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Adaptive Neural Network Control of AUVs With Control Input
Nonlinearities Using Reinforcement Learning

Rongxin Cui, Member, IEEE, Chenguang Yang, Senior Member, IEEE, Yang Li Student Member, IEEE and
Sanjay Sharma

Abstract— In this paper, we investigated the trajectory tracking
problem for a fully actuated autonomous underwater vehicle
(AUV) which moves in the horizontal plane. External distur-
bances, control input nonlinearities and model uncertainties are
considered in our control design. Based on the dynamic model
derived in the discrete time domain, two neural networks (NN)
including a critical and an action one are integrated into our
adaptive control design. The critical network is introduced to
evaluate the long time performance of the designed control in
current time step, and the action one is used to compensate for
the unknown dynamics. To eliminate the AUV’s control input
nonlinearities, a compensation item is also designed in the adap-
tive control. Rigorous theoretical analysis has been performed
to prove stability and performance of the proposed control law.
Moreover, robustness and effectiveness of the proposed control
method has been tested and validated by extensive numerical
simulation results.

Index Terms— Autonomous underwater vehicle (AUV); Tra-
jectory tracking; Neural network; Adaptive control

I. INTRODUCTION

Nowadays, underwater vehicles, including AUVs, ROVs,
and gliders have been widely applied in various underwater
tasks [1]–[3]. In civil applications, they have been widely
used in seafloor mapping, pipeline checking for oil and gas
industry, and to find missing airplanes’ wreckage in the
air rescue operation, etc. In military applications, they have
been extensively applied to surveillance and reconnaissance
mission, mine countermeasures, oceanography, payload de-
livery, and other time-critical strike. AUVs have also been
involved in scientific investigation of the ocean, ocean floor
and lakes. Precise trajectory control of an AUV is crucial while
performing the underwater tasks. However, it is a challenge
because of the model nonlinearity, coupling and time-varying
hydrodynamics coefficients of the dynamics, which need to be
further studied.

AUVs usually move in 3D space with 6-DOF, which leads
to coupled dynamics between its planar and diving motion.
In most studies, the model of AUVs are always decoupled
enabling possible application of various control methods [3]–
[5]. There are several approaches that have been proposed
for AUV trajectory tracking in 3D space, specifically for
planner motion or diving. The nonlinear AUV model is usually
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linearized firstly which and then the controller can be designer
based on this linear model [6], [7]. With decoupled model,
the diving control of AUVs is concerned. A differentiator
was utilized to enhance the noise attenuation performance
so that active disturbance rejection can be achieved in [4].
By decoupling the depth and course motion, a fuzzy depth
PD controller was designed in [8]. Meanwhile, an output
feedback control was proposed for the AUVs which move
in vertical plane by transforming the path following errors
into Serret-Frenet frame and linearizing the error dynamics in
[7]. For planner motion control of AUVs, a nonlinear control
for both fully actuated and underactuated configuration was
proposed in [5]. It analyzed the effectiveness of side-slip angle
of AUVs in detail. Moreover a tilting thruster configuration
was proposed in [3], and a selective switching control was
designed separately for the two decoupled three-DOF (degree-
of-freedom) subsystems. In [9], both a current induced vessel
model and a general vehicle model were considered. where
the former one accounted for the main current loads. Cascaded
system theory and observer backstepping were then employed
to deign a nonlinear Luenberger observer and a controller
for AUVs. Besides, the results showed that the model-based
controller performed better than conventional PD control. In
this case, the model dynamics in the controller should be
revised in case of the divergence.

Optimal control was also studied in [10]–[12] based on
AUVs dynamical model. In [10], an optimal control is de-
signed to control the AUV trajectory in kinematics level,
and the cost function is described as kinetic energy cost.
Appropriate Hamiltonian was then achieved based on the
maximum principle and optimal solution is finally obtained. A
nonlinear suboptimal control is presented for a non-affine AUV
model, and the state-dependent Riccati equation controller is
applied to the point-to-point tracking of NPS II AUV [11].
Treating uncertainty bounds as one item in the cost function,
an optimal control problem could be obtained by transforming
original robust control problem, then an indirect robust depth
control was presented [12].

The hydrodynamic parameters of AUVs are always obtained
by computational fluid dynamics (CFD) method or towed
experiment identification. However, due to time-varying en-
vironmental and state changing while performing underwater
tasks, the obtained hydrodynamic parameters are not fixed.
Thus, both external disturbance and model parameter uncer-
tainties should be considered in designing an appropriate con-
troller [13]–[16]. To resolve the model parameter uncertainties,
Mamdani Fuzzy rules based PID parameters adjustment was
employed, and then the control design was decoupled in two



channels of heading and depth [17]. A discrete time-delay
control was presented in [18], in which the dynamics of
an AUV is estimated directly. Model uncertainties were also
compensated for by the time-delay estimation in [19].

The velocity of an AUV can be measured by a Doppler
velocity log (DVL), which always has a slow update rate
of new data. To enhance the robustness of unmodeled dy-
namics and external disturbances for an AUV that uses a
DVL, an integral sliding-mode control is introduced [20]. In
[21], a novel method to compensate for bounded external
disturbances and model uncertainties, in which the integral
of the error sign control structure is presented, and semiglobal
asymptotic tracking tracking performance can be established
through Lyapunov stability analysis. Sliding mode control with
backstepping were combined to design a trajectory tracking
controller for an AUV with parameter uncertainties and exter-
nal disturbances in [22].

To deal with external disturbances, a disturbance force
measurement method was introduced to measure the
forces/moments acting on AUVs, then a feed-forward control
was employed on the vehicle based on the predicted response
of the dynamic models [2]. Disturbance observer was an-
other main method which had been involved to compensate
for the unknown external disturbances [9], [15], [23], [24].
Low frequency motion and wave frequency motion of AUVs
were estimated by nonlinear observers, and nonlinear tracking
control was then designed for the AUVs motion in shallow
wave disturbance in [15]. For the purpose of controlling AUVs
in near space, a kind of sliding mode tracking control was
applied in [24] based on disturbance observer. Meanwhile,
adaptive tracking control for fully actuated AUVs employing
a disturbance observer was designed in [25].

Due to the function approximation ability of neural net-
works, fuzzy approximators, neural networks and fuzzy control
based algorithms had been widely studied to compensate
for the environmental disturbances and model uncertainties
of AUVs [26]–[30]. Neural network approximation was em-
ployed to compensate for unknown model parameters, external
disturbances, which were induced by ocean currents and
waves, and uniform ultimate boundedness of tracking errors
was achieved in [26]. Neural networks were used to handle
model uncertainties of AUVs, and dynamic surface control
was also applied in the control design in [27]. The nonlinear
uncertainties in the AUV dynamics were approximated by a
two-layer neural network in [28]. To control the diving of
AUVs, an adaptive control based on a stable neural network
was proposed in [31]. Neural network adaptive control was
presented for multiple AUVs, and the unmeasured states
were estimated by a local observer in [32]. The RBF neural
network was presented to derive the adaptive controller for
systems that subject to external disturbances and unknown
hysteresis in [33]. In a recent work [34], the nonaffine pure-
feedback discrete-time nonlinear system subjected to input
dead-zone was considered. To compensate for the dead-zone,
an adaptive compensative term and an n-step-ahead predictor
was constructed by transforming original system.

Practical control system of AUVs is usually implemented
on an embedded computer in a digital manner with samplers.

Thus, the continues-time controller needs to be transformed
into a discrete-time version [35]. By using the discrete-time
model directly, we develop a trajectory tracking control in
the presence of external disturbances, model parameter un-
certainties, and control input nonlinearities. It should be noted
that there already exist a number of methods to deal with
input nonlinearities problems, such as input dead-zone and
saturation [36]–[38]. Based on the back-stepping method and
Lyapunov analysis, an adaptive trajectory tracking controller
was designed to overcome the model parameter uncertainties
in [37], where a saturation function was utilized to resolve the
actuator saturation problem. To prevent the velocity constraint
violation, a robust adaptive controller was proposed for an
remotely operated vehicle, and the barrier Lyapunov function
was used in the Lyapunov syntheses in [36]. In [38], a novel
dynamic surface control (DSC) was proposed for the pure-
feedback system with unknown input dead zone. The com-
plexity reduces obviously due to the dynamic surface control
policy. Motivated by the work in [34], [39], [40], we propose
reinforcement learning technique to achieve optimal trajectory
tracking for AUVs by employing two neural networks. The
unknown nonlinearities and disturbances are approximated by
the action neural network, while in the mean time, the tracing
evaluation of the tracking performance is approximated by the
critical neural network. In addition, an adaptive compensation
for the control input nonlinearities are considered. Preliminary
results of this work were presented in [41], and extension have
been made by taken into consideration of not only actuator
deadzone and saturation, but also the nonlinear relationship
between the nominal and actual force/moment. Moreover, a
compensation policy for this nonlinearity is proposed, which
will be discussed later.

The reminder of the paper is organized as follows. We
present the nonlinear model of AUVs in Section II. The
two adaptive neural networks will be designed in Section III.
Simulation studies and conclusions are drawn in Section IV
and V, respectively.

II. PROBLEM FORMULATION

A. Motion Equations of an AUV

X

Y

u
v r

Fig. 1. AUV moves in horizontal plane.

As described in Section I, an AUV usually moves in a 3D
space with 6-DOF and leads to coupled dynamics in its planner
and diving motion. To facilitate control design, the model is
usually decoupled, while the designed control will be validated
using the coupled nonlinear dynamics. We consider the planar



motion of an AUV with 3 DOF as shown in Fig. 1. Let us
denote the position coordinate of an AUV as (x,y), the yaw
as (ψ) in the inertial frame, the velocity as (u) in surge, v in
sway and r in yaw in AUV body coordinate. Furthermore, let
us denote the matrix of inertia of the AUV as M, the matrices
for Coriolis and centripetal acceleration and damping as C(ν),
and D(ν), respectively. In addition, we denote the forces and
moments generated by gravitational and buoyancy as g(η).
Consider that the unknown external disturbances and model
parameter uncertainties exists, then the AUV dynamics can be
given as below:

η̇ = R(ψ)ν (1)
Mν̇ +C(ν)ν +D(ν)ν +g(η)+∆(η ,ν) = τ (2)

where ∆(η ,ν) is model uncertainties vector which is induced
by unmodelled dynamics and external disturbances ∆(η ,ν),
and R(ψ) describes the rotation from the AUV body coordi-
nate to earth coordinate in 3 DOF. The control inputs of the
AUV are defined by τ ∈ R3.

The elements in M, mi j, i, j = 1,2,3, the functions in D(ν)
di j(ν), i, j = 1,2,3, and the element of the disturbance vector
∆i(η ,ν), i = 1,2,3 are all unavailable for control design. To
facilitate the control design, we assume that their is a nominal
value of the unknown mass matrix M, which is defined by
M0. In addition, M0 is known a priori. This assumption is
feasible because mass and added mass of an AUV are mainly
determined by its physical shape. Control design in this work
is focused on the 3 DOF model. However, we could extend
the control policy into 6 DOF conveniently due to the fully
actuated model of AUVs used in this paper. In other words,
the controller designed in this paper can also be applied into
the vertical planer.

B. Dynamics Model in Discrete-Time Domain

In this subsection, we transform the continuous-time model
into discrete time for subsequent control design. Eqs. (1) and
(2) can be rewritten as following equations.

ν̇ =−M−1 [(C(ν)+D(ν))ν +g(η)+∆(η ,ν)]

+M−1τ
η̇ =R(ψ)ν

(3)

If the sampling time of the embedded computer for the
AUV control is selected as Ts, through the first-order Taylor
expansion, we could obtain an approximative discrete-time
model calculated from (3) as

ν(k +1) = ν(k)+ f2
(
η(k),ν(k)

)
+M−1τ(k)

η(k +1) = η(k)+ f1
(
η(k)

)
ν(k)

(4)

where η(k), ν(k) and τ(k) are the k−th sampling time sampled
value of η , ν and τ , respectively. The nonlinear functions

f1(η) =TsR(ψ) ∈ R3×3

f2(η ,ν) =−TsM−1[(C(ν)+D(ν))ν
+g(η)+∆(η ,ν)

] ∈ R3

(5)

Following definitions are introduced for convenience of future
design.

f11
(
x̄(k)

)
, f1

(
η(k)+ f1(η(k))ν(k)

)

= f1(η(k +1)) ∈ R3 (6)

where x̄(k) ,
[
η>(k),ν>(k)

]>.
By using the procedure presented in [42], we could drive

the following equations from (4).

η(k +2) =η(k +1)+ f1(η(k +1))ν(k +1)
=η(k)+ f1(η(k))ν(k)+ f11(x̄(k))ν(k)

+ f11(x̄(k)) f2(x̄(k))+ f11(x̄(k))M−1τ
(7)

It is easy to check that 1
T 2

s
f>11(x̄(k)) f11(x̄(k)) = R(ψ(k +

1))R>(η(k +1)) = I. Now we define

f (x̄(k)) , f11(x̄(k)) f2(x̄(k)) ∈ R3

h(x̄(k)) ,x1(k)+ f1(η(k))ν(k)

+ f11(x̄(k))ν(k) ∈ R3

M f (x̄(k)) = f11(x̄(k))M−1 f>11(x̄(k)) ∈ R3×3

τ f =
1

T 2
s

f11(x̄(k))τ ∈ R3

Then (7) can be written as

η(k +2) = h(x̄(k))+ f (x̄(k))+M f (x̄(k))τ f (8)

It is noted that f11(x̄(k)) = f1
(
η(k) + f1(η(k))ν(k)

)
is

known, and then at each time instant k, R(ψ(k + 1)) =
f11(x̄(k)) can be calculated, so that h(x̄(k)) is also known.
The function f (x̄(k)) is not available, so that it has to be well
considered in our design. Furthermore, the property of the M
matrix results in a positive definite matrix M f (x̄(k)) which is
also unknown.

τ

max
τ

ideal
τ

l
b−

r
b

max
τ−

Fig. 2. Illustration of actuator nonlinearity.

Actuator dead-zone and saturation are inevitable existed in
any physical system. In this work, we consider that the actuator
has the nonlinearities including both saturation and dead-zone,
as shown in Fig. 2. Let’s define τideal(k) as the ideal control
input generated by the proposed controller, and the nominal
force/moment acting on the vehicle can be described as

−→
D (τideal(k)) =−→m (τideal(k))τideal(k)+

−→
b (k) (9)



where
−→
D (τideal(k)) is a continuous first-order derivable

function. This formulation (9) has been widely used to de-
scribe actuator nonlinearities with both saturation and dead-
zone [43], [44].

The objective of this work is, based on the discrete-time
model (8) and the control input nonlinearities (9), to develop
a torque control input τ that makes trajectory of an AUV, η =
[x,y,ψ]> follows the user defined trajectory ηd = [xd ,yd ,ψd ]>
asymptotically, i.e., limk→∞(η−ηd) = 0.

C. Neural Network Function Approximation

Neural networks and fuzzy system are typical function
approximators widely used in the control community. We
choose RBF neural network to compensate for unknown items
in dynamics for our control design and following RBF neural
networks are introduced. An unknown function h(z) :Rm →R
can be approximated by

φ(W,z) = W>S(z) (10)

where the weight of the neural network is denoted as W =
[w1,w2, · · · ,wl ]> ∈Rl , the input vector is denoted as z ∈Ωz ⊂
Rm, the node number of the neural network is denoted as l.

In this work, the basis function of a neural network is
defined as S(z) = [s1(z), · · · ,sl(z)]> and its element si(z), i =
1, . . . , l is selected as a Gaussian function.

Let us define µi = [µi1, · · · ,µim]> as centers of the receptive
domain of the neural network and define σi as width of the
Gaussian function, then it can be written as

si(z) = exp
[−(z−µi)>(z−µi)

σ2
i

]
, i = 1,2, ..., l (11)

Let us define W ∗ as the ideal constant weights of a neural
network. In [45], it has been established that any continuous
function can be arppximated by a RBF neural network (10)
over a compact set Ωz ⊂ Rm as

φ(z) = W ∗>S(z)+ εz, ∀z ∈Ωz (12)

where εz is the approximation error.
The ideal weight W ∗ is required for stability analysis, and

it minimizes |εz| for all z ∈Ωz, i.e.,

W ∗ def
= arg min

W ′∈Rl

{
sup|h(z)−W ′>S(z)|

}
, z ∈Ωz

In this work, the user defined trajectories for an AUV, ηd
and vd , are assumed to be suitably defined such that if zd =
[η>d ,ν>d ]> is presented as the input to a RBF neural network,
then S(zd) will satisfy persistent excitation condition [46], i.e.,

αminIl×l ≤
∫ k0+k f

k0

S(π)S>(π)dπ ≤ αmaxIl×l , ∀k0 (13)

where αmin,αmax and k f are positive constants, and I is an
identity matrix.

III. ADAPTIVE NEURAL NETWORK CONTROL DESIGN

We have derived the discrete-time model of an AUV in Sec-
tion II, and we noted that there are some unknown functions
in the dynamics model. Thus, the technical challenges in the
control design of an AUV include the external disturbances,
the partial unknown dynamics, and the input nonlinearities.
In this section, we propose the trajectory control for an AUV
using NN. Two NNs are employed. The first critical NN is
used to evaluate the long time performance of the control in
current time step. Note that only f (x̄(k)) and M f are unknown
and unavailable. Thus, the action neural network is employed
to approximate f (x̄(k)) and M f . In the other words, action
neural network is used to compensate for the effect caused by
the unknown dynamics. We will design the control τ to adjust
η(k) to track the desired trajectory ηd(k). Define

e(k) , η(k)−ηd(k) ∈ R3 (14)

and eν(k) = ν(k)− νd(k) as the position tracking error and
velocity tracking error, respectively.

Define

ε(k) ,
3

∑
i=1

wi |λiei(k)+ eν ,i(k)| (15)

as a new weighted tracking error, where superscript i denotes
the i-the element of the vector, λi is a constant weighted the
position tracking error and velocity error, and wi is a constant
weight associated with the error in each channel. wi can also
be viewed as the weights of impacts by ei and ev,i. Generally,
it is chosen to achieve the normalization of ei and ev,i.

The definition in (15) is motivated by the results in [39],
[40], while both position and velocity errors are taken into ac-
count in this work. The control objective can be then described
limk→∞ ε(k) = 0. Thus ε(k) can be viewed as a strategic utility
function to observe the instant tracking performance. Then the
long term performance measure with a future time horizon N
can be defined as [39]

Q(k) =
N−k

∑
i=1

αN+1−iε(k + i) (16)

where the scaling factor α is defined by user and it satisfies
0 < α < 1 .

The long term performance Q(k) was firstly introduced
in [39] to stand for the tracking performance including all
history information. It utilized the binary system-performance
index pi(k) ∈ R. And ε(k) = 0 when tracking error is within
the limits of a given boundary, ε(k) = 1 otherwise. In this
paper, however, we use the weighted-error to stand for the
performance other than the binary utility function. Moreover,
this measure is also similar to the standard Bellman equation
[47], [48].

In the following, we design the tracking controller with two
NNs used. The utility function Q(k) (16) is approximated by
one critic neural network and the unknown item f (x̄(k)) in (8)
is approximated by another neural network.



A. Critic Neural Network Design

As mentioned, two NNs are employed in our control design.
In this subsection, we use a critic neural network to approx-
imate the unknown strategic utility function Q(k). Following
the techniques used in [49], we calculate its estimation.
Rewrite Q(k) using NN and then it can be formulated as below

Q(k) = W ∗
c Sc(k)+ µQ(k) (17)

where W ∗
c ∈ Rl is optimal neural weight, µQ(k) denotes the

neural network approximation error, and Sc(z(k))∈Rl denotes
the activation vector. Then the estimation of Q(k) can be given
by

Q̂(k) = Ŵ>
c (k)Sc(k) (18)

where Ŵc(k) is the neural weight.
The input vector z(k) is given by

z(k) = [x̄>(k),η>d (k), , · · · ,
η>d (k +N),ν>d (k), · · · ,ν>d (k +N)]> (19)

Now we could obtain the prediction error

ec(k) =−αQ̂(k−1)+ Q̂(k)+αN+1ε(k) (20)

Then, a critic neural network is designed to minimize objective
function

Ec(k) =
1
2

e2
c(k) (21)

A simple method to update the critic neural network is to use
the conventional gradient based adaption as follows:

Ŵc(k +1) = Ŵc(k)+∆Ŵc(k) (22)

In (22), the recurrence of Ŵc(k) is given by

Ŵc(k +1) = Ŵc(k)−αcSc(k)

×
[
Ŵ>

c (k)Sc(k)−αŴ>
c (k−1)Sc(k−1)+αN+1 p(k)

]

(23)

where αc ∈ R denotes the parameter gain of the neural net-
work. Eq. (23) shows that weights are adjusted in accordance
with the reinforcement learning signal and past critic neural
network output values with discount.

B. Action Neural Networks Design

A critic neural network has been used to approximate
the performance evaluation function. In this subsection, an
action neural network based adaptive control considering the
mentioned technical challenges is presented for the AUV as
follows:

τideal(k) = τ f (k)+ ξ̂ (k)+β (k)e(k) (24)

where β̄ is a user defined scaling factor satisfying |β (k)| ≤
β̄ < 1, τ f is the ideal control input defined as

τ f = Ŵ>
a (k)〈·〉Sa(z̄(k))−Mi(x̄(k))[h(x̄(k))+ yd(k +2)] (25)

where ξ (k) is the input compensation signal that will be
introduced later, and we denote ξ̂ ,ξ ∗ and ξ̃ as the real
compensation, the optimal compensation and the error of ξ ,

i.e., ξ̃ = ξ ∗− ξ̂ . Ŵ>
a (k)〈·〉Sa(z̄(k)) is the neural network based

approximation of the unknown item fn(x̄(k)) ∈ R3.

fn(x̄(k)) =−
[
M−1

f (x̄(k))−Mi (x̄(k))
]

h(x̄(k))

−M−1
f (x̄(k)) f (x̄(k))

(26)

where Mi(x̄(k)) is an estimation of M−1
f (x̄(k)) and

Mi(x̄(k)) = f11(x̄(k))M0 f>11(x̄(k)) (27)

If the nominal value of M0 equals M exactly, then
Mi(x̄(k))M f (x̄(k)) = I and the first item of fn(x̄(k)) in (26)
equals to zero. In practice, M0 is obtained according to the
designer’s experience. Even though M0 is never achieved
precisely equivalent to M, the distance between M and M0
will be compensated by the action neural networks. And M0
is more closer to M, the less convergence time is needed.

According to universal approximation theory, there are
S(x̄(k)) ∈ R and ideal weights W ∗>

a satisfying

f (x̄(k)) = µ(x̄(k))+W ∗>
a 〈·〉S(x̄(k)) (28)

Sa(x̄(k)) ∈ Rl×3, ∀x̄(k) ∈Ωx̄ (29)

where µ(x̄(k)) denotes the approximation error by the de-
signed neural network.

The update law of the compensation item ξ (k) is designed
as

ξ̂ (k +2) = ξ̂ (k)−
[
γξ ξ̂ (k)+αξ e(k +2)

]
(30)

where αξ and γξ are parameters to be specified by the designer.
Substituting the designed control (24) into dynamics (7)

results in

ea(k +2) = M f (x̄(k))
[
D̃(v(k))+W̃>

a (k)Sa(k)
]
+d∗s (k) (31)

where d∗s (k) = M f µ(k), and the augmented error of D̃(v(k))
is defined as D̃(v(k)) = D∗(v(k))−D(v(k)) with superscript ∗
standing for the ideal value.

Now, we need to minimize the following objective function.

Ea(k) =
1
2

e>a (k)ea(k)+
1
2

Q̂(k)2 (32)

Define k1 = k−n and now we could design the update law
for the action neural network.

Ŵa(k +1) = ∆Ŵa(k1)+Ŵa(k1) (33)

where ∆Ŵa can be calculated using gradient decent method
which results in

Ŵa(k +1) = Ŵa(k1)−αaSa(k1)[−sign(e(k))Q̂(k)αN+1 + e(k)]
(34)

where αa ∈ R is the adaption gain of the neural network.
Lemma 1: [44] Let V (k) = ∑n

i=1 Vi(k), and Vi(k) ≥ 0,k ∈
Z+. If V (k+1)≤∑n

i=1 p(k−n+1)Vi(k−n+1)+q(k−n+1),
|p(k−n+1)| ≤ p̄ < 1 and |q(k−n+1)| ≤ q̄. Then, we have

V (k)≤ V̄ (0)+
q̄

1− p̄
(35)

Moreover, we have

lim
k←∞

supV (k)≤ q̄
1− p̄

(36)



where V̄ (0) = max0≤i≤n−1{V ( j)}
Now we can arrive at the following theorem which summa-

rize the stability result of the developed control.
Theorem 1: If the dynamics of the vehicle can be described

by (7), using the adaptive control (24), compensation parame-
ter adaptation law (30), and neural network weights update law
(22) and (33), the AUVs is able to follow the desired trajectory
with bounded error when design parameters of the control
satisfy αc‖Sc(k)‖2 < 1, αa‖Sa(k)‖2 < 1, γξ < 1/2, 0 < α <

√
2

2
and β̄ +3αξ < 2

Mm(x̄(k)) .
Proof. Using similar techniques employed in [34], [39]–[41],
we choose a positive definite

V (k) =
4

∑
i=1

Vi(k) (37)

where

V1(k) =
1

αc
tr

[
W̃>

c (k)W̃c(k)
]

V2(k) =
1
γc
‖ζc(k−1)‖2, and

V3(k) =
1

γaαa

n

∑
j=0

tr
[
W̃>

a (k−n+ j)W̃a(k−n+ j)
]

(38)

where ζc(k) = W̃>
c (k)Sc(k) and parameters γc,γa > 0. The

important item V4(k) defined in (38) is introduced to handle
the control input nonlinearity items, which is selected as

V4(k) =
1

αξ
ξ̃>(k)ξ̃ (k) (39)

According to the results in [41], we can get

∆Vi(k +1) = Vi(k +1)−Vi(k) < 0, i = 1,2,3 (40)

The details about the proof can be found in [41]. Based on
(38), we obtain

V4(k +2) =
ξ̃>(k +2)ξ̃ (k +2)

αξ

=
ξ̃>(k)ξ̃ (k)

αξ
−2ξ̃ (k)>e(k +2)− 2γξ ξ̃>(k)ξ̂ (k)

αξ

+2γξ e(k +2)>ξ̂ (k)+
γ2

ξ ξ̂ (k)

αξ

+αξ e>(k +2)e(k +2)
(41)

Because

M f (x̄(k))D(v(k))

=M f (x̄(k))
{
−b(k)+m(k)

[
τ f (k)+ ξ̂ (k)+βe(k)

]}

=−M f (x̄(k))b(k)+M f (x̄(k))m(k)τ f (k)ξ̂ (k)
+M f (x̄(k))m(k)+M f (x̄(k))m(k)βe(k)

=−M f (x̄(k))b(k)+M f (x̄(k))m(k)τ f (k)

−M f (x̄(k))m(k)ξ̃ (k)+M f (x̄(k))m(k)ξ ∗

+M f (x̄(k))m(k)βe(k)

Now we can rewrite (31) as

e(k +2) =M f (x̄(k))(m(k)−1)τ f (k)+M f (x̄(k))W̃>
a (k)Sa(k)

−Mm(x̄(k))ξ̃ (k)+Mm(x̄(k))βe(k)+Mm(x̄(k))ξ ∗

−M f (x̄(k))b(k)+d∗s (k)

=Mm(x̄(k))
[
ξ̃ (k)+βe(k)

]
+H(k)

(42)

where
H(k) =M f (x̄(k))(m(k)−1)τ f (k)+Mm(x̄(k))ξ ∗

−M f (x̄(k))b(k)+M f (x̄(k))W̃>
a (k)Sa(k)+d∗s (k)

(43)

Let us multiply by e(k + 2) on both sides of (42) and to
obtain e>(k + 2)e(k + 2) = e>(k + 2)H(k)+ Mm(x̄(k))[e>(k +
2)ξ̃ (k)+ e>(k +2)βe(k)]. Thus, we have

−2e>(k +2)ξ̃ (k) =− 2e>(k +2)e(k +2)
Mm(x̄(k))

+
2e>(k +2)H(k)

Mm(x̄(k))
+2βe>(k +2)e(k)

(44)

It is easy to have the following equations or inequations.

2ξ̃>(k)ξ̂ (k) =−ξ ∗>ξ ∗+ ξ̂>(k)ξ̂ (k)+ ξ̃>(k)ξ̃ (k)

2γξ e>(k +2)ξ̂ (k)≤ αξ e>(k +2)e(k +2)+
γ2

ξ ξ̂>(k)ξ̂ (k)

αξ

2H>(k)e(k +2)
Mm(x̄(k))

≤ αξ e>(k +2)e(k +2)+
H̄>(k)H̄(k)

αξ

2βe>(k +2)e(k)≤ β̄
[
e>(k +2)e(k +2)+ e>(k)e(k)

]

(45)

where H̄(k) and β̄ are the upper bounds of H(k) and β ,
respectively. It is noted that the first equation is a direct
conclusion of 2a>b < a>a+b>b.

Substituting (45) into (41), we obtain

V4(k +2)≤ 1
αξ

ξ̃>(k)ξ̃ (k)− 2
Mm(x̄(k))

e>(k +2)e(k +2)

+αξ e>(k +2)e(k +2)+
1

αξ
H̄>(k)H̄(k)+ β̄e>(k)e(k)

+ β̄e>(k +2)e(k +2)− γξ

αξ
ξ̃>(k)ξ̃ (k)− γξ

αξ
ξ̂>(k)ξ̂ (k)

+
γξ

αξ
ξ ∗>ξ ∗+2αξ e>(k +2)e(k +2)+

2γ2
ξ ξ̂>(k)ξ̂>(k)

αξ

=(1− γξ )
ξ̃>(k)ξ̃ (k)

αξ
+ γξ (2γξ −1)

ξ̂>(k)ξ̂ (k)
αξ

+
[

β̄ +3αξ −
2

Mm(x̄(k))

]
e>(k +2)e(k +2)+ β̄e>(k)e(k)

+
H̄>(k)H̄(k)

αξ
+

γξ

αξ
ξ ∗>ξ ∗

≤(1− γξ )V4(k)+ γξ (2γξ −1)
ξ̂>(k)ξ̂ (k)

αξ

+
[

β̄ +3αξ −
2

Mm(x̄(k))

]
e>(k +2)e(k +2)+ q̄

(46)



where q̄ = H̄>(k)H̄(k)
αξ

+
γξ
αξ

ξ ∗>ξ ∗ + β̄e>(k)e(k). If the pa-

rameters are selected to satisfy γξ < 1/2, and β̄ + 3αξ <
2/Mm(x̄(k)), then we could obtain

V4(k +2)≤ (1− γξ )V4(k)+ β̄e>(k)e(k)+ q̄ (47)

In addition, because γξ > 0, β̄ < 1, and ∆Vi(k) < 0, i =
1,2,3, we obtain V (k+2)≤ βv1V1(k)+βv2V2(k)+βv3V3(k)+
(1− γξ )V4(k)+ β̄e>(k)e(k)+ q̄. Thus we could conclude that
V (k)≤V (0)+ q̄

1−p̄ according to Lemma 1, where the constant
p̄ = max

{
1− γξ ,βv1,βv2,βv3β̄

}
. This completes the proof.

IV. SIMULATION STUDIES

In order to evaluate the performance of the proposed control,
we perform a numerical simulation based on the model of a
fully actuated AUV in this section, and which has been used
in [13] with success. The parameters of the model are adapted
from [13] as below:

M =




25.8 0 0
0 24.6612 0
0 0 2.76


 (48)

d11 = (0.7225 + 1.3274|u|+ 5.8664v2)kg/s, d22 = (0.8612 +
36.2823|v| + 8.05|r|)kg/s, d23 = (−0.1079 + 0.845|v| +
3.45|r|)kg/s, d32 = (−0.1052− 5.0437|v|− 0.13|r|)kg/s, and
d33 = (1.9− 0.08|v|+ 0.75|r|)kg/s. The desired trajectory is
given by

xd(k) = k

yd(k) = 4sin(k/7)
(49)

Thus, the desired yaw of the vehicle can be calculated as
ψd(k) = arctan( 4

7 cos(k/7)) for a smooth trajectory tracking.
For convenience, we set the initial condition as η(0) =
[−2,10,−π

8 ]> and ν(0) = 03×1 for the AUV in the simulation.
We introduce the time-varying and state-dependent disturbance
in the earth coordinate as below:

fc(k) =




0.1sin(ν(3))
0.0ν(1)η(1)+0.5

−0.1ν(2)cos(η(3))+0.1sin(v(2))




Accordingly, the disturbance acting on the AUV in the body-
fixed frame can be written as

w(k) = R>(ψ) fc(k)

The constant parameters in the controller are selected as α =
0.6, α0 = 0.5, αα = 0.2, αη = 0.25, αc = 0.8, γη = 0.25, and
Ts = 0.01, which are chosen empirically. The sampling time
Ts is chosen to satisfy Shannon’s law. The basis functions of
the neural network are defined as

Si(Z) :=
µi(Z)

∑38
j=1 µ j(Z)

, µi :=
8

∏
j=1

ν j, j = 1, ...,38 (50)

where the function ν j can be selected from the j−th sets of
1/

(
1+ e(−a3 j(Z j−b3 j))

)
, 1/

(
1+ ea1 j(Z j+b1 j)

)
, and e−a2 j |Z j−b2 j |2 .

The maximum control signal in each channel is set as |τ1| ≤
35N, |τ2| ≤ 35N, and |τ3| ≥ 7Nm.

Primary simulation results are provided in Figs. 3−9, which
show the performance with our proposed control is reasonable
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Fig. 3. Trajectory of an AUV in simulation.
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Fig. 4. Tracking error along the trajectory.
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Fig. 5. Control inputs of the AUV.
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Fig. 6. Compensation control inputs ξ .
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Fig. 9. Reinforcement learning signal.

good. It can be seen that the reference trajectory is tracked in
20 sec in Fig. 3. The tracking error is shown in Fig. 4 with a
small boundary. It is clear that the norms of the NN weights
are bounded as well as the control inputs in Figs. 7 and 6.
In addition, Fig. 9 provides the reinforcement learning signal.
It can be seen that Q is bounded near zero, which means
the weighted tracking error is also bounded to zero. From the
figures, we can find that the performance of the AUV trajectory
tracking is satisfactory, despite the unknown dynamics, control
input nonlinearities and time-varying disturbance.

A. Compared with General NN control

In order to evaluate our proposed adaptive control with rein-
forcement learning, we also provide the comparison between
the general neural networks control and PD control. The results
are shown in Fig. 10-Fig. 13. In Fig. 10, we can see that
AUVs track the desired trajectory in a more effective manner
with our proposed adaptive reinforcement learning control, i.e.,
the reference trajectroy is tracked well enough when x = 15
with our control, however it is almost x = 25 with general NN
control. Fig. 11 shows the comparison of the error, from which
we can see that our control has faster convergence. It means
the learning time needed by the NNs can be reduced by our
control.

B. Compared with PD control

Results by PD controller are also given in Fig. 12 and
Fig. 13. We can see that η has steady state error because of the
absence of the integrating although the convergence can also
be achieved. However, the parameters are chosen empirically,
which is generally difficult to be chosen in real applications.
On the other hand, the parameters of PD control have great
influence on the effectiveness of AUVs system. The parameters
of PD control is set to be K p = [2,2,0.1]> Kd = [10,10,5]>
and K p = [10,10,0.5]> Kd = [1,1,0.5]> respectively. The
main difference is that the steady state error is smaller in PD2.
However, they both have poorer performance compared with
our adaptive control.
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Fig. 11. Tracking error compared with general NNs.

V. CONCLUSION

In this work, an adaptive trajectory tracking control law
using NN approximation for a fully actuated AUV has been de-
veloped in discrete-time domain. An NN based reinforcement
learning algorithm has been involved to overcome unknown
disturbances, parameter uncertainties and control input non-
linearities. Two NNs are embeded in the proposed controller,
whereas the first critical NN is used to evaluate the long time
performance of the control in current time step, and the second
action NN is used to compensate for the unknown dynamics.
Rigorous theoretical analysis and extensive simulation studies
have been performed to show the robustness and effectiveness
of the proposed approach. One of the future research directions
is to apply the proposed control onto the practical systems.
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Fig. 12. Trajectory of an AUV compared with pd controller.
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