed with a zero mean and a common 

unknown variance and they are independent of each other. The difference between the 

observed (y) and the fitted value (
iy ) for the ith observation iε = yi − iy  is called the residual. 

The criterion for choosing the 
i

β  estimates of equation y=X β +ε  is that they should 

minimize the sum of the squares of the residuals, which is often called the sum of squares of 

the errors (SSE) and expressed as, 

1

22 )(  
n

i ii

i

S E y yS ε
=

= = −∑ ∑                                              (11) 

The residuals may be written as 

ε = y − X β                                                            (12) 

The SSE thus becomes 

T( ) ( )TSSE y X y Xε ε β β= = − −                                      (13) 

Differentiating the SSE with respect to β  using partial derivatives and equating it to zero, 

one can get X β = y. This over-determined system of equations can be solved directly to 

obtain the coefficients β  as follows 

0
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T 1(X ) TX X yβ −=                                                    (14) 

After obtaining the coefficients β  as described above, response surface metamodel can be 

easily constructed. The major drawback of RSM is to fit the design points to a second order 

polynomial as systems having high degree of nonlinearity cannot be replaced by a second 

order model. To overcome this lacuna, the data can be converted into another form using 

suitable transformation scheme to capture the higher degree nonlinearity. For example, using 

logarithmic transformation or power transformation the response surface model takes the 

following forms, 

2

0

1 1 1
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1 1 1
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k k k k

i i ij i j ii i

i i j i i

k k k k
n

i i ij i j ii i
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= = > =

= = > =

= + + + +
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∑ ∑∑ ∑

∑ ∑∑ ∑
                          (15) 

       The quality of a response surface model should be checked based on several criteria. An 

optimized metamodel is formed by adding or deleting input factors through backward 

elimination, forward addition or stepwise elimination/addition. It involves the calculation of 

the P-value (probability value, gives the risk of falsely rejecting a given hypothesis) and 

Prob. > F value (gives the proportion of time one would expect to get the stated F-value if no 

factor effects are significant). The metamodel constructed should be checked by some 

criterias such as R2 (A measure of the amount of variation around the mean explained by the 

model), 2
adjR  (A measure of the amount of variation around the mean explained by the model, 

adjusted for the number of terms in the model. The adjusted R-squared decreases as the 

number of terms in the model increases if those additional terms don’t add value to the 

model) and 2
predR (A measure of the prediction capability of the response surface model) 

expressed as follows. 
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where RET SSSSSS +=  is the total sum of square and PRESS is the predicted residual error 

sum of squares, which is a measure of how the model fits the samples in the design space. 

The values of R2, 2
adjR  and 2

predR  should be close to 1. A difference between 2
adjR  and 2

predR  

within 0.2 indicates that the model can be used for further prediction. Another check is 

Adequate precision , which compares the range of the predicted values at the design points to 

the average prediction error. In general, a value greater than four indicates adequate model. 

Further, some plots should also be checked such as normal plot of residuals (indicates 

whether the residuals follow a normal distribution, in which case the points will follow a 

straight line), residuals vs. predicted plot (plot of the residuals versus the ascending predicted 

response values), actual vs. predicted plot (A graph of the actual response values versus the 

predicted response values for the design points used for metamodel formation. It helps to 

detect a value, or group of values, that are not easily predicted by the model) and Box-cox 

plot (helps to determine the most appropriate power transformation to be applied). 

3.2 High Dimensional Model Representation (HDMR)  

The high dimensional model representation (HDMR) can efficiently deal with large 

number of input parameters. This method is important because in practical applications, the 

variables are often correlated, for example, the cases wherein the input variables have some 

relations between them. Here relation can be deterministic or stochastic.  For instance, large 

values of certain input variables may imply large or small values of some other stochastic 
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input variables.  Such relation may be controlled by some known or unknown 

distributions. These correlations are implicitly contained in the collected samples in practice. 

The HDMR can construct a proper model for prediction of the random output (say natural 

frequency) in the stochastic domain. The present approach can treat both independent and 

correlated input variables, and includes independent input variables as a special case. The 

role of D-MORPH in the present form of HDMR is to ensure the component functions’ 

orthogonality in hierarchical manner. The present technique decomposes the function 

)(Sλ with component functions by input parameters, ),...,,( 21 kkSSSS = . As the input 

parameters are independent in nature, the component functions are specifically projected by 

vanishing condition. Hence, it has limitation for general formulation. In contrast, a novel 

numerical analysis with component functions is portrayed in the problem of present context 

wherein a unified framework for general HDMR dealing with both correlated and 

independent variables are established. For different input parameters, the output is calculated 

as [124] 
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where 0λ (zeroth order component function) represents the mean value. )( ii Sλ and 

),( jiij SSλ  denote the first and second order component functions, respectively while 

).,....,,( 21.......12 kkkk SSSλ  indicates the residual contribution by input parameters.  The subset 

},....,2,1{ kku ⊆ denotes the subset where kku ⊆  for simplicity and empty set, u∈Γ . As 

per Hooker’s definition, the correlated variables are expressed as, 
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 ∫ =∈∀⊆∀ − 0)()(,, uiuu dSdSSwSuikku λ  (22) 

 

 ∫ =〉〈=∀⊂∀ 0)(,)()()()(:, vvuuvvuuv SgSdSSwSgSguv λλ  (23) 

The function )(Sλ can be obtained from sample data by experiments or by modelling. To 

minimise the computational cost, the reduction of the squared error can be realised easily. 

Assuming H in Hilbert space is expanded on the basis {h1, h2, . . . , hkk}, the bigger subspace 

H (⊃H ) is expanded by extended basis {h1, h2, . . . , hkk, hkk+1, . . . , hm}. Then H can be 

decomposed as 

 ⊥⊕= HHH  (24) 

where ⊥H  denotes the complement subspace (orthogonal) of H [125] within H . In the past 

work [126-128], the component functions are calculated from basis functions. The 

component functions of Second order HDMR expansion are estimated from basis functions 

}{ϕ  as [129] 
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i.e., the basis functions of ),( jiij SSλ  contain all the basis functions used in )( ii Sλ and )( jj Sλ .  

The HDMR expansions at sampN  sample points of S can be represented as a linear algebraic 

equation system 

 RJ ˆ=Γ  (27) 

where Γ denotes a matrix ( sampN  × t
~ ) whose elements are basis functions at the sampN  

values of S ; J is a vector with t
~

dimension of all unknown combination coefficients; R̂  is a 

vector with sampN -dimension wherein l -th element is 0
)( )( λλ −lS . )(lS  denotes the l -th 
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sample of S , and 0λ  represents the average value of all )( )(lSλ . The regression equation for 

least squares of the above equation can be expressed as 

 
R

N
J

N

T

samp

T

samp

ˆ11
ΓΓΓ =  (28) 

 
Due to the use of extended bases, some rows of the above equation are identical and can be 

removed to give an underdetermined algebraic equation system 

 VJA ˆ=  (29) 

 

It has many of solutions for J  composing a manifold tY
~

ℜ∈ . Now the task is to find a 

solution J  from Y  to force the HDMR component functions satisfying the hierarchical 

orthogonal condition. D-MORPH regression provides a solution to ensure additional 

condition of exploration path represented by differential equation  
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wherein χ  denotes orthogonal projector ensuring 

χχ =2     and        χχ =T  (31) 

   

χχχχ T== 2  (32) 

 
The free function vector may be selected to ensure the wide domain for )(lJ  as well as to 

simultaneously reduce the cost ))(( lJκ  which can be expressed as 
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Then we obtain 
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The cost function can be expressed in quadratic form as  
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where B denotes the positive definite symmetric matrix and ∞J  can be expressed as 
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where the last columns )
~

( rt − of U and V are denoted as 
rt

U
−

~  and 
rt

V
−

~ which can found by 

decomposition of Bχ  [130] 
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This unique solution ∞J in Y indicates the minimized cost function. D-MORPH regression is 

used to find the J which ensures the HDMR component functions’ orthogonality in 

hierarchical manner. The construction of the corresponding cost function κ  can be found in 

previous literature [126].  

3.3 Polynomial chaos expansion (PCE) 

The polynomial chaos expansion is an effective tool for solving stochastic systems. It 

was first introduced as the homogeneous chaos by Wiener [131]. The basic idea is to project 

the random variables of problem onto a stochastic space spanned by a set of complete 

orthogonal polynomials. The orthogonal polynomial chaos basis functions, derived from 

Gram-Schmidt algorithm [132] is employed in this study for mapping input-output relation. 

The solution to generalised equation at a random space can be expanded into a polynomial 

chaos expansion as follows: 

)(ξψBy =           (38) 

where [ ] 1
21 ... ×ℜ∈= nT

nyyyy  denotes the assembled vector of output data, 

[ ] 1

10 )(....)()()( ×ℜ∈= pT

p ξψξψξψξψ  denotes the assembled vector of polynomial 

chaos basis functions and Β is expressed as 
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where )(i
kβ  are the coefficients of polynomial expansion with k =1,2,3….p ( p is the number 

of terms retained in the expansion), n  is the number of output parameters, ξ  is an m-

dimensional vector of variables and ‘m’ is the number of input parameters. Gram-Schmidt 

algorithm provides the opportunity to derive the polynomial chaos basis functions for any 

arbitrary probability distribution on ‘ξ ’. In this method, the polynomial terms are represented 

as ( )1( ) j j
j i i iOψ ξ ξ ξ −= +  where 0,1,...,j h= . This results in 0 ( ) 1iψ ξ = and the remaining 

terms are computed using the following recursive equations: 
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The lower and upper bounds of input variables (i.e., ( ) ( ),L U

i ip p ) can be transformed into the 

normalized values of -1 and 1, respectively and thus a transformation function ( )ϕ •  for any 

intermediate value in the design domain can be obtained as: 
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Where iξ is the transformed value in domain [-1, 1] corresponding to ip  in the domain           

[ ( ) ( ),L U

i ip p ] for ith input parameter ( [ ] 1
1 2, ,...,

T m
mξ ξ ξ ×= ∈ℜξ ).     

3.4 Kriging method  

 
The Kriging model initially developed in spatial statistics by Danie Gerhardus Krige 

and subsequently extended by Matheron [133] and Cressie [134]. Kriging is a Gaussian 

process based modelling method, which is compact and cost effective for computation. 

Kriging surrogate models are employed to fit the data those are obtained for larger 

experimental areas than the areas used in low order polynomial regression. Hence Kriging 

models are global rather than local wherein such models are used for prediction. The Kriging 

model postulates a combination of a known function employed for simulation of required 

output as 

)()()( 0 xZxyxy +=  (43) 

where y(x) is the unknown function of interest, x is an m dimensional vector (m design 

variables), )(0 xy  is the known approximation (usually polynomial) function and Z(x) 

represents is the realization of a stochastic process with mean zero, variance, and nonzero 

covariance. In the model, the local deviation at an unknown point (x) is expressed using 

stochastic processes. The sample points are interpolated with the Gaussian random function 

as the correlation function to estimate the trend of the stochastic processes. The )(0 xy term is 

similar to a polynomial response surface, providing global model of the design space. In 

present study, )(0 xy globally approximates the design space, Z(x) creates the localized 
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deviations so that the Kriging model interpolative Kriging models can also be created to 

smooth noisy data [135]. The covariance matrix of Z(x) is given as 

)],([)](,)([ 2 jiji xxRRxZxZCov σ=  (44) 

 
where R is a (p × p) correlation matrix and R(xi, xj) is the correlation function between any 

two of the p-sampled data points xi and xj. R is an (p x p) symmetric matrix with ones along 

the diagonal. The correlation function R(xi, x
j) is specified by the user, and a variety of 

correlation functions exist. Using Gaussian correlation function  
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where n is the number of design variables, θk is the unknown correlation parameters used to 

fit the model, and i
kx and j

kx are the k-th components of the sample points ix  and jx , 

respectively. The predicted estimates, ŷ  of the response )(xy at random values of x are 

defined as Kriging predictor  

]ˆ[)(ˆ)(ˆ 1 ββ fyRxrxy T −+= −
 (46) 

where y is the column vector of length p that contains the sample values of the frequency 

responses and f is a column vector of length p that is filled with ones when )(0 xy is taken as 

constant. Now, )(xrT  is the correlation vector of length p between the random x and the 

sample data points }......,.........,{ 21 pxxx       

TpT xxRxxRxxRxxRxr ]),(.......).........,(),,(),,([)( 321=  (47) 
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(48) 

 

An estimate of the variance between underlying global model β̂  and y is estimated by  
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Now the model fitting is accomplished by maximum likelihood (i.e., best guesses) for θk. The 

maximum likelihood estimates (i.e., “best guesses”) for the θk in equation (38) used to fit a 

Kriging model are obtained as 

[ ]RpMax k ln)ˆln(
2

1
)(. 2 +−= σθΓ  (50) 

 
where the variance σ2 and |R| are both functions of θk, is solved for positive values of θk as 

optimization variables. After obtaining Kriging based surrogate, the random process Z(x) 

provides the approximation error that can be used for improving the surrogate model. The 

maximum mean square error (MMSE) and maximum error (ME) are calculated as, 
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where iy and iy  are the vector of the true values and the vector corresponding to i-th 

prediction, respectively. 

3.5 Multivariate Adaptive Regression Splines (MARS) 

 
 Multivariate adaptive regression splines algorithm (MARS) [136] provides an efficient 

mathematical relationship between input parameters and output feature of interest for a 

system under investigation based on few algorithmically chosen samples. MARS is a 

nonparametric regression procedure that makes no assumption about the underlying 

functional relationship between the dependent and independent variables. MARS algorithm 

adaptively selects a set of basis functions for approximating the response function through a 

forward and backward iterative approach. The MARS model can be expressed as 

)(
1

i

n

k

f

kk xHY ∑
=

= α  (53) 



  

   

33 

 

with    1).....,,( 321 =n
f

k xxxxH  
, for k = 1  

 

where kα and )( i
f

k xH  are the coefficient of the expansion and the basis functions, respectively. 

Thus the first term of equation (53) becomes α1, which is basically an intercept parameter. The 

basis function can be represented as 
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(54) 

 

where ki  is the number of factors (interaction order) in the k-th basis function, 1, ±=kiz , ),( kijx  

is the j-th variable, 1 ≤ j(i,k) ≤ n, and kit , is a knot location on each of the corresponding 

variables. q is the order of splines. The approximation function Y is composed of basis 

functions associated with k sub-regions. Each multivariate spline basis function )( i
f

k xH is the 

product of univariate spline basis functions kiz , , which is either order one or cubic, depending 

on the degree of continuity of the approximation. The notation “tr” means the function is a 

truncated power function. 
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Here each function is considered as piecewise linear with a trained knot ‘tr’ at each ),( kix . By 

allowing the basis function to bend at the knots, MARS can model functions that differ in 

behaviour over the domain of each variable. This is applied to interaction terms as well. The 

interactions are no longer treated as global across the entire range of predictors but between the 

sub-regions of every basis function generated. Depending on fitment, the maximum number of 

knots to be considered, the minimum number of observations between knots, and the highest 

order of interaction terms are determined. The screening of automated variables occur as a 
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result of using a modification of the generalized cross-validation (GCV) model fit criterion, 

developed by Craven and Wahba [137]. MARS finds the location and number of the needed 

spline basis functions in a forward or backward stepwise fashion. It starts by over-fitting a 

spline function through each knot, and then by removing the knots that least contribute to the 

overall fit of the model as determined by the modified GCV criterion, often completely 

removing the most insignificant variables. The equation depicting the lack-of-fit ( fL ) criterion 

used by MARS as 
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Where ‘n’ denotes the number of sample observations, )
~

(~ kc  is the number of linearly 

independent basis functions, k
~

 is the number of knots selected in the forward process, and 

‘M’ is a cost for basis-function optimization as well as a smoothing parameter for the 

procedure. The larger values of ‘M’ result in fewer knots and smoother function estimates. 

The best MARS approximation is the one with the highest GCV value. Thus MARS is also 

compared with parametric and nonparametric approximation routines in terms of its accuracy, 

efficiency, robustness, model transparency, and simplicity and it is found suitable 

methodologies because it is more interpretable than most recursive partitioning, neural and 

adaptive strategies wherein it distinguishes well between actual and noise variables. 

Compared to other techniques, the use of MARS for engineering design applications is 

relatively new. Sudjianto et al. [138] use MARS to emulate a conceptually intensive complex 

automotive shock tower model in fatigue life durability analysis. Wang et al. [139], compare 

MARS to linear, second-order, and higher-order regression models for a five variable 
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automobile structural analysis. Friedman [136] uses the MARS procedure to approximate 

behaviour of performance variables in a simple alternating current series circuit. The major 

advantages of using the MARS procedure appears to be accuracy and major reduction in 

computational cost associated with constructing the metamodel compared to the kriging 

method.    

 
3.6 Radial Basis Function (RBF) 

 
       Quadratic surrogates have the benefit of being easy to implement while still being 

able to model curvature of the underlying function. Another way to model curvature is to 

consider interpolating surrogates, which are linear combinations of nonlinear basis functions 

and satisfy the interpolation points. RBF is often used to perform the interpolation of 

scattered multivariate data [140-142]. The metamodel appears in a linear combination of 

Euclidean distances can be expressed as 
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where, n is the number of sampling points, kw  is the weight determined by the least-squares 

method and ),( kk xXφ is the k-th basis function determined at the sampling point kx . Various 

symmetric radial functions are used as the basis function. The radial function for RBF model 

can be expressed as, 
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The RBF method can be treated to be as an interpolator like Kriging. However, such 

an interpolation method has shortcomings in that the appearance of a metamodel varies 

significantly with the type of basis function and its internal parameters. In the present study, a 

Gaussian basis function is employed with the fixed parameter 2r =1. It should be noted that 

an RBF passes through all the sampling points exactly. This means that function values from 

the approximate function are equal to the true function values at the sampling points. This can 

be seen from the way that the coefficients are found. Therefore, it would not be possible to 

check RBF model fitness with ANOVA, which is a drawback of RBF. 

3.7 Moving Least Squares (MLS) 

 

         In general, the polynomial regression models give the large errors in conjunction to 

non-linear responses while give good approximations in small regions wherein the responses 

are less complex. Such features are found advantageous while implementing the method of 

moving least squares (MLS). Moreover, the least square method gives a good result to 

represent the original limit state but it creates a problem if anyone like to fit a highly 

nonlinear limit function with this technique because this technique uses same factor for 

approximation throughout the space of interest. To overcome this problem, the moving least 

square method is introduced. In this method, a weighted interpolation function or limit state 

function is employed to the response surface and some extra support points are also generated 

over least square method to represent perfectly the nonlinear limit surface. In stochastic 

analysis, uncertainties can be expressed as a vector of random variables, 

T

nxxxxx ],.........,,[ 321= , characterized by a probability density function (PDF) with a 

particular distribution such as normal or lognormal with limit state function of these random 
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variables. To avoid the curse of dimensionality in dealing with random input variables, 

response surface methods (RSM) can be utilised to increase the computational efficiency. 

These methods approximate an implicit limit state function as a response surface function 

(RSF) in an explicit form, which is evaluated for a set of selected design points throughout a 

number of deterministic structural analyses. RSM approximates an implicit limit state 

function as a RSF in explicit form. It selects experimental points by an axial sampling scheme 

and fits these experimental points using a second order polynomial without cross terms 

expressed as 
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where oβ , iβ , ijβ  and iiβ are the unknown coefficients of the polynomial equation. The least 

squares approximation commonly used in the conventional RSM allots equal weight to the 

experimental points in evaluating the unknown coefficients of the RSF. The weights of these 

experimental points should consider the proximity to the actual limit state function so that 

MLS [143-145] enables a higher weight to yield a more accurate output. The approximated 

RSF can be defined in terms of basis functions )(xb  and the coefficient vector )(xa as 

)()()(
~

xaxbxL T=  (64) 

The coefficient vector )(xa  is expressed as a function of the random variables x to consider 

the variation of the coefficient vector according to the change of the random variable at each 

iteration. The local MLS approximation at x  is formulated as [20] 
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where ix  denotes experimental points and the basis functions )(xB are commonly chosen as 
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The vector of unknown coefficients )(xa  is determined by minimizing the error between the 

experimental and approximated values of the limit state function. This error is defined as 
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where  [ ]T

nxLxLxLL )(..........),(),( 21= , [ ]T

nxbxbxbB )(..........),(),( 21= and  

[ ])(..........),(),(.)( 2211 xxwxxwxxwdiagxW nm −−−= . Here (n+1) is the number 

of sampling points and (m+1) is the number of basis functions. Now for minimization of 

error with respect to )(xa , 0)( =∂∂ aErr transforming the coefficient of vector )(xa  as 

LxWBBxWBxa TT )())(()( 1−=  (68) 

The approximated response surface function is obtained from equation (65) as 

LxWBBxWBxbxL TTT )())(()()(
~ 1−=  (69) 

3.8 Group Method of Data Handling - Polynomial Neural Network (GMDH-PNN) 

 

    In general, the Polynomial Neural Network (PNN) algorithm [23, 24] is the advanced 

succession of Group Method of Data Handling (GMDH) method wherein different linear, 

modified quadratic, cubic polynomials are used. By choosing the most significant input 

variables and polynomial order among various types of forms available, the best partial 

description (PD) can be obtained based on selection of nodes of each layer and generation of 

additional layers until the best performance is reached. Such methodology leads to an optimal 

PNN structure wherein the input–output data set can be expressed as 

),......,,,(),( 321 iniiiiii yxxxxYX = where i=1,2,3……..n (70) 

By computing the polynomial regression equations for each pair of input variable ix  and jx  

and output Y of the object system which desires to modeling 

jijiji xxFxExDxCxBAY +++++= 22  where ji, =1,2,3……..n (71) 
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where A, B, C, D, E, F are the coefficients of the polynomial equation. This provides 

2/)1( −nn  high-order variables for predicting the output Y in place of the original n 

variables ),........,,( 21 nxxx . After finding these regression equations from a set of input-output 

observations, we then find out which ones to save. This gives the best predicted collection of 

quadratic regression models. We now use each of the quadratic equations that we have just 

computed and generate new independent observations that will replace the original 

observations of the variables ),........,,( 21 nxxx . From these new independent variables we will 

combine them exactly as we did before. That is, we compute all of the quadratic regression 

equations of Y versus these new variables. This will provide a new collection of 

2/)1( −nn regression equation for predicting Y from the new variables, which in turn are 

estimates of Y from above equations. Now the best of new estimates is selected to generate 

new independent variables from selected equations to replace the old, and combine all pair of 

these new variables. This process is continued until the regression equations begin to have a 

poorer predictability power than did the previous ones.  In other words, it is the time when 

the model starts to become overfitted. The estimated output iŶ can be further expressed as 
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where kji ,, =1,2,3……..n 

(72) 

where ),......,,( 21 nxxxX is the input variables vector and ,........),,,( 0 ijkiji DCBAP  is vector of 

coefficients or weight of the Ivakhnenko polynomials. Components of the input vector X can 

be independent variables, functional forms or finite difference terms. This algorithm allows to 

find simultaneously the structure of model and model system output on the values of most 

significant inputs of the system. The following steps are to be performed for the framework 

of the design procedure of PNN [146]:  
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Step1: Determination of input variables: Define the input variables as nxi ,......3,2,1=  related 

to output variable Y. If required, the normalization of input data is also completed. 

Step 2: Create training and testing data: Create the input–output data set )(n and divide into 

two parts, namely, training data )( trainn and testing data )( testn  where testtrain nnn += . The 

training data set is employed to construct the PNN model including an estimation of the 

coefficients of the partial description of nodes situated in each layer of the PNN. Next, the 

testing data set is used to evaluate the estimated PNN model. 

Step 3: Selection of structure: The structure of PNN is selected based on the number of input 

variables and the order of PD in each layer. Two kinds of PNN structures, namely a basic 

PNN and a modified PNN structure are distinguished. The basic taxonomy for the 

architectures of PNN structure is furnished in figure 6. 

                      

Fig. 6 Taxonomy for architectures of PNN 

Step 4: Determination of number of input variables and order of the polynomial: Determine 

the regression polynomial structure of a PD related to PNN structure. The input variables of a 

node from n input variables nxxxx ......,,, 321  are selected. The total number of PDs 

located at the current layer differs according to the number of the selected input variables 

from the nodes of the preceding layer. This results in !)!!(/! rrnnk −=  nodes, where r is 

the number of the chosen input variables. The choice of the input variables and the order of a 

PD itself help to select the best model with respect to the characteristics of the data, model 

design strategy, nonlinearity and predictive capability. 
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Step 5: Estimation of coefficients of PD: The vector of coefficients iA  is derived by 

minimizing the mean squared error between iY  and iŶ . 
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where PI represents a criterion which uses the mean squared differences between the output 

data of original system and the output data of the model. Using the training data subset, this 

gives rise to the set of linear equations 
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The coefficients of the PD of the processing nodes in each layer are derived in the form 
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with the following notations i as the node number, k as the data number, trainn  as the number 

of the training data subset, n as the number of the selected input variables, m as the maximum 

order, and n′ as the number of estimated coefficients. This procedure is implemented 

repeatedly for all nodes of the layer and also for all layers of PNN starting from the input 

layer and moving to the output layer. 

Step 6: Selection of PDs with the best predictive capability: Each PD is estimated and 

evaluated using both the training and testing data sets. Then we compare these values and 

choose several PDs, which give the best predictive performance for the output variable. 

Usually a predetermined number W of PDs is utilized. 
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Step 7: Check the stopping criterion: The stopping condition indicates that a sufficiently good 

PNN model is accomplished at the previous layer, and the modelling can be terminated. This 

condition reads as 
jPI  > PI* where 

jPI  is a minimal identification error of the current layer 

whereas PI* denotes a minimal identification error that occurred at the previous layer. 

Step 8: Determination of new input variables for the next layer: If jPI (the minimum value in 

the current layer) has not been satisfied (so the stopping criterion is not satisfied), the model 

has to be expanded. The outputs of the preserved PDs serve as new inputs to the next layer. 

 
3.9 Artificial Neural Network (ANN) 

 The fundamental processing element of ANN is an artificial neuron (or simply a neuron). 

A biological neuron receives inputs from other sources, combines them, generally performs a 

non-linear operation on the result, and then outputs the final result [147]. In the present study, 

the stochastic natural frequencies can be determined due to variability of input parameters. 

The ability of the ANNs, to recognize and reproduce the cause-effect relationships through 

training for the multiple input-output systems makes them efficient to represent even the most 

complex systems [148]. The main advantages of ANN as compared to response surface 

method (RSM) include:  

a) ANN does not require any prior specification of suitable fitting function, and  

b) It also has a universal approximation capability to approximate almost all kinds of 

non-linear functions including quadratic functions, whereas RSM is generally useful 

for quadratic approximations [149].  

A multi-layer perceptron (MLP) based feed-forward ANN, which makes use of the back 

propagation learning algorithm, was applied for computational modelling. The network 

consists of an input layer, one hidden layer and an output layer. Each neuron acts firstly as a 

adding junction, summing together all incoming values. After that, it is filtered through an 
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activation transfer function, the output of which is forwarded to the next layer of neurons in 

the network. The hyperbolic tangent was used as the transfer function for the input and 

hidden layer nodes. The reason behind  employing the transfer function as logistic function or 

hyperbolic tangent (tanh) can be described as the logistic function generates the values nearer 

to zero if the argument of the function is substantially negative. Hence, the output of the 

hidden neuron can be made close to zero, and thus lowering the learning rate for all 

subsequent weights. Thus, it will almost stop learning. The tanh function, in the similar 

fashion, can generate a value close to -1.0, and thus will maintain learning. The algorithm 

used to train ANN in this study is quick propagation (QP). This algorithm is belonging to the 

gradient descent back-propagation. It has been reported in the literature that quick 

propagation learning algorithm can be adopted for the training of all the ANN models [150]. 

The performance of the ANNs are statistically measured by the root mean squared error 

(RMSE), the coefficient of determination (R2) and the absolute average deviation (AAD) 

obtained as follows: 

∑
=

−=
n

i

idi YY
n

RMSE
1

2)(
1

 
(76) 

∑

∑

=

=

−

−

−=
n

i

mid

n

i

idi

YY

YY

R

1

2

1

2

2

)(

)(

1  
(77) 

100
)(1

1

×






 −
= ∑

=

n

i id

idi

Y

YY

n
AAD  

(78) 

where n is the number of points, Yi  is the predicted value, Yid  is the actual value, and Ym is 

the average of the actual values. 

3.10 Support vector regression method 

        Support vector regression (SVR) model is a special version of the Support Vector 

Machine (SVM) developed for regression analysis. Suppose the training data is given as 
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ℜ×⊂ χ)},(.........),(),,{( 2211 ll yxyxyx  where χ  and ℜ  denote the space of the input 

patterns and Euclidean space vector. In support vector regression [151], the primary objective 

is to find a function )(ˆ xf  that has at most ε  deviation from the actually obtained targets iy  

for all these training data and at the same time, is as flat as possible. In other words, errors are 

neglected as long as they are less than ε  (refer to Figure 7), but it will not accept any 

deviation larger than this limiting value.  Thus SVR model uses a subset of data samples, 

support vectors, to construct a metamodel that has a maximum deviation of ε  from the 

function value of each training data. For a linear regression, the SVR model can be written as 

bxWxYxf +>⋅<== )(ˆ)(ˆ  (79) 

where )(ˆ xY  , W and b denote the approximate value of the objective function at x , vector of 

weights and the bias term, respectively while >⋅<  indicates the inner product. The sample 

points which lie within the ±ε band (known as the ε -tube) are ignored, with the predictor 

being defined entirely by those that lie on or outside this region termed as the support vectors. 

The basic form of the SVR prediction is the familiar sum of basis functions )(iψ , with 

weightings )(iw , added to a base term b , which can be expressed as, 
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To produce a prediction which generalizes well, it is required to find the function 

with, at most, ε deviations from y and at the same time, minimum complexity. Instead of 

minimizing the empirical risk on the training data during the fitting process, SVR minimizes 

an upper bound on the expected risk using an ε -insensitive loss function, as constrained 

convex quadratic optimization problem proposed by [42] 
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Fig. 7 Soft margin loss setting corresponding to a linear Support Vector machine 

SVR model performs both linear as well as non-linear regression ε -insensitive loss function, 

at the same time, tries to reduce the model complexity by minimizing the norm of the 

weighting vector, 

             
2

2

1
WMinimize  

Subjected to           












≤−+>⋅<

≤−>⋅<−

ε

ε

i

i

i

i

YbxW

bxWY

)(

)(

 

(82) 

It should be noted that there might not be a function that satisfies the condition in euqtion 

(82). The regularization parameter determines the trade-off between the model complexity 

and the degree for which deviation larger than ε  is tolerated in equation (82). A non-linear 

regression can be achieved by replacing the >⋅< in equation (79) with a kernel function, K as 
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In the case studies examined in this paper, a Gaussian kernel function is used and ε  and G 

parameters are chosen based on the recommendation proposed by Cherkassky and Ma [152]. 

For more details on SVR, the interested reader may refer to [151-153]. 

4. Metamodel based stochastic natural frequency analysis 

      The stochasticity in layer-wise material properties of laminated composite plates, 

such as longitudinal elastic modulus, transverse elastic modulus, longitudinal shear modulus, 

transverse shear modulus, Poisson’s ratio, mass density and geometric properties such as ply-

orientation angle are considered as input parameters. In the present study, frequency domain 

feature (first three natural frequencies) is considered as output. It is assumed that the 

distribution of randomness of input parameters exists within a certain band of tolerance with 

their central deterministic mean values following a uniform random distribution. Both 

individual (ply-orientation angle) and combined layer-wise variation of input parameters are 

considered to account for the effect of low and high dimensional input parameter space in the 

surrogate based uncertainty quantification algorithms as follows  

(a) Variation of ply-orientation angle only:                    }..............{)( 321 li θθθθθωθ =  

(b) Combined variation of ply orientation angle, elastic modulus (longitudinal and 

transverse), shear modulus (longitudinal and transverse), Poisson’s ratio and mass density: 

})..(),...(),..(),..(

,)...(),...(),...({)}(),(),(),(),({

1716)(23)1(235)(12)1(124

)(2)1(23)(1)1(121112312

llll
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ρρΦµµΦΦΦ

ΦΦθθΦωωωωρωθ =
 

where θi , E1(i) , E2(i) , G12(i) , G23(i) , µi and ρi are the ply orientation angle, elastic modulus 

along longitudinal and transverse direction, shear modulus along longitudinal direction, shear 

modulus along transverse direction, Poisson’s ratio and mass density, respectively and ‘l’ 

denotes the number of layer in the laminate. In present study, ± 5º for ply orientation angle 

with subsequent ± 10% tolerance for material properties from deterministic mean value are  
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(a) (b) 

Fig. 8 Flowchart of stochastic natural frequency analysis using (a) surrogate model and (b) ANSYS
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considered following standard industry practise for presenting results. The sampling 

technique for a particular surrogate modelling method is chosen on the basis of available 

literature to ensure best possible performance of each surrogate as furnished in figure 3. 

Figure 8(a) presents the flowchart of stochastic natural frequency analysis using surrogate 

models.  

A major limitation of the studies on uncertainty quantification of laminated 

composites as presented in the literature review section is that most of the investigations are 

based on finite element codes written in scientific programming languages like FORTRAN or 

MATLAB. This restricts application of such uncertainty quantification methods to large-scale 

complex structures, for which commercially available finite element modelling packages are 

commonly used in industry.  In this article, we present a useful industry oriented uncertainty 

quantification scheme using commercial finite element software in conjunction with 

MATLAB. For that purpose, the APDL script generated after modelling the composite plate 

in ANSYS environment is integrated with MATLAB. A fully automated MATLAB code is 

developed capable of rewriting the APDL script in each iteration containing the random 

values of stochastic input parameters, then running the APDL script to obtain desired outputs 

(refer the flowchart presented in figure 8(b)) and saving the results for each sample. Thus 

Monte Carlo simulation can be carried out using ANSYS in conjunction with MATLAB for 

any number of samples following the proposed approach. 

5. Results and Discussion   

       The previous investigations in the field of laminated composites have focused on the 

deterministic aspect of different static and dynamic responses over the last few decades [154-

170]. A relatively new area of research is the quatification of uncertainty in laminated 

composite structures [171]. The amount of research carried out in the field of uncertainty 
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quantification of composite structures is insufficient owing to the computational 

intensiveness of such analyses. However, the stage of research on application of metamodels 

to achive computational efficeincy in the quncertainty quantification of composites is still in 

its infancy. As discussed in the introduction section, all the investigations on metamodel 

based uncertainty quantification of laminated composites are performed using a single 

metamodel. Thus there exists a strong rationale among the scientific community to 

investigate the relative performanec of different metamodels, which is the focus of the 

present study.  In the present paper, a three layered graphite-epoxy symmetric angle-ply 

(45°/-45°/45°) laminated composite cantilever plate is considered to investigate the 

comparative perfoemance of different metamodels on the basis of accuracy and 

computational efficiency. The length, width and thickness of the composite laminate 

considered in the present analysis are 1 m, 1 m and 5 mm, respectively. Material properties of 

graphite–epoxy composite [172] considered with deterministic mean value as E1 = 138.0 

GPa, E2 = 8.96 GPa, G12 = 7.1 GPa, G13 = 7.1 GPa, G23 = 2.84 GPa, µ = 0.3, ρ=3202 kg/m3. 

An eight noded isoparametric quadratic plate bending element is considered for the present 

FEM approach. For full scale MCS, number of original finite element analysis is same as the 

sampling size. In general for complex composite structures, the performance function is not 

available as an explicit function of the random design variables. The considered metamodels 

are employed to find the predictive and representative surrogates relating the first three 

natural frequencies to a number of input variables on a comparative basis. Thus the 

metamodels are used to determine the first three natural frequencies corresponding to given 

values of stochastic input variables, instead of time-consuming and computationally intensive 

finite element analysis.  

Table 1 presents the finite element mesh convergence study for non-dimensional 

fundamental natural frequencies of three layered graphite-epoxy untwisted composite plates 
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validated with the results obtained from ANSYS as well as Quatu and Leissa [154]. 

Validation of the developed deterministic finite element code with the results of commercial 

packages like ANSYS caters to more confidence in the present analysis. Other than validation 

of the deterministic finite element formulation by computer code, ANSYS is also employed 

to validate the stochastic model of three layered angle-ply (45°/-45°/45°) composite 

cantilever plates corresponding to individual and combined variation of input parameters 

following the algorithm presented in figure 8(b). A convergence study is carried out with 

respect to mesh sizes (4×4), (6×6), (8×8), (10×10) and (12×12) as furnished in Figure 9. To 

enumerate best predictive mesh convergence, (6×6) mesh size is considered in the present 

comparative study corresponding to individual and combined variation of input parameters. 

A comprative assesment of different design of experiment methods has been carried 

out in conjunction with polynomial regression method. Figure 10 presents the error in 

percentage of mean and standard deviation of first three natural frequencies for polynomial 

regression based stochastic analysis using different design of experiment algorithms with 

respect to MCS results for individual variation of ply orientation angle )}({ ωθ  and combined 

variation )}(),(),(),(),(),(),({ 231221 ωρωµωωωωωθ GGEE . D-optimal design method is 

observed to be the most computationally efficient and accurate compared to other design of 

experiment algorithms. The scatter plot and probability density function plot for first three 

natural frequencies corresponding to combined variation of input parameters are furnished in 

figure 11 considering polynomial regression using D-optimal design method along with 

traditional Monte Carlo simulation results. The figures corroborate excellent capability of D-

optimal design based polynomial regression method in prediction as well as characterizing 

the probabilistic features for first three natural frequencies.  
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(a) 

 

(b) 

 

(c) 

Fig. 9 Finite element mesh convergence study using ANSYS for combined stochasticity 
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Table 1 Convergence study for non-dimensional fundamental natural frequencies [ω=ωn L
2 

√(ρ/E1t
2)] of three layered (θ°/-θ°/θ°) graphite-epoxy untwisted composite plates, a/b=1, 

b/t=100, considering E1 = 138 GPa, E2 = 8.96 GPa, G12 = 7.1 GPa, ν12 = 0.3. 
 

Ply 
angle, 
θ  

Methods Mesh Sizes Qatu and 
Leissa 
[154]  4 ×  4 6 ×  6  8 ×  8 10 ×  10 

0° Present FEM 1.0112 1.0133 1.0107 1.0040 1.0175 

ANSYS 1.0111 1.0130 1.0101 1.0035 

45° Present FEM 0.4591 0.4603 0.4603 0.4604 0.4613 

ANSYS 0.4588 0.4600 0.4598 0.4696  

90° Present FEM 0.2553 0.2567 0.2547 0.2542 0.2590 

ANSYS 0.2550 0.2565 0.2545 0.2541 

 

Individual cases Combined cases 

  

  

(a) (b) 
  
  

  
(c) (d) 

  

Fig. 10 (a-d) Error (%) of mean and standard deviation of first three natural frequencies 
between polynomial regression method with different design of experiment methods and 
MCS results for individual variation of ply orientation angle and combined variation (f1 f2 
and f3 denote first three modes of vibration)  
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(a) (b) (c) 

 
  

(d) (e) (f) 

Fig. 11 Scatter diagram and probability density function for first three natural frequencies corresponding to combined variation of input 
parameters considering polynomial regression using D-optimal design method 
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Mean Error (%) SD Error (%) 

  
(a) (b) 

  

  
(c) (d) 

  

  
(e) (f) 

  

 
Fig. 12 (a-f) Error (%) of mean and standard deviation of first three natural frequencies 
between surrogate modelling methods and MCS results with respect to different sample sizes 
for individual variation of ply orientation angle [ )(ωθ ] for angle-ply (45°/-45°/45°) 

composite plates 
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Mean Error (%) SD Error (%) 

  

  
(a) (b) 

  
  

  

(c) (d) 
  
  

  
(e) (f) 

   

Fig. 13 (a-f) Error (%) of mean and standard deviation of first three natural frequencies 
between surrogate modelling methods and MCS results with respect to different sample sizes 

for combined variation )}(),(),(),(),(),(),({ 231221 ωρωµωωωωωθ GGEE for angle-ply 

(45°/-45°/45°) composite plates 
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(a) (b) 

 
(c) 

 
Fig. 14 Probability density function for first three natural frequencies corresponding to individual variation of input parameters (colour code: 

 MCS and specification of other colours are indicated in the figures) 
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(a) (b) 

  

 
(c) 

Fig. 15 Probability density function for first three natural frequencies corresponding to combined variation of input parameters (colour code: 
 MCS and specification of other colours are indicated in the figures)
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Figure 12 presents the percentage error of mean and standard deviation of first three 

natural frequencies between the considered surrogate modelling methods and MCS results 

with respect to different sample sizes for individual variation of ply orientation angle 

[ )(ωθ ],while Figure 13 indicates the error in percentage for mean and standard deviation of 

first three natural frequencies between surrogate modelling methods and MCS                

results  with respect   to   different sample sizes for  combined variation of all stochastic input 

parameters )}(),(),(),(),(),(),({ 231221 ωρωµωωωωωθ GGEE . In general, for all cases, the 

sparsity of first three natural frequencies for combined variation of input parameters are 

found to be higher than that of individual variation of input parameter, as expected. As the 

sample size increases, the percentage of error of mean and standard deviation of first three 

natural frequencies between surrogate modelling methods and MCS results are found to 

reduce irrespective of modelling methods. An exhaustive study is carried out to enumerate 

the best minimum sample size required to construct the metamodel for all tested modelling 

methods corresponding to suitable sampling techniques. Polynomial regression with D-

optimal design method is found to require least number of samples for suitable fitment of 

surrogates corresponding to individual as well as combined variation cases. In contrast, 

Group method of data handling - Polynomial neural network (GMDH-PNN) method and 

Support Vector Regression (SVR) are observed to require maximum number of sample for 

individual variation while Artificial neural network (ANN) method is found to need the 

maximum number of samples for combined variation compared to other tested modelling 

methods. Table 2 presents the minimum number of samples required for different tested 

metamodelling methods to obtain reasonable accuracy in terms of mean and standard 

deviation for the layer-wise stochastic analysis of composite plate for both individual and 

combined variation. A clear idea about the performance of different metamodeling techniques 

from the viewpoint of computational efficiency can be perceived for both low and relatively 
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higher dimensional input parameter space. The probability distributions obtained by using ten 

different metamodelling methods along with traditional MCS for first three natural 

frequencies corresponding to individual (only ply angle) and combined variation of         

input parameters are shown in Figure 14 and Figure 15, respectively. From the viewpoint of  

Table 2 Minimum sample size required for different metamodeling methods    

Sl. No. Metamodeling methods 

Mínimum number of samples 
required for model formation 

Individual 
variation 

 

Combined 
variation 

1. High dimensional model representation (HDMR) 256 512 

2. Kriging method 128 256 

3. Polynomial chaos expansion (PCE) 64 128 

4. Artificial neural network (ANN) 256 2048 

5. Multivariate adaptive regression splines (MARS) 64 128 

6. Moving Least Square (MLS) 128 512 

7. Radial basis function (RBF) 64 1024 

8. Group method of data handling  - Polynomial 
neural network (GMDH-PNN) 
 

512 1024 

9. Polynomial Regression (by D-optimal) 32 64 

10. Support Vector Regression (SVR) 512 1024 

accuracy in probabilistic characterization with respect to traditional MCS, performances are 

comparatively worse for ANN and SVM in case of individual stochasticity and SVM and 

PCE in case of combined stochasticity respectively. Other metamodels are found to obtain 



  

   

60 

 

satisfactory results, polynomial regression based on D-optimal design being the best. ANN 

performs better for the higher dimensional input parameter space (combined case), even 

though it requires more samples compared to most of the other methods. However, it can be 

noted that the results presented in figures 14-15 are obtained using the corresponding sample 

size provided in Table 2, which is finalized on the basis of error analysis for mean and 

standard deviation. The trade-off between desired level of accuracy and computational 

efficiency should be judged based on specific requirements for a particular problem. The 

results presented in this article along with the in-depth previous comparative investigations 

on response surface method [46] and kriging model variants [14] can provide a reasonably 

composed guideline for choosing sampling method and surrogate modelling technique for 

future applications. However, it should always be noted that surrogate modelling being a 

problem-specific technique, it is quite difficult to identify a single surrogate model that works 

best for all problems.  Thus future researches are necessary to investigate the comparative 

performances of different surrogates for other types of problems in structural mechanics from 

different other angles such as non-linearity, dimension of input parameter space and the effect 

of correlation among them, noise etc. The present article will serve as an important reference 

for such future investigations. 

6. Conclusion 

     This paper presents a concise review on metamodel based uncertainty quantification 

algorithms along with a critical comparative assessment of different metamodels (such as 

polynomial regression, kriging, high dimensional model representation, polynomial chaos 

expansion, artificial neural network, moving least square, support vector regression, 

multivariate adaptive regression splines, radial basis function and polynomial neural network) 

for stochastic natural frequency analysis of composite laminates from the viewpoint of 
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accuracy (with respect to traditional Monte Carlo simulation) and computational efficiency. 

To the best of authors’ knowledge, this is the first ever attempt to present a comprehensive 

comparative investigation considering all the most prominent metamodeling techniques in 

such large scale providing a complete understanding about the relative performances based 

on different criteria. First three stochastic natural frequencies of a laminated composite plate 

are considered for individual and combined variation of layer-wise random input parameters. 

A comparative investigation is presented on different design of experiment methods (such as 

2k factorial designs, central composite design, A-Optimal design, I-Optimal, D-Optimal, 

Taguchi’s orthogonal array design, Box-Behnken design) in conjunction with polynomial 

regression revealing that D-optimal design obtains most satisfactory results compared to 

others. For each of the metamodeling techniques, the rate of convergence with respect to 

traditional Monte Carlo simulation has been studied considering both low and high 

dimensional input parameter space. Probabilistic descriptions of the natural frequencies 

obtained on the basis of different metamodeling techniques are presented along with crude 

Monte Carlo simulation results. 

Polynomial regression with D-optimal design method is found to be most 

computationally cost effective for suitable fitment of surrogates corresponding to individual 

as well as combined variation of input parameters. Group method of data handling - 

polynomial neural network (GMDH-PNN) method and support vector regression (SVR) are 

observed to be least computationally efficient for individual variation while artificial neural 

network (ANN) method is found to be most computationally expensive for combined 

variation compared to other metamodels. From the viewpoint of accuracy in probabilistic 

characterization with respect to traditional MCS, performances are comparatively worse for 

ANN and SVM in case of individual stochasticity while SVM and PCE shows relatively less 

accuracy in case of combined stochasticity. On the basis of the stochastic results presented in 
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this article, a clear idea about the performance of different metamodeling techniques from the 

viewpoint of accuracy and computational efficiency can be perceived for both low and 

relatively higher dimensional input parameter space. Although this study focuses on 

stochastic natural frequency analysis of composite plates, the outcomes regarding 

comparative performance of different metamodels will serve as a valuable reference for 

different other computationally intensive problems in the broader field of science and 

engineering. 
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