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Abstract. In this work we analyse positive- and negative-parity channels for the nucleon
(spin 1/2 octet), ∆ and Ω baryons (spin 3/2 decuplet) using lattice QCD. In Nature,
at zero temperature, chiral symmetry is spontaneously broken, causing positive- and
negative-parity ground states to have different masses. However, chiral symmetry is ex-
pected to be restored (for massless quarks) around the crossover temperature, implying
that the two opposite parity channels should become degenerate. Here we study what
happens in a temperature range which includes both the hadronic and the quark gluon
plasma (QGP) phase. By analysing the correlation and spectral functions via exponential
fits and the Maximum Entropy Method respectively, we have found parity doubling for
the nucleon and ∆ baryon channels in the QGP phase. For the Ω baryon we see a clear
signal of parity doubling at the crossover temperature, which is however not complete,
due to the nonzero strange quark mass. Moreover, in-medium effects in the hadronic
phase are evident for all three baryons, in particular for the negative-parity ground states.
This might have implications for the hadron resonance gas model. In this work we used
the FASTSUM anisotropic N f = 2 + 1 ensembles.
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1 Introduction

In Nature, at zero temperature, a considerable mass difference between the negative-parity ground
state of the baryons and the positive-parity one is understood from chiral symmetry breaking. In the
case of the nucleon and ∆ baryon, this mass difference is far too big to be explained by the small
explicit breaking of chiral symmetry due to the light u and d quarks. In fact it is well-known that the
mass difference between the opposite-parity ground states is mainly a consequence of the spontaneous
breaking of chiral symmetry. Since in the case of massless quarks chiral symmetry is expected to be
restored above the deconfinement temperature, one would expect to see parity doubling in the QGP
phase.
On the other hand, chiral symmetry restoration is not fully realised for the Ω baryon because of the
relatively large mass of the strange quark. Therefore it would be very interesting to investigate what
happens to the opposite parity channels of this particle at high temperatures. While there are many
works on chiral symmetry at finite temperature in the mesonic sector (see e.g. [1]), surprisingly only
a few quenched analyses are available in the baryonic sector [2–4]. Our aim here is to analyse parity
doubling in the unquenched baryonic sector, in particular for the nucleon, ∆ and Ω baryons. We study
both correlators and spectral functions below and above the crossover temperature Tc . Our previous
analyses for the nucleon sector can be found in [5, 6] and, more recently, [7] for the ∆ baryon.

2 Baryonic correlators and spectral functions

In general a baryonic correlator is written as (see for instance [8, 9])

C(x) = 〈Oα(x) O
α
(0)〉 , (1)

with an implicit sum over the spin index α . The simplest annihilation operators for the nucleon, ∆

and Ω baryons are respectively

Oα
N(x) = εabc uαa (x)

(
d

T

b (x) C γ5 uc(x)
)
, (2)

and [10, 11]

Oα
∆(x) = εabc

[
2 uαa (x)

(
d

T

b (x) C γi uc(x)
)

+ dαa (x)
(
u

T

b(x) C γi uc(x)
)]
, (3)

Oα
Ω(x) = εabc

[
sαa (x)

(
s

T

b(x) C γi sc(x)
)]
, (4)

where the Lorentz index i is not summed and C corresponds to the charge conjugation matrix. We then
project to a definite parity state by taking into account the interpolator ON± = P± ON (analogously for
the ∆ and Ω baryons) in (1), where

P± =
1
2

(1 ± γ4) (5)

projects to positive or negative parity. We consider solely zero three-momentum correlators

C±(τ) =

∫
dx C±(τ, x) . (6)

Each correlator contains both parity channels since C−(τ) = −C+(1/T − τ) . This means that the
positive-parity channel propagates forwards in time, whereas the negative-parity one propagates back-
wards in time. For massless quarks one can prove [9, 12] that a chiral rotation on the quark fields
gives C±(τ) = −C∓(τ) , implying that the two parity channels are degenerate.

    
 

DOI: 10.1051/, 07004  (2017) 713707004137EPJ Web of Conferences epjconf/201
XIIth  Quark Confinement & the Hadron Spectrum

2



Table 1. Simulation parameters used in this work. The available statistics for each ensemble is Ncfg × Nsrc. The
sources were chosen randomly in the four-dimensional lattice. The value Ncfg = 139.5 means that there are 139

configurations with 16 sources and 1 with 8 .

Ns Nτ T [MeV] T/Tc Nsrc Ncfg

24 128 44 0.24 16 139.5
24 40 141 0.76 4 501
24 36 156 0.84 4 501
24 32 176 0.95 2 1000
24 28 201 1.09 2 1001
24 24 235 1.27 2 1001
24 20 281 1.52 2 1000
24 16 352 1.90 2 1001

Using the Maximum Entropy Method (MEM) [13], we reconstruct the baryonic spectral functions
ρ(ω) , which are related to the baryonic correlators through the spectral relation [12]

C±(τ) =

∫ +∞

−∞

dω
2π

ρ±(ω)
e−ωτ

1 + e−ω/T
. (7)

It is straightforward to prove that ρ+(−ω) = −ρ−(ω) , therefore positive (negative) frequencies of ρ+

correspond to the positive (negative) parity channel. Moreover ρ±(ω) are even functions in case of
parity doubling. The MEM procedure demands that the spectral function be positive. One can prove
that ρ+(ω) ≥ 0 ∀ω ∈ R [12].

3 Lattice setup

The configurations used here are created by the FASTSUM collaboration [14–16], with 2+1 flavours
of non-perturbatively-improved Wilson fermions. The configurations and the correlation functions
have been generated using the CHROMA software package [11], via the SSE optimizations when
possible [17]. Tab. 1 shows the simulation parameters based on the setup of the Hadron Spectrum
Collaboration [18]. The masses of the u and d quarks produce an unphysical pion with a mass of
384(4) MeV [19]. The strange quark has been tuned to its physical value, therefore we expect the
mass of the Ω baryon to be close to the physical one. In order to better reconstruct the spectral func-
tion from the correlator, we used an anisotropic lattice with as/aτ = 3.5 and as = 0.1227(8) fm . This
allows us to have a sufficiently large number of points in the Euclidean time direction even at high
temperatures. From the calculation of the renormalized Polyakov loop one extracts the crossover tem-
perature Tc = 183 MeV, which is higher than in Nature, due to the large pion mass.
Concerning the baryonic correlators, gaussian smearing [20] has been employed to increase the over-
lap with the ground state. In order to have a positive spectral weight, we apply the smearing on both
source and sink, i.e.

ψ′ =
1
A

(1 + κH)n ψ , (8)

where A is an appropriate normalization and H is the spatial hopping part of the Dirac operator. We
tuned the parameters to the values n = 60 and κ = 4.2 , for maximising the length of the plateau for
the effective mass of the ground state in the N3

s × Nt = 243 × 128 lattice. The hopping term contains
APE smeared links [21] using α = 1.33 and one iteration. The smearing procedure is only used in the
spatial directions and applied equally to all temperatures and ensembles.
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Figure 1. On the left: Ω-baryon correlators for the positive and negative parity channels at different temperatures.
On the right: Correlators of the nucleon, ∆ and Ω baryons at the highest temperature for our lattice.
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Figure 2. On the left: Temperature dependence of the R factors of the nucleon, ∆ and Ω baryons. On the right:
Ground state masses obtained using exponential fits to the nucleon, ∆- and Ω-baryon correlators at temperatures
below Tc . The data for the positive-parity ground states are slightly shifted to the right in order to better compare
with the other values.

4 Results for N, ∆ and Ω baryons

The correlator of the Ω baryon is shown on the left panel of Fig. 1, in which the positive- and negative-
parity channels are plotted separately. The correlators for the nucleon and ∆ baryon are shown in [7],
and their temperature behaviour is very similar to the one of the Ω baryon correlator. The correlators
have been normalised to the first Euclidean time τ = aτ ( τ = Nτaτ − aτ ) for the positive-(negative-)
parity partner, i.e. (we write C = C+ for ease of notation)

C+(τ) =
C (τ)
〈C(aτ)〉

and C−(τ) =
C (Nτaτ − τ)
〈C(Nτaτ − aτ)〉

. (9)
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T/Tc 0 [PDG] 0.24 0.76 0.84 0.95

m+
N [MeV] 939 1158(13) 1192(39) 1169(53) 1104(40)

m−N [MeV] 1535(10) 1779(52) 1628(104) 1425(94) 1348(83)

m+
∆

[MeV] 1232(2) 1456(53) 1521(43) 1449(42) 1377(37)
m−

∆
[MeV] 1710(40) 2138(114) 1898(106) 1734(97) 1526(74)

m+
Ω

[MeV] 1672.4(0.3) 1661(21) 1723(32) 1685(37) 1606(43)
m−

Ω
[MeV] 2250? 2380? 2470? 2193(30) 2092(91) 1863(76) 1576(66)

δN 0.241(1) 0.212(15) 0.155(35) 0.099(40) 0.100(35)
δ∆ 0.162(14) 0.190(31) 0.110(31) 0.089(31) 0.051(28)
δΩ 0.147? 0.175? 0.192? 0.138(9) 0.097(23) 0.050(23) -0.009(25)

This normalisation allows us to better compare the data at different temperatures. The right panel of
Fig. 1 shows approximately symmetric correlators for both the nucleon and ∆ baryon at the highest
temperature we consider. This means that the two parity channels are degenerate. Moreover, the N
and ∆ correlators are almost identical, suggesting that they represent quasi-free u and d quarks, and
do not distinguish the different spin dependence in the two channels.
The left panel of Fig. 2 shows the summed ratios of the three baryons, defined as

R ≡
∑Nτ/2−1

n=1 R(τn)/σ2(τn)∑Nτ/2−1
n=1 1/σ2(τn)

, (10)

where
R(τ) ≡

C(τ) −C(Nτaτ − τ)
C(τ) + C(Nτaτ − τ)

. (11)

By definition the R factor lies between 0 and 1, and R = 0 corresponds to a symmetric correlator. We
use the statistical uncertainties as weights in eq.(10). On the left of Fig. 2 we see a clear signal of
parity doubling around the crossover temperature Tc for all the three baryons, with possibly a slightly
delayed effect for the Ω particle. The R factor is very close to zero at T = 1.9 Tc for the nucleon and
∆ baryon, indicating that their correlation functions become almost symmetric in the QGP phase (as
already shown on the right of Fig. 1). On the other hand, the R factor for the Ω baryon remains finite
at our highest temperature. This is expected from what is shown on the right plot of Fig. 1, in which
the Ω correlator is still asymmetric. This indicates that we do not have a complete parity doubling for
the Ω baryon at these temperatures, due to the finite strange quark mass of approxiamately 100 MeV.
In Tab. 2 and in the right panel of Fig. 2 we show the ground state masses in the confined phase
extracted from a simple exponential fit of the correlation function, that is

C+(τ) = A+ e−m+τ + A− e−m−(Nτaτ−τ) . (12)

In order to estimate the systematic uncertainties of the four fit parameters, we have considered various
Euclidean time intervals. To further suppress excited states, we have excluded very small times. The
so-called Extended Frequentist Method [22, 23] has been used for carrying out the statistical analysis.
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Table 2. Ground state masses obtained using exponential fits to the nucleon, ∆ and Ω baryons correlators for
temperatures below Tc . The masses of the positive and negative parity ground states include an estimate for

statistical and systematic uncertainties.The ratios δN , δ∆ and δΩ are defined as δ = (m− − m+)/(m− + m+) . Note
that δΩ is not accessible because m−

Ω
is still unknown.
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Figure 3. Top: On the left (right), comparison between the normalised spectral functions obtained using MEM
at the lowest (highest) temperature on our lattice for the three baryons. Bottom: On the left (right), normalised
spectral functions below (above) Tc for the Ω baryon. The dimensionless object ρ̄(ω) is obtained from the
normalised correlator C(τ)/(aτ 〈C(τ = 0)〉) .

This method considers all possible variations and weights the final results according to the obtained
p-value, which measures how extreme an outcome is. Further information on this method can be
found in [22, 23].
The lattice spacing was set by using the zero-temperature mass of the positive-parity ground state of
the Ω baryon [19], therefore, by construction, the value we found at T = 0.24 Tc has to be in agreement
with the value of 1672.4(0.3) MeV found in Nature [24]. The ground state mass of the negative-parity
channel is still unknown in the PDG and there are three possible candidates. The value we obtained
in Tab. 2 at T = 0.24 Tc seems to favour the candidate with the lowest mass. However, a systematic
analysis (continuum extrapolation and physical u and d quarks) is necessary to make a prediction.
One can see that in-medium effects are more important in the negative-parity channel for all three
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baryons, since the mass of the negative-parity ground state decreases considerably when temperature
is increased, whereas the mass of the positive-parity partner is almost unaffected by temperature. The
spectral function of the Ω baryon at different temperatures is plotted in the lower panels of Fig. 3. A
similar plot for the other two baryons can be found in [7]. The positive-parity channel corresponds to
ω > 0 , whereas ω < 0 refers to the negative-parity channel. The spectral functions of the Ω baryon
are not even functions of ω , either below or above Tc , indicating that the opposite parity channels are
not degenerate. But one can still see a signal of parity doubling above Tc , since the spectral function
becomes more symmetric with respect to the origin when temperature increases. In order to have a
clear plot of many spectral functions in the same figure, error bars are not displayed. However, they
do not modify what have been said above about the results.
At the top of Fig. 3 we show a comparison between the spectral functions of the three baryons for
the lowest and highest temperatures on our lattice. Below Tc all the spectral functions are very asym-
metric, whereas above Tc the spectral functions of the nucleon and ∆ baryon are almost symmetric.
Moreover, as a consequence of the almost identical nucleon and ∆-baryon correlator at T = 1.9 Tc ,
the corresponding spectral functions are nearly identical.

5 Conclusions

By studying the temperature dependence of the correlators, spectral functions and R factor, we clearly
observe a signal of parity doubling of the ground state across the crossover temperature for the nucleon
and ∆ baryon, with parity doubling realised almost completely at the highest temperature on our
lattice. In the Ω-baryon case the opposite parity ground states remain still distinct, but we still observe
a tendency towards parity doubling. For the nucleon and ∆ particle, the asymmetry in the parity
partners at zero temperature is mainly due to spontaneous breaking of chiral symmetry, hence the
observed parity doubling can be understood from the restoration of chiral symmetry, which is expected
to occur at high temperature. We note that there is still a small explicit breaking of chiral symmetry
since we are using massive u and d quarks in the Wilson formulation. On the other hand, the explicit
breaking is not negligible in the case of the Ω baryon, which contains s quarks with physical mass of
the order of Tc . Therefore the fact that parity doubling is not fully realised for this particle can be
understood from this explicit breaking of chiral symmetry due to the massive s quark.
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