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POISSON-RIEMANNIAN GEOMETRY

EDWIN J. BEGGS & SHAHN MAJID

Abstract. We study noncommutative bundles and Riemannian geometry at the
semiclassical level of first order in a deformation parameter λ, using a functorial ap-

proach. This leads us to field equations of ‘Poisson-Riemannian geometry’ between

the classical metric, the Poisson bracket and a certain Poisson-compatible connection
needed as initial data for the quantisation of the differential structure. We use such

data to define a functor Q to O(λ2) from the monoidal category of all classical vector

bundles equipped with connections to the monoidal category of bimodules equipped
with bimodule connections over the quantized algebra. This is used to ‘semiquantize’

the wedge product of the exterior algebra and in the Riemannian case, the metric and

the Levi-Civita connection in the sense of constructing a noncommutative geometry
to O(λ2). We solve our field equations for the Schwarzschild black-hole metric under

the assumption of spherical symmetry and classical dimension, finding a unique so-
lution and the necessity of nonassociativity at order λ2, which is similar to previous

results for quantum groups. The paper also includes a nonassociative hyperboloid,

nonassociative fuzzy sphere and our previously algebraic bicrossproduct model.

1. Introduction

Noncommutative geometry has been successful in recent years in extending notions of
geometry to situations where the ‘coordinate algebra’ is noncommutative. Such algebras
could arise on quantisation of the phase space in the passage from a classical mechan-
ical system to a quantum one, in which case noncommutative geometry allows us to
understand the deeper geometry of such systems. An example here is the quantum Hall
effect[13, 31]. It is also now widely accepted that noncommutative Riemannian geometry
of some kind should be a more accurate description of spacetime coordinates so as to
include the effects of quantum corrections arising out of quantum gravity. The deforma-
tion parameter in this case is not expected to be Planck’s constant but the Planck scale
λP . The main evidence for such a quantum spacetime hypothesis is by analogy with 3D
quantum gravity, see e.g. [36], but the hypothesis has also been extensively explored in
specific models such as the bicrossproduct one[35], with key implications such as variable
speed of light[2] and frequency dependent gravitational time dilation[33].

These noncommutative models have, however, all been constructed on a case by case
basis using algebraic methods and there has so far been no fully systematic ‘quantisation
method’ that takes wider geometrical semiclassical data and quantizes it in the same
manner as we are used to for the algebra alone, although there have been some early
steps in this direction notably concerning quantizing vector bundles[29, 15, 23, 27] as
well as later works including our own[25, 26, 5, 6, 7] and recent works such as [9, 10, 4].
We recall that for the noncommutative algebra alone the semiclassical data is well-known
to be a Poisson bracket and in this case the quantisation problem was famously solved
to all orders in deformation theory by Kontsevich[30] and more explicitly in the sym-
plectic case by Fedosov[22]. The question we address is what exactly is the semiclassical
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theory underlying the quantisation of the rest of differential geometry, particularly Rie-
mannian geometry? Our approach to this is that we will know we have succeeded if
we have identified suitable classical data and field equations among them so as to be
able to ‘semiquantize’, by which we mean to construct the associated noncommutative
geometry to 1st order. We will make this precise by saying that semiquantisation means
quantisation but not over C, rather over the ring C[λ]/(λ2) where λ will be our defor-
mation parameter. For technical reasons, we will take this to be imaginary (so we might
have λ = ıλP in the case of quantum gravity effects). Semiquantisation is not actual
quantisation (which in deformation theory would be over the ring of formal powerseries
C[[λ]]), but it usefully organises the Poisson-level semiclassical data into the first step
on the road to the quantisation.

Solving this problem amounts to a semiclassicalization of noncommutative differential
geometry and is important at a practical level. Although we will only be able to see
perturbative effects, it is useful to be able to solve first at 1st order and then proceed to
the next order, etc. More importantly, a step by step approach allows us to go beyond
the strict assumptions of noncommutative geometry by only imposing them at 1st order,
which basically means certain classical Poisson-level data inspired by but not assuming
conventional noncommutative geometry at all orders in the deformation parameter. This
greater flexibility is needed because, based on experience with model-building, noncom-
mutative geometry has a much higher rigidity than classical geometry, i.e. one encounters
obstructions or ‘quantum anomalies’ to constructing noncommutative geometries with
the same dimension as their classical counterparts [5]. These can often be absorbed by
adding extra dimensions, which leaves the strict deformation setting, or else we may need
to row back from some expected element such as (quantum) symmetry or associativity of
the differential forms at higher deformation order. Our semiclassical analysis will allow
us for the first time to understand these obstructions systematically as quantisation con-
straints on the classical geometric data. Understanding these quantisation constraints
may also provide insights into the origin and structure of the equations of physics, such
as Einstein’s equation, if these too could be seen as an imprint of the rigidity constraints
of noncommutative geometry and hence forced by the quantum spacetime hypothesis.
That remains speculation but one can see in the 2D toy model of [10] that the constraints
of noncommutative geometry forces a curved metric on the chosen spacetime algebra and
this metric describes either a strongly gravitational source at the origin in space or a toy
model of a big-bang cosmology with fluid matter, depending on the sign of a parameter.
Similarly, [37] shows how the Bertotti-Robinson solution of the Einstein equations with
Maxwell field and/or cosmological constant is forced by the quantisability constraints of
Poisson-Riemannian geometry for a different choice of differential calculus. Both models
show gravity in some form emerging from the quantisability constraints, motivated by
and referring to the present work.

There are also good physical reasons for focussing as we do on the semiclassical or Poisson-
Riemannain theory. Particularly when we are talking about Planck-scale corrections, it
is only 1st order that is physically most relevant since noncommutative geometry is an
effective description of first quantum gravity corrections (it is tempting to suppose an
absolute significance to the full noncommutative geometry but that is a further assump-
tion). In distance units the value of λP at around 10−35m is also extremely small, making
these effects only just now beginning to be measurable in principle, in which case O(λ2

P )
effects can be expected to be so much even smaller as to be beyond any possible rele-
vance. This motivates a deeper analysis of the semiclassical level where we work to order
λP and what is remarkable is that such a paradigm of semiclassical quantum gravity
effects exists and has its own status (which we call Poisson-Riemannian geometry) much
as does classical mechanics where we take quantum mechanics to first order in h̵.
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We now turn to our specific formulation of the problem. In fact there are different
approaches to noncommutative geometry and in order for our analysis to have significance
we want to make only the most common and minimal assumptions among them, and
analyse this as semiclassical level. Aside from a possibly noncommutative algebra A,
all main approaches make use (even if it is not the starting point) of differential forms
expressed as a differential graded algebra (Ω(A),d) with d2 = 0, so we will assume this
also at least at order λ. We assume that all operations, notably the quantum wedge
product ∧1, can be built on the same vector spaces as their classical counterparts except
now depending on and expandable order by order in a parameter λ. Of the various
approaches to noncommutative geometry, we mention notably the approach of Connes[16]
coming out of the Dirac operator and cyclic cohomology, a ring-theoretic projective
module approach due to Van den Bergh, Stafford and others, e.g. [41], and a constructive
approach coming out of quantum groups, but not limited to them, and within that the
comprehensive ‘bimodule approach’ to noncommutative Riemannian geometry[38, 19, 20,
7, 8, 9, 10, 32, 33]. It is this latter approach which we take as our starting framework for
semiclassicalization simply because it is the most explicit and hence most amenable to
a layer by layer analysis. After the differential calculus, the next layers we consider are
the quantum metric g1 ∈ Ω1(A) ⊗1 Ω1(A) where ⊗1 means the tensor product over the
quantized algebra, with reasonable properties such as ‘quantum symmetry’ ∧1(g1) = 0,
and a quantum Levi-Civita connection ∇1 ∶ Ω1(A) → Ω1(A) ⊗1 Ω1(A) with reasonable
properties such as respecting that one can multiply Ω1(A) by functions from both the
left and the right (a ‘bimodule connection’). Note that the first copy of Ω1(A) would
classically evaluate against a vector field to create a covariant derivative on 1-forms.
Similarly, we consider vector bundles via their space of sections E modelled as projective
modules over the ‘coordinate algebra’ A and quantum connections E → Ω1(A)⊗1E, etc.
In the bimodule approach, E will be a bimodule and the connection will respect, in some
form, both left and right products by functions. We have shown in some of the works
cited above that such quantum metrics and bimodule connections occur quite widely in
noncommutative geometry. This set-up is summarised in the preliminary Section 2.

In this context the quantisation of a vector bundle means a deformed product between
functions and sections and it has been proposed already at the end of the 1980’s in
[29] to achieve this by means of a Lie-Rienhart or ‘contravariant’ connection to give the
new product a ● e = ae + λ

2
∇dae, or in the bimodule setting the commutator [a, e] =

λ∇dae. Such a contravariant derivative ‘along 1-forms’ was later used in [15] to explore
among other results the quantisation of line bundles inducing Morita equivalence of star
products. Contravariant connections were also used in [23] to study the global properties
of Poisson manifolds and in [27] to revisit geometric quantisation previously exhibited
in [29] introducing additional results. We will use such a deformed product but we want
to go much further and the key to our approach will be a step backwards: we focus
on contravariant connections which are the pull-back along the map from 1-forms to
vector fields provided by the Poisson tensor ω, of ordinary connections. Thus we will
quantise pairs (E,∇E) where E is (the sections of) a vector bundle and ∇E is a usual
connection. The commutation relations between functions and sections now have ω in
them, see (3.7). Having the stronger data of a full connection will allow us in Section 3
to construct a monoidal functor Q ∶ D0 → D1 that ‘semiquantizes’ (i.e. quantizes to 1st
order) the category D0 of classical bundles E with connection ∇E , to an A-bimodule
Q(E) and bimodule connection to errors in O(λ2) (Theorem 3.5). This means we not
only semiquantise objects but also their tensor product. As soon as we semiquantise a
tensor product, one of the bundle connections in our approach has to be a full one but
the other could still be a contravariant one.

In Section 4 we apply our monoidal functor and further analysis to semiquantise the
entire exterior algebra of differential (Ω(M),d) of a Poisson manifold (M,ω) i.e. with a
deformed wedge product ∧1 forming a differential graded algebra at semiclassical order
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(Theorem 4.4). Deformations of (Ω1(M),d) were already analysed in [25, 5] as controlled
at 1st order by a ‘preconnection’ operator γ(a, ) ∶ Ω1(M) → Ω1(M) for each a ∈ C∞(M)
subject to certain axioms. We thought of them as covariant derivatives partially defined
along hamiltonian vector fields but one can also see them as contravariant connection
∇da = γ(a, ). In the present paper we assume an actual linear connection ∇ on Ω1(M)
with γ(a, ) = ∇â where â = {a, }. In a coordinate basis, this means that we take as data
an ordinary linear connection ∇i, but only the combinations ωij∇j are actually used in
the semi-quantisation of Ω1(M) itself. This means that if we take full connections on
other bundles E then we strictly need only a contravariant ∇i for most of Section 3,
but from Lemma 3.9 onwards to the end of the paper we will not have this luxury. For
noncommutative geometry we should ideally like ∇ to also be flat as its curvature implies
breakdown of the bimodule property at order λ2 (i.e. failure of the associativity of left
and right multiplications of functions on differential forms)[25, 5], but in our theory at
order λ we do not require this. The Leibniz rule on the deformed algebra requires Poisson-
compatibility between γ(a, ) and ω as in [25, 5], which can also be seen as vanishing of
contravariant-torsion in that language. For us this now appears in terms of the torsion
T of ∇ (see Lemma 3.1) as

(1.1) ωij;m = ωkiT jkm + ωjkT ikm
where the semicolon is ∇. The semi-quantization of Ω1(M) is needed for the semi-
quantisation of connections in the functor Q in Section 3, which in turn is used on the
semi-quantisation of all of Ω(M). We also quantise ∇ itself by the functor and in The-
orem 4.11 we extend this to semi-quantise any real linear connection ∇S = ∇ + S on
Ω1(M) to a quantum ∗-preserving connection ∇1 and sends a zero torsion connection
to one of zero quantum torsion. Here ∗-preserving is a notion of ‘unitarity’ for bimod-
ule connections in [8] which corresponds to reality of the Christoffel symbols classically.
Remarkably, all of this is achieved at order λ for free without further conditions on the
connection ∇ beyond (1.1). At higher order we have mentioned nonassociativity when
∇ has curvature and there are issues interpreting the deformed integral as a trace [26]
relevant to other aspects of noncommutative geometry. We also note that a quick way to
achieve examples of quantisation of connections to bimodule connections is by means of
a Drinfeld twist as explained in [9, Prop. 6.1] and later in [4]. These require a classical
or quantum symmetry which induces the quantization through an equivalence of cate-
gories as used for differential structures in [39] in the associative case and [5, 6] in the
nonassociative case. Our constructions are compatible with such twisting examples but
we do not want to be limited to them.

Section 5 assumes that M is now a Riemannian or pseudo-Riemannian manifold with
metric g as a 1-1-form. After some work, we find eventually that the only condition for
quantisability of the metric at 1st order is

(1.2) ∇g = 0

We need this at least along hamiltonian vector fields but for simplicity we suppose it
fully. In this case (1.2) is solved by writing ∇+S = ∇̂ (the Levi-Civita connection) where
S is determined by T . We then solve the problem of constructing a quantum metric g1.
Aside from use of the functor Q, a key ingredient that we need for is a certain 2-form
‘generalised Ricci 2-form’,

Rnm = 1
2
gijω

is(T jnm;s −Rjnms +Rjmns)

where R is the curvature of ∇, see Proposition 5.2. This also puts ∇̂ into the form needed
for the quantisation by Theorem 4.11 and applying we obtain a torsion free quantum
connection ∇1 on Ω1(A) which may or may not be quantum metric compatible. We
show that the condition for this is

(1.3) ∇̂R + ωij grs Ssjn(Rrmki + Srkm;i)dxk ⊗ dxm ∧ dxn = 0,
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which is our third condition for Poisson-Riemannian geometry, namely for existence of
a quantum Levi-Civita connection at order λ (Corollary 5.9). If this condition does not
hold then we show (Theorem 5.7) that there is still a ‘best possible’ quantum connection
∇1 which is quantum torsion free, for which the symmetric part of ∇1g1 vanishes and for
which the antisymmetric part is order λ (namely given by the left hand side of (1.3)).
This is a potential order λ quantum effect that has no classical analogue. The general
pattern of our constructions will be to use the semiquantisation functor Q to obtain first
approximations ∧Q quantising the wedge product, ∇Q quantising ∇, ∇QS quantising
∇̂ and gQ quantising the metric, then make unique order λ adjustments to obtain the
desired properties.

Section 6 turns to examples in the simplest case where S = 0, i.e. where the background
Poisson-compatible connection ∇ and the Levi-Civita connection ∇̂ coincide. Their quan-
tisation ∇1 = ∇Q = ∇QS is automatically star-preserving and ‘best possible’ in terms of
metric compatibility. The constraint (1.1) simplifies to ∇̂ω = 0, (1.2) is automatic, while
the condition (1.3) for full metric-compatibility simplifies to ∇̂R = 0. The latter is au-
tomatically solved for example if (ω, g) is Kähler-Einstein. It is similarly solved for any
surface of constant curvature and we give hyperbolic space and the sphere in detail.
This section thus provides the simplest class of solutions. Our sequel [11] similarly gives
CPn, the classical Riemannian geometry of which is linked to Berry phase and higher
uncertainty relations in quantum mechanics[14]. The downside is that the Levi-Civita
connection typically has significant curvature in examples of interest and if we take this
for our background connection then the quantum differential calculus will be significantly
nonassociative at O(λ2).

Finally, Section 7 provides two examples where (1.1)-(1.3) again hold but where neces-
sarily ∇ ≠ ∇̂ (because ω is not covariantly constant). The first is the 2D bicrossproduct
model quantum spacetime with curved metric in [10] but analysed now at the semiclas-
sical level. Here ∇ has zero curvature but a lot of torsion, and application of our general
machinery yields ∇1 in agreement with one of the two quantum Levi-Civita connections
in [10] (the other is non-perturbative with no λ → 0 limit). This provides a nontrivial
check on our analysis. We then turn to our main example, the Schwarzschild black-hole
metric g with a rotationally invariant ω. We are led under the assumption of rotational
invariance to a 4-functional parameter moduli of ∇, all of them with torsion. The param-
eters are killed when we contract with ωij , so that we find a unique rotationally invariant
black-hole differential calculus in this context. This time there is curvature and hence
necessarily nonassociativity at O(λ2). There is again a unique quantum Levi-Civita con-
nection ∇1 for the black hole. Note that it was claimed in [40] to quantize the black
hole within a star-product approach; our analysis tells us that this must have a hidden
nonassociativity when cast into the more conventional setting of noncommutative differ-
entials not considered there. The spin-off sequel [24] extends key features of the black
hole case such as the uniqueness to generic spherically symmetric metrics. It also studies
the quantum wave operator ◻1 = ( , )1∇1d, where ( , )1 is inverse to g1, and the quantum
Ricci tensor defined as in [10] by lifting the curvature of ∇1 and tracing.

Both Sections 6 and 7 show the existence of interesting solutions of the Poisson-Riemannian
equations (1.1)-(1.3) and hence construct quantum geometries to O(λ2); their fuller de-
velopment and applications are directions for further work. It would also be important
to understand better the physical meaning of ∇ following its role as semiclassical data for
quantisation of the differential structure prior to any metric (reading (1.2) as a quantis-
ability condition on the metric when this is introduced later). ∇ could also have further
geometric meaning, as would then its quantisation ∇Q. For example, in teleparallel
gravity[1] on a parallelisable manifold one can take ∇ to be the Weitzenböck connection,
which has torsion but zero curvature and working with it (instead of the Levi-Civita
one) is equivalent to General Relativity but interpreted differently, with the contorsion S
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above now taking a primary role and our results similarly viewed as its quantisation. The
Weitzenböck ∇ with its zero curvature corresponds to an associative quantum differential
calculus at O(λ2), in contrast to the black-hole example where we saw that we need to
have some amount of curvature to have a compatible ω, i.e. to be quantisable. Secondly,
we note that equation (1.1) has a striking similarity to weak-metric-compatibility [34]

gij;m = gkiT jkm + gjkT ikm.
which applies to metric-connection pairs arising from cleft central extensions within non-
commutative geometry of the classical exterior algebra by an extra closed 1-form θ′ with
θ′2 = 0 and θ′ graded-commutative. This resembles a super-version of the present paper
where we extend by λ a central scalar with λ2 = 0. The θ′ approach was used to asso-
ciatively quantize the Schwarzschild black-hole in [33] in contrast to our approach now,
so both versions have now been constructed, which is similar to the story for quantum
groups where there are two routes to deal with the quantum anomaly for differentials [5].
Moreover, we see that these two different ideas might be unified into a single construction.

Acknowledgements. The preprint version appeared as arXiv:1403.4231(math.QA). We
would like to thank C. Fritz for a correction to the black hole computation in Section 7.2
and associated comments. We also note a subsequent arXiv preprint [3] which has some
elements in common with the contravariant aspects of our setup but goes in a different
direction from our deformation analysis.

2. Preliminaries

2.1. Classical differential geometry. We assume that the reader is comfortable with
classical differential geometry and recall its noncommutative algebraic generalisation in
a bimodule approach. For classical geometry suffice it to say that we assume M is a
smooth manifold with further smooth structures notably the exterior algebra (Ω(M),d)
but more generally we could start with any graded-commutative classical differential
graded algebra with further structure (i.e. the graded-commutative case of the next
section). One small generalisation: we allow complexifications. However, one could work
with real values and a trivial ∗-operation or one could have a complex version and, in
the classical case, pick out the real part. We use the following categories based on vector
bundles on M and bundle maps that preserve the base:

Name Objects Morphisms
E0 vector bundles over M bundle maps
D̃0 (E,∇E) bundle and connection bundle maps
D0 (E,∇E) bundle and connection bundle maps intertwining the connections

To fit the viewpoint of noncommutative geometry we will always work with a bundle
through its space of sections as a (finitely generated projective) module over the algebra
of smooth functions C∞(M), which takes a little getting used as the more familiar set
maps are in the opposite direction. Thus a morphism in D̃0 means a ‘bundle map’ in
the sense of map θ ∶ E → F of modules over C∞(M), and to be a morphism in D0 this
also has to intertwine the connections in the sense θ(∇Eie) = ∇Fi(θe), where e ∈ E is a
section.

In principle, E⊗F denotes tensor product over C and E⊗0F denotes the tensor product
over C∞(M). Thus E ⊗0 F obeys the relation e.a ⊗0 f = e ⊗0 a.f for all a ∈ C∞(M),
and this corresponds to the usual tensor product of vector bundles, whereas E ⊗ F is
much larger. We can use the tensor product to rewrite a connection ∇E as a map
∇E ∶ E → Ω1(M)⊗0E by using the formula ∇E(e) = dxi⊗0∇Ei(e), and the Leibniz rule
becomes

∇E(a.e) = da⊗0 e + a.∇E(e) .



POISSON-RIEMANNIAN GEOMETRY 7

In keeping with common practice, we will sometimes drop the subscript in ⊗0 when this
is clear from context.

As most readers will be more familiar with tensor calculus on manifolds than with the
commutative case of the algebraic version above, we use the former throughout for com-
putations in the classical case. We adopt here standard conventions for curvature and
torsion tensors as well as Christoffel symbols for a linear connection ∇. On forms and in
a local coordinate system we have

∇jdxi = −Γijkdxk

while T∇ = ∧∇ − d ∶ Ω1(M) → Ω2(M) is the torsion tensor

T∇(dxi) = −Γijkdxj ∧ dxk = 1
2
T ijkdxk ∧ dxj , T ijk = Γijk − Γikj .(2.1)

Similarly, for the curvature tensor

R∇(dxk) = 1
2

dxi ∧ dxj ⊗0 [∇i,∇j]dxk = 1
2
Rkmijdxj ∧ dxi ⊗0 dxm.

The summation convention is understood unless specified otherwise.

We also recall the interior product ⌟ ∶ Vec(M) ⊗ Ωn(M) → Ωn−1(M) defined by v ⌟ η
being the evaluation for η ∈ Ω1(M), or in terms of indices vi ηi, extended recursively to
higher degrees by

v ⌟ (ξ ∧ η) = (v ⌟ ξ) ∧ η + (−1)∣ξ∣ξ ∧ (v ⌟ η) .

2.2. Noncommutative bundles and connections. Here we briefly summarise the
elements of noncommutative differential geometry that we will be concerned with in our
bimodule approach[19, 20, 8, 10]. The following picture can be generalised at various
places, but for readability we will not refer to this further. The associative algebra A
plays the role of ‘functions’ on our noncommutative space and need not be commutative.
We work over C but other than when we consider ∗-structures, we could as well work
over a general field.

A differential calculus on A consists of n forms Ωn(A) for n ≥ 0, an associative product ∧ ∶
Ωn(A) ⊗Ωm(A) → Ωn+m(A) and an exterior derivative d ∶ Ωn(A) → Ωn+1(A) satisfying
the rules

(1) Ω0(A) = A (i.e. the zero forms are just the ‘functions’)
(2) d2 = 0
(3) d(ξ ∧ η) = dξ ∧ η + (−1)∣ξ∣ ξ ∧ dη where ∣ξ∣ = n if ξ ∈ Ωn(A)
(4) Ω is generated by A,dA.

These are the rules for a standard (surjective) differential graded algebra. Note that we
do not assume graded commutativity, which would be ξ ∧ η = (−1)∣ξ∣ ∣η∣ η ∧ ξ.

A vector bundle is expressed as a (projective) A-module. If E is a left A-module we
define a left connection ∇E on E to be a map ∇E ∶ E → Ω1(A) ⊗A E obeying the left
Leibniz rule

∇E(ae) = da⊗A e + a∇E(e).
We say that we have a bimodule connection if E is an A-A-bimodule and there is a
bimodule map

σE ∶ E ⊗A Ω1(A) → Ω1(A) ⊗A E, ∇E(ea) = (∇Ee)a + σE(e⊗A da).
If σE is well-defined as a bimodule map then it is uniquely determined, so its existence is
a property of a left connection on a bimodule. In this case one can also deduce a useful
formula

(2.2) σE(e⊗ da) = da⊗ e +∇E[e, a] + [a,∇Ee] .
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There is a natural tensor product of bimodule connections (E,∇E) ⊗ (F,∇F ) built on
the tensor product E ⊗A F and

(2.3) ∇E⊗AF (e⊗A f) = ∇Ee⊗A f + (σE ⊗ id)(e⊗A ∇F f).
There is necessarily an associated σE⊗AF . We denote by E the monoidal category of
A-bimodules with ⊗A. We denote by D the monoidal category of pairs (E,∇E) of bi-
modules and bimodule connections over A, with morphisms bimodule maps intertwining
the connections.

For any left connection on E = Ωn(A), we define the torsion by T∇ = ∧∇−d as an extension
of the n = 1 case. In the case E = Ω1(A) we define a metric as g ∈ Ω1(A) ⊗A Ω1(A) and
for a bimodule connection the metric-compatibility tensor ∇g ∈ Ω1(A)⊗A3. We require g
to have an inverse ( , ) ∶ Ω1(A) ⊗A Ω1(A) → A with the usual bimodule map properties
implying that g is central[10].

2.3. Conjugates and star operations. Here we suppose that A is a star algebra, i.e.
that there is a conjugate linear map a ↦ a∗ so that (ab)∗ = b∗a∗ and a∗∗ = a. Also
suppose that this extends to a star operation on the differential forms Ω(A), so that
d(ξ∗) = (dξ)∗ and (ξ ∧ η)∗ = (−1)∣ξ∣∣η∣η∗ ∧ ξ∗.

Next, for any A-bimodule E, we consider its conjugate bimodule E with elements denoted
by e ∈ E, where e ∈ E and new right and left actions of A, ea = a∗e and ae = ea∗. There is
a canonical bimodule map Υ ∶ E ⊗A F → F ⊗AE given by Υ(e⊗ f) = f ⊗ e. There is also
a natural equivalence given by functorial isomorphisms bbE ∶ E → E, which in our case
are the identification e ↦ e. Also, if φ ∶ E → F is a bimodule map we have a bimodule
map φ̄ ∶ Ē → F̄ by φ̄(ē) = φ(e). These constructions are examples of a general notion of
a bar category[8] but for our purposes the reader should view the conjugate notation as
a useful way to keep track of conjugates for noncommutative geometry, and as a book-
keeping device to avoid problems. It allows, for example, conjugate linear functions to be
viewed as linear functions to the conjugate of the original map’s codomain. Bimodules
form a bar category as explained and so does the category of pairs (E,∇E). Here Ē
acquires a right handed connection ∇̄Ē(ē) = (id ⊗ ⋆−1)Υ∇Ee which we convert to a left
connection

∇Ē ē = (⋆−1 ⊗ id)Υσ−1∇Ee.
Here ⋆ ∶ Ω1(A) → Ω1(A) is the ∗-operation viewed formally as a linear map.

In general we say that E is a ⋆-object if there is a linear operation ⋆ ∶ E → E (which we
can also write as ⋆(e) = e∗ where e ↦ e∗ is antilinear) such that ⋆̄ ⋆ (e) = e for all e ∈ E.
Here ⋆̄ means to apply the bar functor to ⋆, so ⋆̄ ∶ Ē → E but note that in our case
we canonically identify the latter with E and then the condition is a categorical way of
saying that ⋆ is an anitlinear involution. Also given ⋆-objects E, F we say a morphism
φ ∶ E → F is ∗-preserving φ̄ commutes with ⋆. If E is a star-object then we define a
connection as ∗-preserving if

(id⊗ ⋆)∇E(⋆−1e) = (⋆−1 ⊗ id)Υσ−1∇Ee
and in this case (E,∇E) becomes a ⋆-object in this bar category. Clearly Ω1(A) itself is
an example of a star-object and so is Ω(A) in every degree. The product ∧ is an example
of an anti-∗-preserving map (i.e. with a minus sign) on products of degree 1.

In the ∗-algebra case we say a metric g ∈ Ω1(A) ⊗A Ω1(A) is ‘real’ in the sense

Υ−1(⋆ ⊗ ⋆) g = g
If gij is real symmetric as a matrix valued function, then as the phrase ‘reality property’
suggests, this is true classically. We can also work with general metrics equivalently as
‘hermitian metrics’ G = (⋆ ⊗ id)g ∈ Ω1(A) ⊗A Ω1(A) and this is ‘real’ precisely when
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Υ−1(id ⊗ bb)G = G, where bb ∶ Ω1(A) → Ω1(A) is the ‘identity’ map to the double
conjugate ξ ↦ ξ. In this context it is more natural to formulate metric compatibility
using the ‘hermitian-metric compatibility tensor’

(∇̄ ⊗ id + id⊗∇)G ∈ Ω1(A) ⊗A Ω1(A) ⊗A Ω1(A) .(2.4)

If ∇ is ∗-preserving, then vanishing of this coincides with the regular notion of metric
compatibility of the corresponding g.

3. Semiquantisation of bundles

This section constructs a monoidal functor Q that quantizes geometric data on a smooth
manifold M to first order in a deformation parameter λ. Because it is only first order,
this is not really ‘quantisation’ but construction of the semiclassical theory or semiquanti-
sation. Here C∞(M) is our initial algebra and its usual deformation quantisation means
informally that we extend it so as to include dependence on a formal parameter λ and
define a new product ● which gives an associative algebra A over formal powerseries
C[[λ]]. We require that working modulo λ gives our original C∞(M) with its original
product and we assume that all expressions can be expanded and equated order by order.
Formally, classical vector spaces and classical linear maps are extended by ⊗C[[λ]] as
change of base field C to this base ring. We define the semiquantisation in exactly the
same way as such quantisation but dropping errors that are O(λ2) by formally changing
base from C to the ring C[λ]/(λ2). In an application where λ was actually a number,
the dropping of higher powers would need to be justified by the physics. We use ⊗1 for
tensor product over the quantum algebra at first order, i.e. with the noncommutative
product; the suffix 1 here and elsewhere is to remind us that we are working at first
order in λ and dropping errors O(λ2). Similarly E1 denotes the category of A-bimodules
and D1 the category of pairs (E,∇E) as in Section 2.2 but working over C[λ]/(λ2) or
equivalently working with a formal deformation parameter up to errors in O(λ2).

3.1. Quantizing the algebra and modules. The data we suppose is an antisymmetric
bivector ω on M along with a linear connection ∇ subject to the following ‘Poisson
compatibility’ [5]

d(ωij) − ωkj ∇k(dxi) − ωik∇k(dxj) = 0 .(3.1)

The bivector as usual controls the deformation of the algebra product with commutator
[a, b] = λωija,ib,j + O(λ2) for all a, b ∈ C∞(M) while the combination ∇i ∶= ωij∇j =
γ(xi, ) in the notation of [5] similarly controls the commutation relations of the deformed
differential calculus as below in (3.5). The condition (3.1) arises in this context [25, 5]
as the condition for d (which we do not deform) to still obey the Leibniz rule at order
λ. One can also think of the latter data as defining a contavariant or Lie-Rinehart
connection ∇ along 1-forms with ∇dxi = ∇i, in which context the Poisson-compatibility
appears naturally as zero ‘contravariant torsion’. In our case, we assume that ∇i is
given via ω by an actual connection ∇i. This not essential for the present section but
will be important in later sections. Note that we have used local coordinates but all
constructions are global.

Lemma 3.1. Let ω be an antisymmetric bivector and ∇ a linear connection, with torsion
tensor T . Then ω obeys (3.1) if and only if

ωij;m + ωikT jkm − ωjkT ikm = 0.

In this case ω is a Poisson tensor if and only if

∑
cyclic (i,j,k)

ωim ωjp T kmp = 0.
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Proof. The first part is essentially in [5] but given here more generally. For the first part
the explicit version of (3.1) in terms of Christoffel symbols is

(3.2) ωij ,m + ωkjΓikm + ωikΓjkm = 0.

We write the expression on the left as

ωij ,m + ωkjΓimk + ωikΓjmk + ω
kjT ikm + ωikT jkm

and we recognise the first three terms as the covariant derivative. For the second part,
we put (3.2) into the following condition for a Poisson tensor:

∑
cyclic (i,j,k)

ωim ωjk,m = 0 . ◻(3.3)

For example, any manifold with a torsion free connection and ω a covariantly constant an-
tisymmetric bivector will do. This happens for example in the case of a Kähler manifold,
so our results include these.

The action of the bivector on a pair of functions will be denoted { , } as usual. If ω is
a Poisson tensor then this is a Poisson bracket and from Fedosov[22] and Kontsevich[30]
there is an associative multiplication for functions

a ● b = ab + λ
2
{a, b} +O(λ2).(3.4)

We take this formula in any case and denote by A any (possibly not associative) quanti-
sation of C∞(M) with this leading order part, which means we fix our associative algebra
over C[λ]/(λ2) and the leave higher order unspecified. We will normally assume that ω
is a Poisson tensor because that will be desirable at higher order, but strictly speaking
the results in the present paper do not require this.

Similarly, from [5] the commutator of a function a and a 1-form ξ ∈ Ω1(M) has the form

[a, ξ]● = λωij a,i (∇jξ) +O(λ2) ,(3.5)

which we can realise by defining the deformed product of a function a and a 1-form ξ as

a ● ξ = a ξ + λ
2
ωij a,i (∇jξ) +O(λ2) ,

ξ ● a = a ξ − λ
2
ωij a,i (∇jξ) +O(λ2) .(3.6)

This need not be the only way to realise the commutation relations but is the natural
choice extending (3.4) on functions. One can check that the Leibniz rule holds to O(λ2)
in view of (3.1). We define Ω1(A) as built on the vector space Ω1(M) extended over λ
and taken with these ● actions Ω1(A)⊗1A→ Ω1(A) and A⊗1 Ω1(A) → Ω1(A) forming an
A-bimodule over C[λ]/(λ2) or a bimodule up to O(λ2) in a deformation point of view.
The exterior derivative d is not deformed and gives us a differential calculus on A as in
Section 2.2 up to O(λ2).

Now let (E,∇E) be a classical bundle and covariant derivative on it, and define, for e ∈ E,

a ● e = a ξ + λ
2
ωij a,i (∇Eje) +O(λ2) ,

e ● a = a ξ − λ
2
ωij a,i (∇Eje) +O(λ2) .(3.7)

We only need the combination ∇iE ∶= ωij∇Ej , i.e. a contravariant or Lie-Rinehart con-
neciton, but as before we focus on the case where this is the pullback via ω of a usual
connection. A brief check reveals that the following associative laws hold up to errors in
O(λ2):

(a ● b) ● e = a ● (b ● e) , (a ● e) ● b = a ● (e ● b) , (e ● a) ● b = e ● (a ● b) .(3.8)

We define EA as the vector space of E extended over λ and with actions EA ⊗1 A→ EA
and A⊗1EA → EA forming an A-bimodule over C[λ]/(λ2) or a bimodule up to O(λ2) in
deformation setting. We similarly consider the following categories with these two points
of view:
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Name Objects Morphisms
Ẽ1 A-bimodules left module maps
E1 A-bimodules bimodule maps
D1 bimodules with connection bimodule maps intertwining the connections

where all properties are stated over C[λ]/(λ2), i.e. are only required to hold to O(λ2) if
we take a deformation point of view. Here we introduce the notation

∇∇j(T ) ∶= ∇Fj ○ T − T ○ ∇Ej
for a bundle map T ∶ E → F , which is just the usual covariant derivative of tensors.

Lemma 3.2. We define a map Q ∶ D̃0 → Ẽ1 sending a bundle with connection to a
deformed bimodule to O(λ2) with actions (3.7) and sending a bundle map T ∶ E → F to
a left module map to O(λ2) defined by

Q(T ) = T + λ
2
ωij ∇Fi ○ ∇∇j(T ).

If S ∶ G→ E is another bundle map then

Q(T ○ S) =Q(T ) ○Q(S) + λ
2
ωij ∇∇i(T ) ○ ∇∇j(S) .

In particular, Q(E,∇E) = E with ● product and Q(T ) = T provides a functor Q ∶ D0 → E1.

Proof. Take T0 ∶ E → F a bundle map and write Q(T0) = T0 + λT1 for some linear map
T1 ∶ E → F to be determined. In particular, we aim for the bimodule properties

(T0 + λT1)(a ● e) = a ● (T0 + λT1)(e) ,
(T0 + λT1)(e ● a) = (T0 + λT1)(e) ● a ,

which to errors in O(λ2) requires

T0(a ● e) + λT1(ae) = a ● T0(e) + λaT1(e) ,
T0(e ● a) + λT1(ea) = T0(e) ● a + λT1(e)a .

Using the formula (3.7) for the deformed product gives our conditions as

T0(ωij a,i (∇Eje)) + 2T1(ae) = ωij a,i (∇FjT0(e)) + 2aT1(e) ,
−T0(ωij a,i (∇Eje)) + 2T1(ea) = −ωij a,i (∇FjT0(e)) + 2T1(e)a .(3.9)

It is not possible to satisfy both parts of (3.9) unless T0 preserves the covariant derivatives,
i.e.

∇FjT0(e) = T0(∇Eje)
and in this case we set T1 = 0 as a solution and Q(T0) = T0, which is the restricted case
where we indeed have a bimodule map to O(λ2) as output, i.e. a morphism of E1.

More generally, we solve only the first part of (3.9), i.e. a left module map to O(λ2) for
(A, ●), which needs

T1(ae) − aT1(e) = 1
2
ωij a,i (∇FjT0(e) − T0(∇Eje)) ,

which is solved by

T1 = 1
2
ωij ∇Fi ○ ∇∇j(T0)

to give Q(T0). For compositions,

Q(T ○ S) = T ○ S + λ
2
ωij ∇Fi ○ ∇∇j(T ○ S)

= T ○ S + λ
2
ωij ∇Fi ○ (∇∇j(T ) ○ S + T ○ ∇∇j(S))

=Q(T ) ○ S + λ
2
ωij ∇Fi ○ T ○ ∇∇j(S)

=Q(T ) ○ S + λ
2
ωij ∇∇i(T ) ○ ∇∇j(S) + λ

2
ωij T ○ ∇Ei ○ ∇∇j(S)

which we then recognise as the expression stated. This implies in particular that we have
a functor when we restrict to D0 i.e. to the subcategory where morphisms are required
to intertwine the covariant derivatives. �
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Note that in keeping with conventions for functors we use the same symbol Q to map
both objects and morphisms, but in our case the map Q(E,∇E) = EA on objects is just E
extended over λ and taken with deformed products ●. We can therefore view T ∶ E → F as
a linear map Q(E,∇E) → Q(F,∇F ) which we corrected further to obtain the morphism
Q(T ) ∶ Q(E,∇E) → Q(F,∇F ). We will mainly need the functor Q ∶ D0 → E1, with the
more general case Q ∶ D̃0 → Ẽ1 being needed in Section 3.4, which in turn will be needed
for our construction of the quantum Levi-Civitia connection in later sections.

3.2. Quantizing the tensor product. So far we have described how to deform the
algebra and bimodules. To avoid too cumbersome a notation we will normally now leave
the connection ∇E as an understood part of our classical data (E,∇E) and write the
quantisation map on objects as the identity map Q(E) = EA on the underlying vector
spaces (with ● defined by ∇E). We now define the “fiberwise” tensor product of two
bimodules in the deformed case as Q(E) ⊗1 Q(F ), where similarly to the definition of
⊗0 in Section 2.1, we take e⊗1 a ● f = e ●a⊗1 f for all a ∈ A. It is natural to ask how this
is related to Q(E ⊗0 F ) where classical bundles with connection have a tensor product
bundle with connection. We use ⊗0 for the classical tensor product over C∞(M). The
nicest case is when Q is a monoidal functor, i.e., there is a natural isomorphism q,

E ⊗ F Q○⊗0 //

Q⊗1Q ''

Q(E ⊗0 F )

Q(E) ⊗1 Q(F )

qE,F

OO
(3.10)

making

Q(E) ⊗1 Q(F ) ⊗1 Q(G)
id⊗1qF,G //

qE,F⊗1id **

Q(E) ⊗1 Q(F ⊗0 G)
qE,F⊗0G // Q(E ⊗0 F ⊗0 G)

Q(E ⊗0 F ) ⊗1 Q(G)
qE⊗0F,G

55
(3.11)

commute. Recalling that Q(E) is essentially the identity on vector spaces, we formally
write Q(e) to mean e ∈ E regarded in Q(E) = EA or when the context is clear we will
simply say that we view e ∈ Q(E). As before, our constructions are over C[λ]/⟨λ2⟩ or to
order O(λ2) in a deformation setting.

Proposition 3.3. The functor Q ∶ D0 → E1 is monoidal to O(λ2) with associated natural
transformation q ∶ Q⊗1 Q Ô⇒ Q ○ ⊗0 given by

qV,W (Q(v) ⊗1 Q(w)) =Q(v ⊗0 w) + λ
2
Q(ωij ∇V iv ⊗0 ∇Wjw) .

More generally the map Q ∶ D̃0 → Ẽ1 together with q obeys (3.11) to O(λ2) while for
T ∶ E → V and S ∶ F →W and to O(λ2),

qV,W (T ⊗1 idW ) = (T ⊗ idW + λ
2
ωij ∇∇i(T ) ⊗∇Wj) qE,W ,

qV,W (idV ⊗1 S) = (idV ⊗ S + λ
2
ωij ∇V i ⊗∇∇j(S)) qV,F .

Proof. We want a natural morphism qV,W ∶ Q(V )⊗1Q(W ) → Q(V ⊗0W ) but we suppress
writing Q during calculations since it is essentially the identity on objects. For the
proposed q to be well-defined we need

qV,W (v ● a⊗1 w) = qV,W (v ⊗1 a ●w) ,
so from (3.7),

qV,W ((av − λ
2
ωij a,i (∇V jv)) ⊗1 w) = qV,W (v ⊗1 (aw + λ

2
ωij a,i (∇Wjw))) ,

which is satisfied by the formula for qV,W .
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Next, we require each qV,W to be a bimodule map over A. Thus,

qV,W (v ⊗1 (w ● a)) = v ⊗0 wa − v ⊗0
λ
2
ωij a,i∇Wjw + λ

2
ωij ∇V iv ⊗0 ∇Wj(wa)

= v ⊗0 wa + λ
2
ωij (∇V iv ⊗0 ∇Wjw)a + λ

2
ωij (∇V ⊗0Wi(v ⊗0 w))a,j

qV,W (v ⊗1 w) ● a = (v ⊗0 w + λ
2
ωij∇V iv ⊗0 ∇Wjw) ● a

= (v ⊗0 w) ● a + λ
2
ωij(∇V iv ⊗0 ∇Wjw)a

= v ⊗0 wa − λ
2
ωija,i∇V ⊗0Wj(v ⊗0 w) + λ

2
ωij(∇V iv ⊗0 ∇Wjw)a .(3.12)

using the deformed right module structure on V etc (i.e. regarding it as Q(V )) from
(3.7). We do not need to use the ● product or non-trivial terms in q if an expression
already has a λ, as we are working to errors in O(λ2). Our two expressions agree using
antisymmetry of ω. Similarly on the other side,

qV,W ((a ● v) ⊗1 w) = av ⊗0 w + λ
2
ωij a,i (∇V jv) ⊗0 w + λ

2
ωij ∇V i(av) ⊗0 ∇Wjw

= v ⊗0 wa + λ
2
aωij ∇V iv ⊗0 ∇Wjw + λ

2
ωij a,i∇V ⊗0Wj(v ⊗0 w)

a ● qV,W (v ⊗1 w) = a ● (v ⊗0 w + λ
2
ωij∇V iv ⊗0 ∇Wjw)

= av ⊗0 w + λ
2
ωija,i∇V ⊗0Wj(v ⊗0 w) + λ

2
ωij∇V iv ⊗0 ∇Wjw .(3.13)

Next, we check that qV,W is functorial. Let T ∶ E → V be a morphism in D0 (so
intertwining the covariant derivatives) and recall that Q(T ) is just T as a linear map.
Then

qV,W (Te⊗1 w) = Te⊗0 w + λ
2
ωij∇V i(Te) ⊗0 ∇Wjw

= Te⊗0 w + λ
2
ωij(T ○ ∇Eie) ⊗0 ∇Wjw = (T ⊗ id)qE,W (e⊗1 w) .(3.14)

We used ∇∇(T ) = 0 and have a correction from this in the more general case. Similarly
for functoriality on the other side.

Finally, it remains to check that qV ⊗0W,Z ○ (qV,W ⊗ id) = qV,W⊗0Z ○ (id⊗ qW,Z) where the
associators implicit here are all trivial at order λ. This is immediate from the formulae
for q working to O(λ2). Our q are clearly also invertible to this order by the same formula
with −λ. �

Now we discuss conjugate modules and star operations. For vector bundles with connec-
tion on real manifolds, we define covariant derivatives of conjugates in the obvious man-
ner, ∇Ēi(e) = ∇Eie. A star operation on a vector bundle will be a conjugate linear bundle
map to itself, denoted e↦ e∗, and is compatible with a connection if ∇Ēi(e∗) = (∇Eie)∗.
It will be convenient to use the language of bar categories and view the ∗ as a linear map
⋆ ∶ E → E to the conjugate bundle defined by ⋆(e) = e∗.

Proposition 3.4. With λ∗ = −λ, the functor Q ∶ D0 → E1 is a bar functor to O(λ2).
Hence if ⋆ ∶ E → E is a star object and compatible with the connection then Q(⋆) ∶
Q(E) → Q(E) is a star object to O(λ2).

Proof. To show we have a functor, we begin by identifying Q(E) and Q(E). Recall
that Q(E) is simply E as a vector space but with a different module structure and
Q(e) ∈ Q(E) is simply e ∈ E viewed under this identification. We need to show that, for
all a ∈ A and e ∈ E,

a.Q(e) =Q(e).a∗ = Q(e ● a∗) , a.Q(e) = Q(a ● e) ,

so we need to show that a ● e = e ● a∗. Now

a ● e = a.e + λ
2
ωij a,i.∇Ej(e) = a.e +

λ
2
ωij a,i.∇Eje

= e.a∗ + λ
2
ωij ∇Eje.a,i∗ = e.a∗ − λ

2
ωij ∇Eje.a,i∗

= e.a∗ + λ
2
ωij ∇Eie.a,j∗ = e ● a∗ .
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Now we have to check the morphisms T ∶ E → F , that Q(T ) = Q(T ).

Q(T )(Q(e)) =Q(T )(Q(e)) = Q(T (e) + λ
2
ωij ∇Fi(∇∇j(T )e)) ,

Q(T )(Q(e) = T (e) + λ
2
ωij ∇Fi(∇∇j(T )(e))

Now we check what ∇∇j(T ) is:

∇∇j(T )(e) = ∇Fj(T (e)) − T (∇Ej(e))
= ∇Fj(T (e)) − T (∇Ej(e)) = ∇∇j(T )e .

Then we have, as λ is imaginary,

Q(T )(Q(e) = T (e) + λ
2
ωij ∇Fi(∇∇j(T )e)

= T (e) + λ
2
ωij ∇Fi(∇∇j(T )e)

= T (e) − λ
2
ωij ∇Fi(∇∇j(T )e) .

Thus we have

(Q(T ) −Q(T ))(Q(e)) =Q(λωij ∇Fi(∇∇j(T )e)) ,

so if T is a morphism in D0 we get Q(T ) = Q(T ).
Now we show that the natural transformation q is compatible with the natural transfor-
mation Υ in the bar category. This means that the following diagram commutes:

Q(E) ⊗1 Q(F )
qE,F //

ΥQ(E),Q(F )
��

Q(E ⊗0 F ) = // Q(E ⊗0 F )

ΥE,F

��
Q(F ) ⊗1 Q(E) = // Q(F ) ⊗1 Q(E)

q
F ,E // Q(F ⊗0 E)

(3.15)

Now we have

ΥE,F (qE,F (Q(e) ⊗1 Q(f))) =ΥE,F (Q(e⊗0 f + λ
2
ωij ∇Eie⊗0 ∇Fjf))

=ΥE,F (Q(e⊗0 f + λ
2
ωij ∇Eie⊗0 ∇Fjf))

=Q(f ⊗0 e − λ
2
ωij ∇Fjf ⊗0 ∇Eie)

=Q(f ⊗0 e + λ
2
ωij ∇Fif ⊗0 ∇Eje) ,

qF,EΥQ(E),Q(F )(Q(e) ⊗1 Q(f)) = qF,E(Q(f) ⊗1 Q(e))
= qF,E(Q(f) ⊗1 Q(e))
=Q(f ⊗0 e + λ

2
ωij ∇Fif ⊗0 ∇Eje) . ◻

3.3. Quantizing the underlying covariant derivative. Our approach to quantising
a bundle E is to equip it with an underlying connection ∇E which is used to deform the
bimodule actions (one could call it the ‘quantising connection’ for this reason). We now
want to quantise this connection itself, which in categorical terms means to extend the
above to a functor Q ∶ D0 → D1 working to O(λ2). Here Q(E) = EA meaning E with
a ● bimodule structure and we seek to define Q(∇E) = ∇Q(E) ∶ EA → Ω1(A) ⊗1 EA as
a bimodule connection on this. We assume for this that we have also quantised Ω1(M)
by a Poisson-compatible connection ∇i or more generally a contravariant connection
∇i = ωij∇j obeying (1.1) to a differential calculus Ω1(A) to O(λ2). Also note that
although we will continue to write expressions in local coordinates, all our constructions
are global. For example,

ωij dxk ⊗ [∇Ek,∇Ej]∇Ei = (ω♯ ⊗ id) ○ (id⊗RE) ○ ∇E ∶ E → Ω1(M) ⊗0 E

where RE is the curvature as a 2-form valued operator and ω♯ ∶ Ω1(M) ⊗0 Ω2(M) →
Ω1(M) means to map Ω1(M) to vector fields using the bivector ω and then apply interior
product. Unless we need to be more explicit for clarity, we now normally give formulae
on the underlying classical elements such as e ∈ E viewed in Q(E) = EA, etc.
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Theorem 3.5. Let (E,∇E) be a classical bundle and connection. Then E with the
bimodule structure ● over A has bimodule covariant derivative

∇Q(E) = q−1
Ω1,E∇E − λ

2
ωij dxk ⊗1 [∇Ek,∇Ej]∇Ei

σQ(E)(e⊗1 ξ) = ξ ⊗1 e + λωij ∇jξ ⊗1 ∇Eie + λωij ξj dxk ⊗1 [∇Ek,∇Ei]e
to O(λ2). Moreover, Q(E,∇E) = (Q(E),∇Q(E)) is a monoidal functor Q ∶ D0 → D1 to
O(λ2) via q from Proposition 3.3.

Proof. We start by considering the following, where q−1 = q−1
Ω1,E ,

q−1∇E(a ● e) = q−1∇E(ae + λ
2
ωij a,i∇Eje)

= q−1(da⊗0 e + adxk ⊗0 ∇Eke + λ
2

d(a,i ωij) ⊗0 ∇Ee + λ
2
ωij a,i dxk ⊗0 ∇Ek∇Eje)

= da⊗1 e + adxk ⊗1 ∇Eke + λ
2

d(a,i ωij) ⊗1 ∇Eje + λ
2
ωij a,i dxk ⊗1 ∇Ek∇Eje

− λ
2
ωij ∇ida⊗1 ∇Eje − λ

2
ωij ∇i(adxk) ⊗1 ∇Ej∇Eke

= da⊗1 e + adxk ⊗1 ∇Eke + λ
2

d(a,i ωij) ⊗1 ∇Eje − λ
2
ωij ∇ida⊗1 ∇Eje

− λ
2
ωij a∇i(dxk) ⊗1 ∇Ej∇Eke + λ

2
ωij a,i dxk ⊗1 [∇Ek,∇Ej]e ,

and

a ● q−1∇E(e) = a ● q−1(dxk ⊗0 ∇ke)
= a ● (dxk ⊗1 ∇Eke − λ

2
ωij ∇i(dxk) ⊗1 ∇Ej∇Eke)

= adxk ⊗1 ∇Eke − λ
2
ωij a∇i(dxk) ⊗1 ∇Ej∇Eke + λ

2
ωij a,i∇j(dxk) ⊗1 ∇Eke ,

and then

q−1∇E(a ● e) − a ● q−1∇E(e)
= da⊗1 e + λ

2
d(a,i ωij) ⊗1 ∇Eje + λ

2
ωij a,i dxk ⊗1 [∇Ek,∇Ej]e

− λ
2
ωij ∇ida⊗1 ∇je − λ

2
ωij a,i∇j(dxk) ⊗1 ∇Eke

= da⊗1 e + λ
2

d(a,i ωij) ⊗1 ∇Eje + λ
2
ωij a,i dxk ⊗1 [∇Ek,∇Ej]e)

− λ
2
ωij ∇i(a,k dxk) ⊗1 ∇Eje − λ

2
ωik a,i∇k(dxj) ⊗1 ∇Eje

= da⊗1 e + λ
2
a,i d(ωij) ⊗1 ∇Eje + λ

2
ωij a,i dxk ⊗1 [∇Ek,∇Ej]e

− λ
2
ωkj a,i∇k(dxi) ⊗1 ∇Eje − λ

2
ωik a,i∇k(dxj) ⊗1 ∇Eje

= da⊗1 e + λ
2
a,i (d(ωij) − ωkj ∇k(dxi) − ωik∇k(dxj)) ⊗1 ∇Eje

+ λ
2
ωij a,i dxk ⊗1 [∇Ek,∇Ej]e

where we relabelled some indices for the 3rd equality. Then (3.1) tells us that the outer
long bracket in the last expression vanishes, giving

q−1∇E(a ● e) − a ● q−1∇E(e) = da⊗1 e + λ
2
ωij a,i dxk ⊗1 [∇Ek,∇Ej]e .(3.16)

Now we can set the first order quantisation of the left covariant derivative to be

Q(∇E)(e) = q−1
Ω1,E∇E(e) − λ

2
ωij dxk ⊗1 [∇Ek,∇Ej]∇Ei(e)

which we can write as stated.

Next, we want to see about a bimodule connection. We compute

σQ(E)(e⊗1 da) = da⊗1 e +∇E[e, a] + [a,∇Ee]
= da⊗1 e + λ∇(ωij ∇Eiea,j) + [a,dxk ⊗1 ∇Eke]
= da⊗1 e + λd(ωij a,j) ⊗∇Eie + λωij a,j dxk ⊗1 ∇Ek∇Eie
+λωij a,i∇j(dxk) ⊗1 ∇Eke + λωij a,i dxk ⊗1 ∇Ej∇Eke

= da⊗1 e + λd(ωij)a,j ⊗∇Eie + λωij a,jk dxk ⊗1 ∇Eie
+λωij a,j dxk ⊗1 ∇Ek∇Eie
+λωij a,i∇j(dxk) ⊗1 ∇Eke + λωji a,j dxk ⊗1 ∇Ei∇Eke

= da⊗1 e + λd(ωij)a,j ⊗∇Eie + λωij a,jk dxk ⊗1 ∇Eie
+λωij a,j dxk ⊗1 [∇Ek,∇Ei]e + λωjk a,j ∇k(dxi) ⊗1 ∇Eie

= da⊗1 e + λωij ∇j(a,k dxk) ⊗1 ∇Eie − λωij a,k∇j(dxk) ⊗1 ∇Eie
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+λωij a,j dxk ⊗1 [∇Ek,∇Ei]e + λa,j(d(ωij) − ωkj ∇k(dxi)) ⊗1 ∇Eie
= da⊗1 e + λωij ∇j(a,k dxk) ⊗1 ∇Eie + λωij a,j dxk ⊗1 [∇Ek,∇Ei]e
+λa,j(d(ωij) − ωkj ∇k(dxi) − ωik∇k(dxj)) ⊗1 ∇Eie ,

and under condition (3.1) this implies the formula for σQ(E) stated in the theorem. This
constructs the quantized covariant derivative. The following two lemmas then verify the
desired categorical properties so as to complete the proof. �

To complete the proof of the theorem, our first lemma shows that the quantisation of
the covariant derivative respects tensor products – i.e. that the quantisation of the clas-
sical tensor product covariant derivative is the tensor product of the quantized covariant
derivatives as bimodule connections (using the σ map). This is summarised by

Q(E) ⊗1 Q(F )
qE,F //

∇Q(E)⊗1Q(F )
��

Q(E ⊗0 F )

∇Q(E⊗0F )
��

Ω1(A) ⊗1 Q(E) ⊗1 Q(F )
id⊗q

// Ω1(A) ⊗1 Q(E ⊗0 F )

(3.17)

where the tensor product bimodule connection on the left is defined as in (2.3).

Lemma 3.6. For all e ∈ E and f ∈ F as objects of D0,

(id⊗ qE,F ) (∇Q(E)e⊗1 f + (σQ(E) ⊗ id)(e⊗1 ∇Q(F )f)) = ∇Q(E⊗0F )qE,F (e⊗1 f)
holds to O(λ2).

Proof. We begin with

∇Q(E⊗0F )qE,F (e⊗1 f)
= ∇Q(E⊗0F )(e⊗0 f) + λ

2
∇Q(E⊗0F )(ωij ∇Eie⊗0 ∇Fjf)

= q−1
Ω1,E∇E⊗F (e⊗ f) − λ

2
ωij dxk ⊗1 [∇E⊗Fk,∇E⊗Fj]∇E⊗Fi(e⊗ f) + λ

2
∇Q(E⊗0F )(ωij ∇Eie⊗0 ∇Fjf)

= q−1
Ω1,E⊗F (dxk ⊗ (∇Eke⊗ f) + dxk ⊗ (e⊗∇Fkf)) + λ

2
d(ωij) ⊗1 (∇Eie⊗0 ∇Fjf)

− λ
2
ωij dxk ⊗1 [∇E⊗Fk,∇E⊗Fj](∇Eie⊗ f + e⊗∇Fif) + λ

2
ωij dxk ⊗1 ∇E⊗Fk(∇Eie⊗0 ∇Fjf)

= dxk ⊗1 (∇Eke⊗ f) + dxk ⊗1 (e⊗∇Fkf)
− λ

2
ωij ∇i(dxk) ⊗1 ∇E⊗Fj((∇Eke⊗ f) + (e⊗∇Fkf)) + λ

2
ωij dxk ⊗1 ∇E⊗Fk(∇Eie⊗0 ∇Fjf)

− λ
2
ωij dxk ⊗1 [∇E⊗Fk,∇E⊗Fj](∇Eie⊗ f + e⊗∇Fif) + λ

2
d(ωij) ⊗1 (∇Eie⊗0 ∇Fjf)

and

(id⊗ qE,F )(∇Q(E)e⊗1 f)
= (id⊗ qE,F )((q−1

Ω1,E∇E(e) − λ
2
ωij dxk ⊗1 [∇Ek,∇Ej]∇Eie) ⊗1 f)

= (id⊗ qE,F )((dxk ⊗1 ∇Eke − λ
2
ωij ∇i(dxk) ⊗1 ∇Ej∇Eke) ⊗1 f)

− λ
2
ωij dxk ⊗1 ([∇Ek,∇Ej]∇Eie⊗0 f)

= dxk ⊗1 (∇Eke⊗0 f) − λ
2
ωij ∇i(dxk) ⊗1 (∇Ej∇Ek(e) ⊗0 f)

− λ
2
ωij dxk ⊗1 ([∇Ek,∇Ej]∇Eie⊗0 f) + λ

2
dxk ⊗1 (ωij(∇Ei∇Eke⊗0 ∇Fjf)) ,

from which

∇Q(E⊗0F )qE,F (e⊗1 f) − (id⊗ qE,F )(∇Q(E)e⊗1 f)
= dxk ⊗1 (e⊗∇Fkf) − λ

2
ωij ∇i(dxk) ⊗1 (∇Eke⊗∇Fjf)

− λ
2
ωij ∇i(dxk) ⊗1 ∇E⊗Fj(e⊗∇Fkf) + λ

2
ωij dxk ⊗1 ∇E⊗Fk(∇Eie⊗0 ∇Fjf)

− λ
2
ωij dxk ⊗1 (∇Eie⊗ [∇Fk,∇Fj]f) + λ

2
d(ωij) ⊗1 (∇Eie⊗0 ∇Fjf)

− λ
2
ωij dxk ⊗1 (∇Ek∇Eje⊗∇Fif) − λ

2
ωij dxk ⊗1 (e⊗ [∇Fk,∇Fj]∇Fif)

−λdxk ⊗1 (ωij(∇Ei∇Eke⊗0 ∇Fjf))
= dxk ⊗1 (e⊗∇Fkf) − λ

2
ωij ∇i(dxk) ⊗1 (∇Eke⊗∇Fjf)

− λ
2
ωij ∇i(dxk) ⊗1 ∇E⊗Fj(e⊗∇Fkf) + λ

2
ωij dxk ⊗1 (∇Ek∇Eie⊗0 ∇Fjf)
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+ λ
2
ωij dxk ⊗1 (∇Eie⊗∇Fj∇Fkf) + λ

2
d(ωij) ⊗1 (∇Eie⊗0 ∇Fjf)

− λ
2
ωij dxk ⊗1 (∇Ek∇Eje⊗∇Fif) − λ

2
ωij dxk ⊗1 (e⊗ [∇Fk,∇Fj]∇Fif)

−λdxk ⊗1 (ωij(∇Ei∇Eke⊗0 ∇Fjf))
= dxk ⊗1 (e⊗∇Fkf) − λ

2
ωij ∇i(dxk) ⊗1 (∇Eke⊗∇Fjf)

− λ
2
ωij ∇i(dxk) ⊗1 (∇Eje⊗∇Fkf) + λωij dxk ⊗1 ([∇Ek,∇Ei]e⊗0 ∇Fjf)

+ λ
2
ωij dxk ⊗1 (∇Eie⊗∇Fj∇Fkf) + λ

2
d(ωij) ⊗1 (∇Eie⊗0 ∇Fjf)

− λ
2
ωij dxk ⊗1 (e⊗ [∇Fk,∇Fj]∇Fif) − λ

2
ωij ∇i(dxk) ⊗1 (e⊗∇Fj∇Fkf) .

Next

(σQ(E) ⊗ id)(e⊗1 ∇Q(F )f)
= (σQ(E) ⊗ id)(e⊗1 q

−1
Ω1,E∇F (f) − λ

2
ωij e⊗1 (dxk ⊗1 [∇Fk,∇Fj]∇Fi(f)))

= (σQ(E) ⊗ id)(e⊗1 dxk ⊗1 ∇Fkf − λ
2
ωij e⊗1 ∇i(dxk) ⊗1 ∇Fj∇Fkf

− λ
2
ωij e⊗1 dxk ⊗1 [∇Fk,∇Fj]∇Fi(f))

= dxk ⊗1 e⊗1 ∇Fkf − λ
2
ωij ∇i(dxk) ⊗1 e⊗1 ∇Fj∇Fkf

− λ
2
ωij dxk ⊗1 e⊗1 [∇Fk,∇Fj]∇Fi(f) + λωij ∇j(dxk) ⊗1 ∇Eie⊗1 ∇Fkf

+λωik dxl ⊗1 [∇El,∇Ei]e⊗1 ∇Fkf

so that

(id⊗ qE,F )(σQ(E) ⊗ id)(e⊗1 ∇Q(F )f)
= dxk ⊗1 (e⊗∇Fkf) − λ

2
ωij ∇i(dxk) ⊗1 (e⊗∇Fj∇Fkf)

− λ
2
ωij dxk ⊗1 (e⊗ [∇Fk,∇Fj]∇Fi(f)) + λωij ∇j(dxk) ⊗1 (∇Eie⊗∇Fkf)

+λωik dxl ⊗1 ([∇El,∇Ei]e⊗∇Fkf) + λ
2
ωij dxk ⊗1 (∇Eie⊗∇Fj∇Fkf) .

Putting these calculations together gives us

∇Q(E⊗0F )qE,F (e⊗1 f) − (id⊗ qE,F )(∇Q(E)e⊗1 f) − (id⊗ qE,F )(σQ(E) ⊗ id)(e⊗1 ∇Q(F )f)
= −λ

2
ωij ∇i(dxk) ⊗1 (∇Eke⊗∇Fjf) − λ

2
ωij ∇i(dxk) ⊗1 (∇Eje⊗∇Fkf)

−λωij ∇j(dxk) ⊗1 (∇Eie⊗∇Fkf) + λ
2

d(ωij) ⊗1 (∇Eie⊗0 ∇Fjf)
= λ

2
(d(ωij) − ωkj ∇k(dxi) + ωki∇k(dxj)) ⊗1 (∇Eie⊗0 ∇Fjf)

and this vanishes by (3.1). �

Our second lemma checks functoriality under morphisms.

Lemma 3.7. If T ∶ E → F is a bundle map intertwining the covariant derivative then
Q(∇F )Q(T ) = (id⊗1 Q(T ))Q(∇E) holds to O(λ2).

Proof. In this case Q(T ) = T and

(id⊗1 Q(T ))∇Q(E) = (id⊗1 Q(T )) q−1
Ω1,E∇E(e) − λ

2
ωij dxk ⊗1 T [∇Ek,∇Ej]∇Ei(e)

= q−1
Ω1,E(id⊗ T )∇E(e) − λ

2
ωij dxk ⊗1 T [∇Ek,∇Ej]∇Ei(e) ,

Q(∇F )T = q−1
Ω1,E∇ET (e) − λ

2
ωij dxk ⊗1 [∇Ek,∇Ej]∇EiT (e) .

These are equal as T intertwines the covariant derivatives. �

Lemma 3.8. If λ∗ = −λ then ∇Q is star preserving to O(λ2), i.e.

Q(E) = Q(E)

∇Q

��

Q(E)⋆oo ∇Q // Q(Ω1(M)) ⊗1 Q(E)

⋆⊗1⋆

��
Q(Ω1(M)) ⊗1 Q(E)

σ−1
QE // Q(E) ⊗1 Q(Ω1(M)) Υ // Q(Ω1(M)) ⊗1 Q(E)

(3.18)

commutes to O(λ2).



18 EDWIN J. BEGGS & SHAHN MAJID

Proof. Begin with, using q a natural transformation and (3.15), labelling the qs where
they first occur

σQE Υ−1(⋆ ⊗1 ⋆)∇Q(Q(e))
= σQEΥ−1(⋆ ⊗1 ⋆)(qΩ1,E

−1(dxp ⊗0 ∇Epe) − λ
2
ωij dxk ⊗1 [∇Ek,∇Ej]∇Eie)

= σQEΥ−1(q
Ω1,E

−1(dxp ⊗0 ∇Epe∗) − λ
2
ωij dxk ⊗1 [∇Ek,∇Ej]∇Eie∗)

= σQE qE,Ω1−1Υ−1(dxp ⊗0 ∇Epe∗) − λ
2
ωij σQE([∇Ek,∇Ej]∇Eie∗ ⊗1 dxk)

= σQE q−1(∇Epe∗ ⊗0 dxp) − λ
2
ωij σQE([∇Ek,∇Ej]∇Eie∗ ⊗1 dxk)

= qΩ1,E
−1qΩ1,E σQE qE,Ω1−1(∇Epe∗ ⊗0 dxp) − λ

2
ωij dxk ⊗1 [∇Ek,∇Ej]∇Eie∗

= q−1(dxp ⊗0 ∇Epe∗ − λωij dxk ⊗0 [∇Ek,∇Ej]∇Eie∗) − λ
2
ωij dxk ⊗1 [∇Ek,∇Ej]∇Eie∗

= q−1(dxp ⊗0 ∇Epe∗ − λ
2
ωij dxk ⊗0 [∇Ek,∇Ej]∇Eie∗)

= ∇Q(e∗)
where we relabelled indices and used antisymmetry of ω for the 6th equality. �

To conclude this section we note that while our monoidal categories are not normally
braided ones, the ‘generalised braiding’ σQ(E) ∶ Q(E)⊗1Ω1(A) → Ω1(A)⊗1Q(E) is a step
in this direction. To explain this, will need to give special focus to the case E = Ω1(M)
with the underlying Poisson-compatible connection ∇, where Q(Ω1(M)) = Ω1(A) and
where, for brevity, we will write

∇Q ∶= ∇Q(Ω1(M)), σQ ∶= σQ(Ω1(M)).

Also note that up until this point we could have taken ∇E to be full connections and
worked with the contravariant ∇i on Ω1(M) but for ∇Q we need the full connection ∇i.
We will study ∇Q much more extensively in later sections.

Lemma 3.9. The generalised braiding obeys the mixed braid relation, in the sense that
for any (E,∇E) giving σQ(E),

(σQ ⊗ id)(id⊗ σQ(E))(σQ(E) ⊗ id) = (id⊗ σQ(E))(σQ(E) ⊗ id)(id⊗ σQ)
to O(λ2) as a map Q(E) ⊗1 Ω1(A) ⊗1 Ω1(A) → Ω1(A) ⊗1 Ω1(A) ⊗1 Q(E).

Proof. The generalised braiding is of the following form, with summation implicit,

σQ(E)(e⊗1 ξ) = ξ ⊗1 e + λT (ξ, e) ⊗1 T
′(ξ, e) ,

σQ(η ⊗1 ξ) = ξ ⊗1 η + λS(ξ, η) ⊗1 S
′(ξ, η) ,

so both sides of the equation in the statement above give the following on being applied
to e⊗1 ξ ⊗1 η:

η ⊗1 ξ ⊗1 e + λη ⊗1 T (ξ, e) ⊗1 T
′(ξ, e) + λT (η, e) ⊗1 ξ ⊗1 T

′(η, e) + λS(η, ξ) ⊗1 S
′(η, ξ) ⊗1 e ,

the other terms being O(λ2). �

This includes that σQ itself always obeys the braid relations to O(λ2). It is then inter-
esting to ask if it is involutive or strictly braided. Using [∇k,∇i]dxs = −Rsnki dxn, we
have

σQ(η ⊗1 ξ) = ξ ⊗1 η + λωij ∇jξ ⊗1 ∇iη − λωijξj ηsRsnki dxk ⊗1 dxn

for 1-forms ξ = ξjdxj , η = ηsdxs ∈ Ω1(M), and hence

σ2
Q(η ⊗1 ξ) = η ⊗1 ξ + λωij ∇iη ⊗1 ∇jξ + λωij ∇jη ⊗1 ∇iξ − λωijξjηsRsnki dxn ⊗1 dxk

−λωijξsηj Rsnki dxk ∧ ⊗1dxn

= η ⊗1 ξ − λξjηs(ωij Rsnki + ωisRjkni)dxn ⊗1 dxk .

In these formulae the classical 1-forms are being viewed in Ω1(A) so σQ ∶ Ω1(A)⊗2 →
Ω1(A)⊗2. We see that the curvature causes σQ to be not involutive in keeping with
experience in other contexts.
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3.4. Quantizing other connections relative to (E,∇E). Our constructions require
an underlying connection ∇E as part of the quantisation data for a bundle E and we have
seen how to quantise it. Any other covariant derivative on E is given by ∇S = ∇E + S,
where S ∶ E → Ω1(M) ⊗0 E is a bundle map. This has the form of a left module map
added to a left covariant derivative to give another left covariant derivative on the same
bundle and we take the same approach for the quantisation using Q(S) from Lemma 3.2.

Corollary 3.10. For any bundle map S ∶ E → Ω1(M) ⊗0 E,

∇QS = ∇Q(E) + q−1
Ω1,EQ(S), σQS(e⊗1 ξ) = σQ(E)(e⊗1 ξ) + λωij ξi∇∇j(S)(e)

defines a bimodule connection on Q(E) to O(λ2).

Proof. That we have a connection is an immediate corollary of Theorem 3.5 which con-
structs ∇Q(E) and Lemma 3.2 which tells us that Q(S) is a left module map to O(λ2).
We have explicitly

qΩ1,E∇QS = qΩ1,E ∇Q(E) + S + λ
2
ωij ∇Ω1⊗Ei ○ ∇∇j(S) .

The new part is that this is a bimodule connection to O(λ2). From (2.2) we require to
O(λ2),

σQS(e⊗1 da) = σQ(E)(e⊗1 da) + S([e, a]) + [a,S(e)]
= σQ(E)(e⊗1 da) − λωij a,i S(∇Eje) + λωij a,i∇Ω1⊗EjS(e)
= σQ(E)(e⊗1 da) + λωij a,i∇∇j(S)(e)

which is well-defined as the correction term factors through da. In this way our connection
becomes a bimodule connection on E with respect to ● at our order. �

Now we look at the tensor products and reality of such quantised connections:

Proposition 3.11. Given S ∶ E → Ω1(M) ⊗0 E and T ∶ F → Ω1(M) ⊗0 F , define
H ∶ E ⊗0 F → Ω1(M) ⊗0 E ⊗0 F by

H = S ⊗ idF + (τ ⊗ idF )(idE ⊗ T ) .
where τ is transposition. Then the tensor product ∇QST of ∇QS and ∇QT is given as a
connection on Q(E) ⊗1 Q(F ) to O(λ2) by

∇QST (e⊗1 f) = q−1
E,F∇QH qE,F (e⊗1 f) + λωij (dxk ⊗ [∇Ek,∇Ei]e −∇∇i(S)(e)) ⊗ Tj(f)

where T (f) = dxk ⊗ Tk(f).

Proof. Here ∇QH leads with q−1
Ω1,E⊗0F

which we clear along with q−1
E,F by multiplying

both sides by q2 ∶= qΩ1,E⊗0F (id⊗ qE,F ) = qΩ1⊗0E,F (qΩ1,E ⊗ id) in view of Proposition 3.3.
Hence we prove

q2∇QST = qΩ1,E⊗0F ∇QH qE,F + λ rem ∶ Q(E) ⊗1 Q(F ) → Q(Ω1(M) ⊗0 E ⊗0 F )
where

rem(e⊗0 f) = ωij (dxk ⊗ [∇Ek,∇Ei]e −∇∇i(S)(e)) ⊗ Tj(f)
can be treated classically since we are already at order λ. To this end we compute

q2(∇QS ⊗1 idF ) = q2((∇Q(E) + q−1
Ω1,EQ(S)) ⊗1 idF )

= q2(∇Q(E) ⊗1 idF ) + qΩ1⊗0E,F (Q(S) ⊗1 idF )
= q2(∇Q(E) ⊗1 idF ) + (Q(S) ⊗ idF + λ

2
ωij ∇∇i(S) ⊗∇Fj)qE,F

where we used the second form of q2 for the second equality and the deformed functoriality
property of q displayed in Proposition 3.3 for the third equality (applied to the bundle
map S ∶ E → Ω1(M) ⊗0 E). We next compute

q2(σQS ⊗1 idF )(idE ⊗1 ∇QT )
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= qΩ1⊗0E,F (qσQSq−1 ⊗1 idF )(q ⊗1 idF )(idE ⊗1 ∇QT )
= (qσQSq−1 ⊗ idF + λ

2
ωij ∇i(qσQSq−1) ⊗∇j)q2(idE ⊗1 ∇QT )

= (qσQSq−1 ⊗ idF + λ
2
ωij ∇i(qσQSq−1) ⊗∇j)qE,Ω1⊗F (idE ⊗1 q∇QT )

= (qσQSq−1 ⊗ idF + λ
2
ωij ∇i(qσQSq−1) ⊗∇j)qE,Ω1⊗F (idE ⊗1 (q∇Q(F ) +Q(T )))

where qσQSq−1 is qΩ1,EσQSqE,Ω1
−1 with labels added. Now λσQS = λτ to order λ, where

τ is transposition, so λ
2
∇i(qσQSq−1) = 0. Then, where we set qσQSq−1 = qσQ(E)q−1+λS′,

q2(σQS ⊗1 idF )(idE ⊗1 ∇QT )
= (qσQSq−1 ⊗ idF )q(idE ⊗1 q∇Q(F ) + idE ⊗1 Q(T ))
= ((qσQ(E)q−1 + λS′) ⊗ idF )q(idE ⊗1 q∇Q(F ))
+ ((qσQ(E)q−1 + λS′) ⊗ idF )(idE ⊗Q(T ) + λ

2
ωij ∇Ei ⊗∇∇j(Q(T ))) qE,F

= ((qσQ(E)q−1 + λS′) ⊗ idF )q(idE ⊗1 q∇Q(F ))
+ ((qσQ(E)q−1 + λS′) ⊗ idF )(idE ⊗Q(T ) + λ

2
ωij ∇Ei ⊗∇∇j(T )) qE,F .

It follows that the contribution of S and T to q2 of the tensor product derivative is

(Q(S) ⊗ idF ) qE,F + λ
2
ωij ∇∇i(S) ⊗∇Fj + λ (S′ ⊗ idF )(idE ⊗∇F )

+ (qσQ(E)q−1 ⊗ idF )(idE ⊗Q(T )) q + λ
2
ωij (τ ⊗ idF )(∇Ei ⊗∇∇j(T ))

+λ (S′ ⊗ idF )(idE ⊗ T )
= (Q(S) ⊗ idF ) q + λ

2
ωij ∇∇i(S) ⊗∇j + λ (S′ ⊗ idF )(idE ⊗∇T )

+ (qσQ(E)q−1 ⊗ idF )(idE ⊗Q(T )) q + λ
2
ωij (τ ⊗ idF )(∇Ei ⊗∇∇j(T )) .(3.19)

From Theorem 3.5 we expand qσQ(E)q
−1 explicitly as

qΩ1,E σQ(E)qE,Ω1
−1(e⊗ ξ) = ξ ⊗ e + λωij ξj dxk ⊗ [∇Ek,∇Ei]e ,

which is of the form q σQ(E)q
−1 = τ +λσ′ where τ flips the ⊗1 factors and σ′ contains the

order λ correction. Then (3.19) becomes

(S ⊗ idF ) qE,F + λ
2
ωij ∇∇i(S) ⊗∇Fj + λ (S′ ⊗ idF )(idE ⊗∇T )

+ (τ ⊗ idF )(idE ⊗Q(T )) q + λ
2
ωij (τ ⊗ idF )(∇Ei ⊗∇∇j(T ))

+ λ
2
ωij ∇i ○ ∇∇j(S) ⊗ idF + λ (σ′ ⊗ idF )(idE ⊗ T )

= (S ⊗ idF ) q + λ
2
ωij ∇∇i(S) ⊗∇Fj + λ (S′ ⊗ idF )(idE ⊗∇T )

+ (τ ⊗ idF )(idE ⊗ T ) q + λ
2
ωij (τ ⊗ idF )(∇i ⊗∇∇j(T ))

+ λ
2
ωij ∇Ω1⊗Ei ○ ∇∇j(S) ⊗ idF + λ (σ′ ⊗ idF )(idE ⊗ T )

+ λ
2
ωij (τ ⊗ idF )(idE ⊗∇i ○ ∇∇j(T )) .(3.20)

Now we use H given above with

∇∇j(H) = ∇∇j(S) ⊗ idF + (τ ⊗ idF )(idE ⊗∇∇j(T ))

to write (3.20) as

Q(H) q + λωij ∇∇i(S) ⊗∇j + λ (S′ ⊗ idF )(idE ⊗∇T ) + λ (σ′ ⊗ idF )(idE ⊗ T ) .

Now from Corollary 3.10

(S′ ⊗ idF )(idE ⊗∇T )(e⊗ f) = (S′ ⊗ idF )(e⊗ dxk ⊗ (∇Fkf + Tk(f)))
= ωij ∇∇j(S)(e) ⊗ (∇Fif + Ti(f))

so we rewrite (3.20) as

Q(H) q + λωij ∇∇j(S) ⊗ Ti + λ (σ′ ⊗ idF )(idE ⊗ T ) .

Finally, writing T (f) = dxi ⊗ Ti(f),

(σ′ ⊗ idF )(idE ⊗ T )(e⊗ f) = (σ′ ⊗ idF )(e⊗ dxp ⊗ Tp(f))
= λωij dxk ⊗ [∇Ek,∇Ei]e⊗ Tj(f) . ◻
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Lemma 3.12. If λ∗ = −λ and S is real, the difference in going clockwise minus anti-
clockwise round the diagram

Q(E) = Q(E)

∇QS
��

Q(E)⋆oo ∇QS // Q(Ω1(M)) ⊗1 Q(E)

⋆⊗1⋆

��
Q(Ω1(M)) ⊗1 Q(E) Q(E) ⊗1 Q(Ω1(M))

σQSoo Q(Ω1(M)) ⊗1 Q(E)Υ−1
oo

(3.21)

starting at Q(e) ∈ Q(E) is

λωij ∇∇j(S)(Si(e∗)) − λωij ∇∇i(∇∇j(S))(e∗) + λωij dxk ⊗ [∇Ek,∇Ei]Sj(e∗)
to O(λ2).

Proof. From lemma 3.8 the diagram commutes for S = 0. We look only at the difference
from the S = 0 to the general S case. Going anticlockwise from Q(E) we get

qΩ1,E
−1Q(S) ⋆ (e) = qΩ1,E

−1Q(S)(e∗)
Going clockwise is more complicated, as two of the arrows involve S. If we set qσQSq−1 =
qσQ(E)q

−1 +λS′ as in the proof of Proposition 3.11, then to order λ we get the clockwise
contributions, omitting repeats of indices on q once we have given them in full,

σQ(E)Υ−1(⋆ ⊗1 ⋆)qΩ1,E
−1Q(S)(Q(e)) + λS′ Υ−1(⋆ ⊗ ⋆)∇S(e)

= σQ(E)Υ−1 q
Ω1,E

−1(⋆ ⊗0 ⋆)Q(S)(Q(e)) + λS′ Υ−1(⋆ ⊗ ⋆)∇S(e)
= σQ(E) qE,Ω1−1 Υ−1(⋆ ⊗0 ⋆)Q(S)(Q(e)) + λS′ Υ−1(⋆ ⊗ ⋆)∇S(e)
= qΩ1,E

−1 qΩ1,E σQ(E) qE,Ω1−1 Υ−1(⋆ ⊗0 ⋆)Q(S)(Q(e)) + λS′ Υ−1(⋆ ⊗ ⋆)∇S(e)
= q−1 q σQ(E) q−1 Υ−1(⋆ ⊗0 ⋆)(S(e) + λ

2
ωij ∇Ω1⊗Ei(∇∇j(S)(e)))

+λS′ Υ−1(⋆ ⊗ ⋆) (dxp ⊗∇Epe + S(e))
= q−1 τ Υ−1(⋆ ⊗0 ⋆)(S(e) + λ

2
ωij ∇Ω1⊗Ei(∇∇j(S)(e)))

+λq−1 σ′ Υ−1(⋆ ⊗0 ⋆)(S(e)) + λS′ Υ−1(⋆ ⊗ ⋆) (dxp ⊗∇Epe + S(e)) ,
where we have put q σQ(E)q−1 = τ +λσ′. As the classical connections preserve ⋆ and λ is
imaginary, we get the following for the clockwise contributions, where S(e) = dxp⊗Sp(e),

qΩ1,E
−1 (S(e∗) − λ

2
ωij ∇Ω1⊗Ei(∇∇j(S)(e∗))) + λq−1 σ′ Υ−1(⋆ ⊗0 ⋆)(dxp ⊗ Sp(e))

+λS′ Υ−1(⋆ ⊗ ⋆) (dxp ⊗∇Epe + S(e))
= q−1 (S(e∗) − λ

2
ωij ∇Ω1⊗Ei(∇∇j(S)(e∗))) + λq−1 σ′ Υ−1(dxp ⊗ Sp(e∗))

+λS′ Υ−1(⋆ ⊗ ⋆) (dxp ⊗∇Epe + S(e))
= q−1 (S(e∗) − λ

2
ωij ∇Ω1⊗Ei(∇∇j(S)(e∗))) + λq−1 σ′(Sp(e∗) ⊗ dxp)

+λS′ Υ−1(⋆ ⊗ ⋆) (dxp ⊗ (∇Epe + Sp(e)))
= q−1 (S(e∗) − λ

2
ωij ∇Ω1⊗Ei(∇∇j(S)(e∗))) + λq−1 (ωip dxk ⊗ [∇Ek,∇Ei]Sp(e∗))

+λS′((∇Epe∗ + Sp(e∗)) ⊗ dxp)
= q−1 (S(e∗) − λ

2
ωij ∇Ω1⊗Ei(∇∇j(S)(e∗))) + λq−1 (ωip dxk ⊗ [∇Ek,∇Ei]Sp(e∗))

+λωpj ∇∇j(S)(∇Epe∗ + Sp(e∗)) .

Then the difference, clockwise minus anticlockwise, is to order λ,

−λωij ∇Ω1⊗Ei(∇∇j(S)(e∗)) + λωip dxk ⊗ [∇Ek,∇Ei]Sp(e∗) + λωpj ∇∇j(S)(∇Epe∗ + Sp(e∗))
= −λωij ∇Ω1⊗Ei(∇∇j(S)(e∗)) + λωij dxk ⊗ [∇Ek,∇Ei]Sj(e∗) + λωij ∇∇j(S)(∇Eie∗ + Si(e∗))
= λωij ∇∇j(S)(Si(e∗)) − λωij ∇Ω1⊗Ei(∇∇j(S))(e∗) + λωij dxk ⊗ [∇Ek,∇Ei]Sj(e∗) . ◻

Note that Lemma 3.12 shows that ∇QS(⋆) is λ times a module map (i.e. it involves no
derivatives of e). This means that ∇QS(⋆) is also a right module map, and thus it is
automatically star-compatible at order λ in the sense described in [8]. We will also need
the following observation.
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Lemma 3.13. Let (E,∇E) be a bundle with connection and e ∈ E such that ∇E(e) = 0.
Then to O(λ2), e is central in the quantized bimodule and ∇Q(E)(e) = 0. If in addition
S(e) = 0 for some S ∶ E → Ω1 ⊗0 E then ∇QS(e) = 0 to O(λ2).

Proof. This is immediate from the definitions of ∇Q(E), Q(S) and ∇QS . Here classically
∇S(e) = ∇E(e)+S(e) = 0 so that ∇∇j(S)(e) = ∇Ω1⊗Ej(S(e))−S(∇Ej(e)) = 0 from which
Q(S)(e) = 0. �

4. Semiquantisation of the exterior algebra

In noncommutative geometry the notion of ‘differential structure’ is largely encoded as a
differential graded algebra extending the quantisation of functions to differential forms.
The main result in this section adapts the semiquantisation functor of Section 3 to show
that the same data that allows us to semiquantise Ω1(M) (namely a Poisson bivector ω
and a Poisson-compatible connection ∇) provides in fact a canonical semiquantisation of
the wedge product of forms of all degree. This is Theorem 4.4. We consider the differ-
ential calculus as the backdrop to the Riemannian geometry and hence will refer to the
Poisson-compatible connection underlying its quantisation as the background connection
on Ω1(M).

4.1. Quantizing the wedge product. Our starting point is a functorial quantum
wedge product ∧Q obtained as an application of the semiquantisation monoidal func-
tor Q ∶ D0 → E1 in Proposition 3.3. Now any classical linear covariant derivative extends
to forms of all degree as a derivation because the usual tensor product covariant deriva-
tive on Ω1(M)⊗0 Ω1(M) preserves symmetry, so anything in the kernel of ∧ stays in the
kernel. So our background connection ∇ automatically extends to forms of all degrees
and the classical wedge product Ωm(M)⊗0 Ωn(M) → Ωm+n(M) intertwines these covari-
ant derivatives. Thus all Ωn(M) become objects in D0 and the classical wedge products
between them are morphisms. We now apply Q to these objects and morphisms to define
Ωn(A) = Q(Ωn(M)) and

∧Q ∶ Q(Ωm(M)) ⊗1 Q(Ωn(M)) qÐ→ Q(Ωm(M) ⊗0 Ω1(M)) Q(∧)Ð→ Q(Ωm+n(M))

ξ ∧Q η = ξ ∧ η + λ
2
ωij ∇iξ ∧∇jη .(4.1)

This ∧Q is associative to O(λ2) since Q is monoidal to this order. We now look at the
Leibniz rule for d with respect to it.

Lemma 4.1.

d(ξ ∧Q η) − (dξ) ∧Q η − (−1)∣ξ∣ξ ∧Q dη = −λHji ∧ (∂i ⌟ ξ) ∧ ∇jη + λ(−1)∣ξ∣Hij ∧∇iξ ∧ (∂j ⌟ η)
where

Hij ∶= 1
4
ωis (T jnm;s − 2Rjnms)dxm ∧ dxn.

Proof. Using (3.1) in the following form

d(ωij) − ωkj ∇k(dxi) − ωik∇k(dxj) = 0 ,

and also using

dζ = dxk ∧∇kζ + 1
2
T skn dxk ∧ dxn ∧ (∂s ⌟ ζ)

and relabeling indices, we find

d(ωij ∇iξ ∧∇jη) = ωij ∇i(dxk) ∧ ∇kξ ∧∇jη + ωij ∇j(dxk) ∧ ∇iξ ∧∇kη
+ωij dxk ∧∇k∇iξ ∧∇jη + (−1)∣ξ∣ ωij ∇iξ ∧ dxk ∧∇k∇jη
+ωij 1

2
T skn dxk ∧ dxn ∧ (∂s ⌟ ∇iξ) ∧ ∇jη

+(−1)∣ξ∣ ωij ∇iξ ∧ 1
2
T skn dxk ∧ dxn ∧ (∂s ⌟ ∇jη)
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= ωij ∇i(dxk ∧∇kξ) ∧ ∇jη + (−1)∣ξ∣ ωij ∇iξ ∧∇j(dxk ∧∇kη)
+ωij dxk ∧ [∇k,∇i]ξ ∧∇jη + (−1)∣ξ∣ ωij ∇iξ ∧ dxk ∧ [∇k,∇j]η
+ωij 1

2
T skn dxk ∧ dxn ∧ (∂s ⌟ ∇iξ) ∧ ∇jη

+(−1)∣ξ∣ ωij ∇iξ ∧ 1
2
T skn dxk ∧ dxn ∧ (∂s ⌟ ∇jη) .

From this we obtain

d(ωij ∇iξ ∧∇jη) − ωij ∇idξ ∧∇jη − (−1)∣ξ∣ ωij ∇iξ ∧∇jdη
= −ωij ∇i( 1

2
T skn dxk ∧ dxn ∧ (∂s ⌟ ξ)) ∧ ∇jη

−(−1)∣ξ∣ ωij ∇iξ ∧∇j( 1
2
T skn dxk ∧ dxn ∧ (∂s ⌟ η))

+ωij dxk ∧ [∇k,∇i]ξ ∧∇jη + (−1)∣ξ∣ ωij ∇iξ ∧ dxk ∧ [∇k,∇j]η
+ωij 1

2
T skn dxk ∧ dxn ∧ (∂s ⌟ ∇iξ) ∧ ∇jη

+(−1)∣ξ∣ ωij ∇iξ ∧ 1
2
T skn dxk ∧ dxn ∧ (∂s ⌟ ∇jη)

= −ωij 1
2
T skn;i dxk ∧ dxn ∧ (∂s ⌟ ξ) ∧ ∇jη

−(−1)∣ξ∣ ωij ∇iξ ∧ 1
2
T skn;j dxk ∧ dxn ∧ (∂s ⌟ η)

+ωij dxk ∧ [∇k,∇i]ξ ∧∇jη + (−1)∣ξ∣ ωij ∇iξ ∧ dxk ∧ [∇k,∇j]η
= −ωij 1

2
T skn;i dxk ∧ dxn ∧ (∂s ⌟ ξ) ∧ ∇jη

−(−1)∣ξ∣ ωij ∇iξ ∧ 1
2
T skn;j dxk ∧ dxn ∧ (∂s ⌟ η)

−ωij dxk ∧Rsnki dxn ∧ (∂s ⌟ ξ) ∧ ∇jη
−(−1)∣ξ∣ ωij ∇iξ ∧ dxk ∧Rsnkj dxn ∧ (∂s ⌟ η) .

using ∇i(v ⌟ ξ) = ∇i(v) ⌟ ξ+v ⌟ ∇iξ for the second equality and [∇k,∇i]ξ = −Rsnki dxn∧
(∂s ⌟ ξ) for the third. This gives the stated result on recognising the expressions in terms
of the stated H. �

We see that ∧Q will not in general obey the Leibniz rule for the undeformed d. We have
a choice of persisting with a modified Leibniz rule perhaps linking up to examples such as
[18, 21], or modifying the wedge product, or modifying d. We choose the second option:

Lemma 4.2. For vector field v, ξ ∈ Ωn(M) and covariant derivative ∇,

v ⌟ dξ + d(v ⌟ ξ) = v ⌟ ∇ξ + ∧(∇(v) ⌟ ξ) + vj T kji dxi ∧ (∂k ⌟ ξ) .
(The left hand side here is the usual Lie derivative).

Proof. First we start with a 1-form ξ, when

v ⌟ d(ξi dxi) + d(v ⌟ ξi dxi) = vj ξi,j dxi − vi ξi,j dxj + vi ξi,j dxj + vi,j ξi dxj

= vj (ξi,j − Γkji ξk)dxi + (vi,j + Γijk v
k) ξi dxj + vj T kji ξk dxi .

Now we extend this by induction, for ξ ∈ Ω1(M),
v ⌟ d(ξ ∧ η) = v ⌟ (dξ ∧ η − ξ ∧ dη)

= (v ⌟ dξ) ∧ η + dξ ∧ (v ⌟ η) − (v ⌟ ξ)dη + ξ ∧ (v ⌟ dη) ,
d(v ⌟ (ξ ∧ η)) = d((v ⌟ ξ) ∧ η) − d(ξ ∧ (v ⌟ η))

= d(v ⌟ ξ) ∧ η + (v ⌟ ξ)d(η) − dξ ∧ (v ⌟ η) + ξ ∧ d(v ⌟ η) .
Then, assuming the η ∈ Ωn(M) and that the result works for n,

v ⌟ d(ξ ∧ η) + d(v ⌟ (ξ ∧ η))
= (d(v ⌟ ξ) + v ⌟ dξ) ∧ η + ξ ∧ (v ⌟ dη + d(v ⌟ η))
= (v ⌟ ∇ξ + ∧(∇(v) ⌟ ξ) + vj T kji dxi ∧ (∂k ⌟ ξ)) ∧ η
+ ξ ∧ (v ⌟ ∇η + ∧(∇(v) ⌟ η) + vj T kji dxi ∧ (∂k ⌟ η)) . ◻

Proposition 4.3. Let Hij be as in Lemma 4.1. Then

ξ ∧1 η = ξ ∧Q η + λ (−1)∣ξ∣+1Hij ∧ (∂i ⌟ ξ) ∧ (∂j ⌟ η)
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is associative to O(λ2) and the Leibniz rule holds to this order if and only if

Hij =Hji, dHij + Γirp dxp ∧Hrj + Γjrp dxp ∧Hir = 0 ∀i, j.

Proof. We write
ξ ∧1 η = ξ ∧Q η + λξ∧̂η

where

ξ ∧̂η = (−1)∣ξ∣+1Hij ∧ (∂i ⌟ ξ) ∧ (∂j ⌟ η) ,
and for the moment Hij is an arbitrary collection of 2-forms (the first part holds in
general). For the first part, we compute

(ξ ∧̂η) ∧ ζ = (−1)∣ξ∣+1Hij ∧ (∂i ⌟ ξ) ∧ (∂j ⌟ η) ∧ ζ ,
(ξ ∧ η) ∧̂ ζ = (−1)∣ξ∣+∣η∣+1Hij ∧ (∂i ⌟ (ξ ∧ η)) ∧ (∂j ⌟ ζ)

= (−1)∣ξ∣+∣η∣+1Hij ∧ (∂i ⌟ ξ) ∧ η ∧ (∂j ⌟ ζ)
+ (−1)∣η∣+1Hij ∧ ξ ∧ (∂i ⌟ η) ∧ (∂j ⌟ ζ) ,

and

ξ ∧ (η ∧̂ ζ) = (−1)∣η∣+1 ξ ∧Hij ∧ (∂i ⌟ η) ∧ (∂j ⌟ ζ) ,
ξ ∧̂ (η ∧ ζ) = (−1)∣ξ∣+1Hij ∧ (∂i ⌟ ξ) ∧ (∂j ⌟ (η ∧ ζ))

= (−1)∣ξ∣+∣η∣+1Hij ∧ (∂i ⌟ ξ) ∧ η ∧ (∂j ⌟ ζ)
+ (−1)∣ξ∣+1Hij ∧ (∂i ⌟ ξ) ∧ (∂j ⌟ η) ∧ ζ .

Hence

(ξ ∧̂η) ∧ ζ + (ξ ∧ η) ∧̂ ζ = ξ ∧ (η ∧̂ ζ) + ξ ∧̂ (η ∧ ζ) ,
which given that ∧Q is necessarily associative to O(λ2) by functoriality gives the result
stated.

Next, using again the given definition of ξ ∧̂η,

d(ξ ∧̂η) = (−1)∣ξ∣+1 dHij ∧ (∂i ⌟ ξ) ∧ (∂j ⌟ η) + (−1)∣ξ∣+1Hij ∧ d(∂i ⌟ ξ) ∧ (∂j ⌟ η)
+Hij ∧ (∂i ⌟ ξ) ∧ d(∂j ⌟ η)

= (−1)∣ξ∣ (Γirt dxt ∧Hrj + Γjrt dxt ∧Hir −Gij) ∧ (∂i ⌟ ξ) ∧ (∂j ⌟ η)
+ (−1)∣ξ∣+1Hij ∧ d(∂i ⌟ ξ) ∧ (∂j ⌟ η) +Hij ∧ (∂i ⌟ ξ) ∧ d(∂j ⌟ η) .

From Lemma 4.2 we use

∂j ⌟ dξ + d(∂j ⌟ ξ) = ∂j ⌟ ∇ξ + ∧(∇(∂j) ⌟ ξ) + T kjt dxt ∧ (∂k ⌟ ξ)
= ∇jξ + dxt ∧ Γstj (∂s ⌟ ξ) + T sjt dxt ∧ (∂s ⌟ ξ)
= ∇jξ + dxt ∧ Γsjt (∂s ⌟ ξ)

to give

d(ξ ∧̂η) = (−1)∣ξ∣ (Γirt dxt ∧Hrj + Γjrt dxt ∧Hir −Gij) ∧ (∂i ⌟ ξ) ∧ (∂j ⌟ η)
+ (−1)∣ξ∣+1Hij ∧ (∇iξ + dxt ∧ Γsit (∂s ⌟ ξ) − ∂i ⌟ dξ) ∧ (∂j ⌟ η)
+Hij ∧ (∂i ⌟ ξ) ∧ (∇jη + dxt ∧ Γsjt (∂s ⌟ η) − ∂j ⌟ dη) .

Comparing these fragments, we find

d(ξ ∧̂η) − d(ξ) ∧̂η − (−1)∣ξ∣ ξ ∧̂d(η)
=Hij ∧ (∂i ⌟ ξ) ∧ ∇jη − (−1)∣ξ∣Hij ∧∇iξ ∧ (∂j ⌟ η) − (−1)∣ξ∣Gij ∧ (∂i ⌟ ξ) ∧ (∂j ⌟ η) ,

where Gij ∶= dHij + Γirp dxp ∧Hrj + Γjrp dxp ∧Hir. Again, this expression holds for any
collection Hij .

Now comparing with Lemma 4.1 and taking Hij as defined there, we see that the Leibniz
rule holds with respect to ∧1 if and only if Hij is symmetric and Gij = 0. To see that
these have to hold separately, one may take η in degree 0 so that the interior product
∂j ⌟ η = 0. �
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This gives conditions on the curvature and torsion contained inHij to obtain a differential
graded algebra to O(λ2).

4.2. Results on curvature, torsion and the tensor N . Here we do some calcula-
tions in Riemannian geometry with torsion in order to simplify our two conditions in
Proposition 4.3 on the tensor Hij . We use [17] and [42] for the Bianchi identities with
torsion;

(B1) ∑
cyclic permutations(abc)

(T kbc;a −Rkabc − T kai T ibc) = 0 ,

(B2) ∑
cyclic permutations(abc)

(Rkjbc;a −Rkjai T ibc) = 0 .

When working with covariant derivatives with torsion we also have be aware of a technical
point on the use of the semicolon notation for the covariant derivative, which only occurs
if we use it more than once. If K is a tensor with various indices then by definition
K;i = ∇iK while K;ij ≠ ∇j∇iK because in K;ij we take the jth covariant derivative of
K;i including i with the existing tensor indices of K, with the result that we have an
extra term −ΓpjiK;p which does not appear in ∇j∇iK. Doing the same for K;ji and
comparing implies that

K;ij −K;ji = [∇j ,∇i]K − T pjiK;p

where the commutator [∇j ,∇i] is given by the curvature as usual; we see that there is
an extra term involving the torsion.

Theorem 4.4. Suppose that ∇ on Ω1(M) is Poisson-compatible. Then the conditions
in Proposition 4.3 on Hij hold and we have a differential graded algebra Ω(A) to O(λ2)
and defined by (∧1,d) .

Proof. (1) We first claim that given the compatibility condition (3.1), the 2-forms Hij in
Lemma 4.1 obey Hij = Hji. To prove this, we differentiate the compatibility condition
to obtain

0 = ωij;mn + ω
ik

;n T
j
km + ωkj;n T

i
km + ωik T jkm;n + ω

kj T ikm;n

= ωij;mn − (ωis T ksn + ωsk T isn)T jkm − (ωks T jsn + ωsj T ksn)T ikm + ωik T jkm;n + ω
kj T ikm;n

which we rearrange as

ωij;mn = ωis T ksn T jkm + ωsj T ksn T ikm + ωsk(T isn T jkm + T ism T jkn) − ω
ik T jkm;n − ω

kj T ikm;n

Now use

ωij;mn − ω
ij

;nm = ωsj Risnm + ωisRjsnm − T pnm ωij ;p

= ωsj Risnm + ωisRjsnm + T pnm (ωikT jkp + ω
kjT ikp) ,

where we have used the compatibility condition again, to get

ωsj Risnm + ωisRjsnm = ωis(T ksn T jkm − T ksm T jkn) + ω
sj(T ksn T ikm − T ksm T ikn)

−ωis(T jsm;n − T jsn;m) − ωsj(T ism;n − T isn;m)
−T knm (ωisT jsk + ω

sjT isk)
= ωis(T ksn T jkm − T ksm T jkn − T

k
nm T

j
sk) − ω

is(T jsm;n − T jsn;m)
+ωsj(T ksn T ikm − T ksm T ikn − T knm T isk) − ωsj(T ism;n − T isn;m) ,

which we rearrange to obtain

0 = ωis((T kns T jmk + T
k
sm T

j
nk + T

k
mn T

j
sk) − (T jsm;n + T jns;m) +Rjsmn)

+ωsj((T kns T imk + T ksm T ink + T kmn T isk) − (T ism;n + T ins;m) +Rismn) .

Using (B1) gives the symmetry of Hij .

0 = ωis(T jmn;s −Rjmns −Rjnsm) + ωsj(T imn;s −Rimns −Rinsm) .
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(2) We next claim that if the compatibility condition (3.1) holds then the 2-forms Hij in
Lemma 4.1 obey dHij+Γirp dxp∧Hrj+Γjrp dxp∧Hir = 0. To prove this we calculate dHij ,
noting that the i, j are fixed indices and are not summed with the vector or covector basis.
This is the reason for the extra Christoffel symbols entering the following expression:

∇p(Hij) = 1
4
∇p(ωis(T jnm;s − 2Rjnms)dxm ∧ dxn)

= 1
4
ωis;p(T jnm;s − 2Rjnms)dxm ∧ dxn + 1

4
ωis(T jnm;sp − 2Rjnms;p)dxm ∧ dxn

−ΓiprH
rj − ΓjprH

ir .

Thus we have, using the compatibility condition,

dxp ∧∇p(Hij) + Γirp dxp ∧Hrj + Γjrp dxp ∧Hir

= 1
4
ωis;p(T jnm;s − 2Rjnms)dxp ∧ dxm ∧ dxn + 1

4
ωis(T jnm;sp − 2Rjnms;p)dxp ∧ dxm ∧ dxn

−T ipr dxp ∧Hrj − T jpr dxp ∧Hir

= − 1
4
(ωitT stp + ωtsT itp) (T jnm;s − 2Rjnms)dxp ∧ dxm ∧ dxn

+ 1
4
ωis(T jnm;sp − 2Rjnms;p)dxp ∧ dxm ∧ dxn − T ipr dxp ∧Hrj − T jpr dxp ∧Hir .

Using (B1) and then differentiating, we see that

∑
cyclic(pmn)

(T jnm;p −Rjpnm − T jpr T rnm) = 0 ,

∑
cyclic(pmn)

(T jnm;ps −Rjpnm;s − T jpr;s T rnm − T jpr T rnm;s) = 0 .

Since the 3-form has cyclic symmetry in (pmn),
dxp ∧∇p(Hij) + Γirp dxp ∧Hrj + Γjrp dxp ∧Hir

= − 1
4
(ωitT stp + ωtsT itp) (T jnm;s − 2Rjnms)dxp ∧ dxm ∧ dxn

+ 1
4
ωis(T jnm;sp − T jnm;ps +Rjpnm;s + T jpr;s T rnm + T jpr T rnm;s − 2Rjnms;p)dxp ∧ dxm ∧ dxn

−T ipr dxp ∧Hrj − T jpr dxp ∧Hir

= − 1
4
(ωitT stp + ωtsT itp) (T jnm;s − 2Rjnms)dxp ∧ dxm ∧ dxn

+ 1
4
ωis(T rnmRjrps − T jrmRrnps − T jnrRrmps − T jnm;r T

r
ps +Rjpnm;s

+ T jpr;s T rnm + T jpr T rnm;s − 2Rjnms;p)dxp ∧ dxm ∧ dxn

−T ipr dxp ∧Hrj − T jpr dxp ∧Hir

= − 1
4
(ωisT rsp (T jnm;r − 2Rjnmr) + ωrsT irp (T jnm;s − 2Rjnms))dxp ∧ dxm ∧ dxn

+ 1
4
ωis(T rnmRjrps − T jrmRrnps − T jnrRrmps − T jnm;r T

r
ps +Rjpnm;s

+ T jpr;s T rnm + T jpr T rnm;s − 2Rjnms;p)dxp ∧ dxm ∧ dxn

− 1
4
ωrs(T jnm;s − 2Rjnms)T ipr dxp ∧ dxm ∧ dxn − 1

4
ωis T jpr (T rnm;s − 2Rrnms) dxp ∧ dxm ∧ dxn

= − 1
4
(ωisT rsp ( − 2Rjnmr))dxp ∧ dxm ∧ dxn

+ 1
4
ωis(T rnmRjrps − T jrmRrnps − T jnrRrmps +Rjpnm;s + T jpr;s T rnm − 2Rjnms;p)dxp ∧ dxm ∧ dxn

− 1
4
ωis T jpr (−2Rrnms) dxp ∧ dxm ∧ dxn

= 1
4
ωis(T rnmRjrps − T jrmRrnps − T jnrRrmps +Rjpnm;s + T jpr;s T rnm − 2Rjnms;p

+2T rspR
j
nmr + 2T jprR

r
nms)dxp ∧ dxm ∧ dxn .

Given the overall dxp ∧ dxm ∧ dxn factor, we can make the following substitutions:
−Rjnms;p ↦ −Rjpns;m ↦ Rjpsn;m ↦ −Rjpsm;n ↦ Rjpms;n
T rspR

j
nmr ↦ T rsmR

j
pnr ↦ −T rmsRjpnr ↦ T rnsR

j
pmr ↦ T rnsR

j
pmr ↦ −T rsnRjpmr

T jprR
r
nms ↦ T jnrR

r
mps ↦ −T jmrRrnps ↦ T jrmR

r
nps

Using these we can rewrite the previous equations, and then use (B2) to obtain

dxp ∧∇p(Hij) + Γirp dxp ∧Hrj + Γjrp dxp ∧Hir

= 1
4
ωis(T rnmRjrps − T jrmRrnps − T jnrRrmps + T jpr;s T rnm

+Rjpnm;s +Rjpsn;m +Rjpms;n − T rmsRjpnr − T rsnRjpmr
+T jnrRrmps + T jrmRrnps)dxp ∧ dxm ∧ dxn

= 1
4
ωis(T rnmRjrps + T jpr;s T rnm + T rnmRjpsr)dxp ∧ dxm ∧ dxn
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= 1
4
ωis T rnm (Rjrps + T jpr;s +Rjpsr)dxp ∧ dxm ∧ dxn .

We also need
1
2
T tvu dxv ∧ dxu ∧ (∂t ⌟ Hij)
= 1

2
T tvu dxv ∧ dxu ∧ (∂t ⌟ ( 1

4
ωis(T jnm;s − 2Rjnms)dxm ∧ dxn))

= 1
8
T pvu ω

is(T jnp;s − 2Rjnps)dxv ∧ dxu ∧ dxn

− 1
8
T pvu ω

is(T jpn;s − 2Rjpns)dxv ∧ dxu ∧ dxn

= 1
4
T pvu ω

is(T jnp;s −Rjnps + Rjpns)dxv ∧ dxu ∧ dxn

= 1
4
T rmn ω

is(T jpr;s +Rjpsr + Rjrps)dxp ∧ dxm ∧ dxn .

Our claim then follows by using

dHij = dxk ∧∇kHij + 1
2
T tkn dxk ∧ dxn ∧ (∂t ⌟ Hij) .

Now parts (1) and (2) prove precisely the conditions required in Proposition 4.3 and we
conclude the result. �

Proposition 4.5. For λ∗ = −λ, the above Ω(A) is a ∗-DGA to O(λ2).

Proof. As both d and ⋆ are undeformed, it is automatic that d(ξ∗) = (dξ)∗. Next

η∗ ∧1 ξ
∗ = η∗ ∧ ξ∗ + λ

2
ωij ∇iη∗ ∧∇jξ∗ + λ (−1)∣η∣+1Hij ∧ (∂i ⌟ η∗) ∧ (∂j ⌟ ξ∗)

= η∗ ∧ ξ∗ + λ
2
ωij ∇iη∗ ∧∇jξ∗ + λ (−1)∣η∣+1Hij ∧ (∂i ⌟ η)∗ ∧ (∂j ⌟ ξ)∗

= (−1)∣ξ∣ ∣η∣(ξ ∧ η)∗ + (−1)∣ξ∣ ∣η∣ λ
2
ωij (∇jξ ∧∇iη)∗

+λ (−1)∣η∣+1+(∣η∣−1)(∣ξ∣−1)Hij ∧ ((∂j ⌟ ξ) ∧ (∂i ⌟ η))∗
= (−1)∣ξ∣ ∣η∣(ξ ∧ η)∗ + (−1)∣ξ∣ ∣η∣(λ

2
ωij ∇iξ ∧∇jη)∗

+λ (−1)∣ξ∣ ∣η∣+∣ξ∣+2 (Hij ∧ (∂j ⌟ ξ) ∧ (∂i ⌟ η))∗
= (−1)∣ξ∣ ∣η∣(ξ ∧ η)∗ + (−1)∣ξ∣ ∣η∣(λ

2
ωij ∇iξ ∧∇jη)∗

+(−1)∣ξ∣ ∣η∣ (λ (−1)∣ξ∣+1Hij ∧ (∂j ⌟ ξ) ∧ (∂i ⌟ η))∗ ◻

4.3. Quantum torsion of the quantisation ∇Q of the background connection.
Here we compute the quantum torsion of the quantum connection ∇Q given by applying
Theorem 3.5 to the background connection ∇ on Ω1(M) itself. We have already touched
upon ∇Q and its generalised braiding σQ at the end of Section 3.3. The torsion of a left
connection in noncommutative geometry was covered in Section 2.2 and is automatically
a left-module map. It is ‘torsion compatible’[8] if it is also a right (hence bi-)module
map. In our case T∇Q

= ∧1∇Q − d ∶ Ω1(A) → Ω2(A) while the torsion of ∇ is the map
T = ∧∇ − d ∶ Ω1(M) → Ω2(M) written above as a tensor.

Proposition 4.6. The quantum torsion of ∇Q to O(λ2) on a 1-form ξ is

T∇Q
(ξ) = T (ξ) + λ

4
ωis T jnm;s dxm ∧ dxn∂j ⌟∇iξ

and is a right module map to O(λ2) if and only if ωij ∇jT = 0.

Proof. Here all covariant derivatives are the background connection on Ω1(M) and we
use ∇Q from Theorem 3.5 and ∧1 from the preceding sections to find

∧1∇Qξ = ∧1 q
−1∇ξ − λ

2
ωij dxk ∧ [∇k,∇j]∇iξ

= ∧1 q
−1(dxk ⊗0 ∇kξ) − λ

2
ωij dxk ∧ [∇k,∇j]∇iξ

= dxk ∧∇kξ + λHij (∂j ⌟∇iξ) − λ
2
ωis dxm ∧ [∇m,∇s]∇iξ

= dxk ∧∇kξ + λ
4
(∂j ⌟∇iξ)ωis (T jnm;s − 2Rjnms)dxm ∧ dxn

+ λ
2
ωisRjnms dxm ∧ dxn(∂j ⌟∇iξ)

using the definition of Hij in Lemma 4.1 for the last equality. This simplifies further to
give the result stated for T∇Q

. On the right hand side the leading term is the classical
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torsion T now viewed as a map Ω1(A) → Ω2(A) given that these are essentially identified
as vector spaces with their classical counterparts. For the second part

T∇Q
(ξ ● a) = T (ξa + λ

2
ωij(∇iξ)a,j) + λ

2
ωis((∂j ⌟∇iξ)a + ξja,i)∇sT j

= T∇Q
(ξ)a + λ

2
ωijT (∇iξ)a,j + λ

2
ωisξja,i∇sT j

= T∇Q
(ξ) ● a + λ

2
ωija,j (T (∇iξ) − ξk(∇jT k) − ∇i(T (ξ)))

= −λωija,jξk∇iT k

where we used the formula for T∇Q
and the definitions of ●. �

We also note that the functor Q ∶ D0 → D1 in Theorem 3.5 also gives us that the various
∇Q on different degrees of Ω(A) (quantising the ∇ on the corresponding degree of Ω(M))
are compatible with the ∧Q to O(λ2) as this was true classically and we apply the functor.
This is no longer true of ∧1 due to its order λ correction.

Proposition 4.7.

(id⊗1 ∧1)∇Q⊗1Q(ξ ⊗1 η) − ∇Q(ξ ∧1 η)
= λ (−1)∣ξ∣ dxk ⊗1 (∇kHij + ΓikpH

pj + ΓjkpH
ip) ∧ (∂i ⌟ ξ) ∧ (∂j ⌟ η)

to O(λ2).

Proof: From modifying (3.11) we get

Q(Ω(M)) ⊗1 Q(Ω(M)) q //

∇Q(Ω(M))⊗1Q(Ω(M))
��

Q(Ω(M) ⊗0 Ω(M))

∇Q(Ω(M)⊗0Ω(M))
��

Q(Ω(M)) ⊗1 Q(Ω(M)) ⊗1 Q(Ω(M))
id⊗q

// Q(Ω(M)) ⊗1 Q(Ω(M) ⊗0 Ω(M))

id⊗1(∧)

��
Q(Ω(M)) ⊗1 Q(Ω(M))

(4.2)

As classically ∧ intertwines the covariant derivatives,

(id⊗1 (∧q))∇Q(Ω(M))⊗1Q(Ω(M)) = ∇Q(Ω(M)) (∧q) ∶
Q(Ω(M)) ⊗1 Q(Ω(M)) → Q(Ω(M)) ⊗1 Q(Ω(M)) .

In the notation of Proposition 4.3 we now look at ξ ∧1 η = ξ ∧Q η + λξ ∧̂η where

ξ ∧̂η = (−1)∣ξ∣+1Hij ∧ (∂i ⌟ ξ) ∧ (∂j ⌟ η) .

Then we obtain

λ (id⊗1 ∧̂)∇Q(Ω(M))⊗1Q(Ω(M))(ξ ⊗1 η)
= λ (id⊗1 ∧̂)(dxk ⊗1 (∇kξ ⊗1 η + ξ ⊗1 ∇kη)) = λdxk ⊗1 (∇kξ ∧̂η + ξ ∧̂∇kη)
= λ (−1)∣ξ∣+1 dxk ⊗1 H

ij ∧ ((∂i ⌟ ∇kξ) ∧ (∂j ⌟ η) + (∂i ⌟ ξ) ∧ (∂j ⌟ ∇kη)) .

Also, using ∇i(v ⌟ ξ) = ∇i(v) ⌟ ξ + v ⌟ ∇iξ

λ∇Q(Ω(M))(ξ ∧̂η)
= λ (−1)∣ξ∣+1 dxk ⊗1 ∇k(Hij ∧ (∂i ⌟ ξ) ∧ (∂j ⌟ η))
= λ (−1)∣ξ∣+1 dxk ⊗1 H

ij ∧ ((∂i ⌟ ∇kξ) ∧ (∂j ⌟ η) + (∂i ⌟ ξ) ∧ (∂j ⌟ ∇kη))
+λ (−1)∣ξ∣+1 dxk ⊗1 ∇kHij ∧ (∂i ⌟ ξ) ∧ (∂j ⌟ η)
+λ (−1)∣ξ∣+1 dxk ⊗1 H

ij ∧ ((Γpki∂p ⌟ ξ) ∧ (∂j ⌟ η) + (∂i ⌟ ξ) ∧ (Γpkj ∂p ⌟ η))
= λ (id⊗1 ∧̂)∇Q(Ω(M))⊗1Q(Ω(M))(ξ ⊗1 η)
+λ (−1)∣ξ∣+1 dxk ⊗1 (∇kHij + ΓikpH

pj + ΓjkpH
ip) ∧ (∂i ⌟ ξ) ∧ (∂j ⌟ η) . ◻
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4.4. Quantizing other linear connections relative to the background one. Here
we extend the above to other connections ∇S = ∇ + S on Ω1(M) different from the
background one ∇, where S(ξ) = ξp Spnm dxn ⊗ dxm for ξ ∈ Ω1(M). Our quantisation
to O(λ2) is achieved on the same Ω1(A) as already obtained from ∇ by virtue of the
construction in Corollary 3.10.

Proposition 4.8. The torsion of ∇QS to O(λ2) on a 1-form ξ is

T∇QS
(ξ) = T∇S

(ξ) + λ
4
ξp;i ω

ij (T pnm;j − 2Spnm;j)dxm ∧ dxn

+λξp (SpnmHnm + 1
2
ωij Spnm;̂i dxn ∧ dxm) .

Note that the hat on ̂ denotes that the j index does not take part in the covariant
differentiation in the i direction.

Proof. The definition of the quantum torsion of a connection and of ∇QS gives

T∇QS
(ξ) = T∇Q

(ξ) + ∧1 q
−1S(ξ) + ∧ λ

2
ωij ∇i ○ ∇∇j(S)(ξ)

in which

∧1 q
−1S(ξ) = ξp Spnm dxn ∧ dxm + λξp SpnmHnm ,

∧ λ
2
ωij ∇i ○ ∇∇j(S)(ξ) = ∧ λ

2
ωij ∇i(ξp Spnm;j dxn ⊗ dxm)

= λ
2
ωij ∇i(ξp Spnm;j dxn ∧ dxm)

= λ
2
ωij (ξp;i Spnm;j + ξp S

p
nm;̂i)dxn ∧ dxm .

By Proposition 4.6 we have

T∇QS
(ξ) = T∇(ξ) + λ

4
ξj;i ω

is T jnm;s dxm ∧ dxn + ∧S(ξ) + λξp SpnmHnm

+ λ
2
ωij (ξp;i Spnm;j + ξp S

p
nm;̂i)dxn ∧ dxm

= T∇S
(ξ) + λ

4
ξp;i ω

ij T pnm;j dxm ∧ dxn + λξp SpnmHnm

+ λ
2
ωij (ξp;i Spnm;j + ξp S

p
nm;̂i)dxn ∧ dxm

= T∇S
(ξ) + (λ

4
ξp;i ω

ij T pnm;j − λ
2
ωij ξp;i S

p
nm;j)dxm ∧ dxn

+λξp SpnmHnm + λ
2
ωij ξp S

p
nm;̂i dxn ∧ dxm

which we recognise as the expression stated. �

Corollary 4.9. If ∇S is torsion free then T∇QS
(ξ) = λ

2
ξpA

p
nm dxm ∧ dxn to O(λ2) with

Apnm = 1
4
ωis (Spij + S

p
ji) (T

j
nm;s −Rjnms +Rjmns) − 1

4
ωij (T snmRpsij − T psmRsnij + T psnRsmij) .

Proof. We begin with

∧∇S(dxp) = ∧∇(dxp) + Spnm dxn ∧ dxm

so 0 = T∇(dxp) + Spnm dxn ∧ dxm and from (2.1) we deduce

Spnm dxn ∧ dxm = 1
2
T pnm dxn ∧ dxm .(4.3)

Then Proposition 4.8 gives

T∇QS
(ξ) = T∇S

(ξ) + λ
2
ξp (2SpnmHnm + 1

2
ωij T pnm;̂i dxn ∧ dxm) ,

in which we use the formula for the curvature of a tensor and the symmetry of Hnm. ◻

We see that quantisation of a torsion free covariant derivative introduces quantum torsion
λA at order λ Aimn looks like a classical torsion tensor and is given by the expression
stated. We similarly look at Lemma 3.12 to measure the deviation of ∇QS from being
star preserving and again find an error of order λ. We will then modify ∇QS to kill both
quantum corrections.
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Lemma 4.10. If λ∗ = −λ and S is real then the difference Da
ijnm

λ
2
ωij dxn ⊗ dxm to

O(λ2) in going clockwise minus anticlockwise round the diagram in Lemma 3.12 starting
from Q(dxa) is given by

Da
ijnm = 2Saip S

p
nm;j − (SbnmRabij − SarmRrnij − SanrRrmij) − 2SajrR

r
mni

Proof. Putting e = e∗ = dxa in Lemma 3.12, and using ∇∇j(S)(ξ) = ξp Spnm;j dxn ⊗ dxm

we get

∇∇j(S)(Si(dxa)) = ∇∇j(S)(Sair dxr) = Saip Spkm;j dxk ⊗ dxm ,

dxk ⊗ [∇k,∇i]Sj(dxa) = dxk ⊗ [∇k,∇i](Sajr dxr) = −SajrRrmki dxk ⊗ dxm .

Now we use the antisymmetry of ωij to get

ωij ∇Ω1⊗Ω1i(∇∇j(S))(dxa) = 1
2
ωij (SbkmRabij − SarmRrkij − SakrRrmij)dxk ⊗ dxm .

We note that this is equivalent to the derivative of ⋆ ∶ Q(Ω1(M)) → Q(Ω1(M)) being

∇QS(⋆)(Q(dxa)) = λ
2
ωijDa

ijkm dxk ⊗ dxm

and we see that this is not necessarily zero. �

Next we consider adding a correction, so

∇1 = ∇QS + λK
where K ∶ Ω1(M) → Ω1(M) ⊗0 Ω1(M) is given by K(ξ) = ξpKp

nm dxn ⊗ dxm.

Theorem 4.11. If λ∗ = −λ and S is real then there is a unique real K such that ∇1 =
∇QS + λK is star preserving to O(λ2) (namely Ka

nm = 1
4
ωijDa

ijnm). Moreover, if ∇S is
torsion free then ∇1 is quantum torsion free to this order.

Proof. We look at the following diagram:

Q(Ω1(M)) = Q(Ω1(M))

λK
��

Q(Ω1(M))⋆oo λK // Q(Ω1(M)) ⊗1 Q(Ω1(M))

⋆⊗1⋆

��
Q(Ω1(M)) ⊗1 Q(Ω1(M)) Q(Ω1(M)) ⊗1 Q(Ω1(M))

σQSoo Q(Ω1(M)) ⊗1 Q(Ω1(M))Υ−1
oo

where at this order σQS is simply transposition. Hence for ∇QS +λK the effect of adding
K is to add

−λ (Ka
nm + (Ka

nm)∗)dxn ⊗ dxm .

to the difference in Lemma 4.10. This gives the unique value if we assume K is real
for the connection to be ∗-preserving. Adding K also adds λξaKa

nm dxn ∧ dxm to the
formula for the torsion in Proposition 4.8 so if K has the unique real value stated and if
∇S is torsion free, and using (4.3),

Ka
nm dxn ∧ dxm = 1

4
ωijDa

ijnm dxn ∧ dxm

= 1
4
ωij(Saip T pnm;j − ( 1

2
T bnmR

a
bij − SarmRrnij + SamrRrnij) − 2SajrR

r
mni)dxn ∧ dxm

= 1
4
ωij(Saip T pnm;j − ( 1

2
T bnmR

a
bij + T amrRrnij) + 2SairR

r
mnj)dxn ∧ dxm

= 1
4
Saip ω

ij(T pnm;j + 2Rpmnj)dxn ∧ dxm − 1
4
ωij( 1

2
T bnmR

a
bij + T amrRrnij)dxn ∧ dxm

= −SaipHip − 1
8
ωij(T bnmRabij + 2T amrR

r
nij)dxn ∧ dxm

where the 2nd equality used antisymmetry in m,n given the wedge product. Now Corol-
lary 4.9 tells us that ∇QS + λK is torsion free. ◻

We have achieved a unique star-preserving quantisation to O(λ2) of any real connection
on Ω1(M), which is quantum torsion-free to our order if the classical connection is
torsion-free.
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5. Semiquantisation of Riemannian geometry

We are now in position to semiquantize Riemannian geometry on our above datum (ω,∇).
We need to proceed carefully, as there are various places where modifications arise,
and there are typically two connections involved. Throughout this section suppose g =
gij dxi⊗dxj ∈ Ω⊗2(M) is a Riemannian metric on M . We start with the quantum metric
and the quantisation ∇Q of the background connection ∇.

5.1. Quantized metric. We obtain to first order a quantum metric g1 ∈ Ω⊗12A charac-
terised by quantum symmetry and centrality. The former is the statement that g1 is in
the kernel of ∧1 ∶ Ω⊗12A→ Ω2A and the latter, that a.g1 = g1.a for all a ∈ A, is needed to
be able to apply the metric to situations involving tensor products over the algebra (i.e.
the fibrewise tensor product of bundles), without which using the metric would become
much more complicated.

As with the wedge product, we start with a functorial part of the quantum metric

(5.1) gQ ∶= q−1
Ω1,Ω1(g) = gijdxi ⊗1 dxj + λ

2
ωij(gms,i − gksΓkim)dxm ⊗1 Γsjndxn .

and of the quantum connection

(5.2) ∇Qdxi = −(Γimn +
λ

2
ωsj(Γimk,sΓkjn − ΓiktΓ

k
smΓtjn − ΓijkR

k
nms))dxm ⊗1 dxn

by application of our functor in Section 3.

Lemma 5.1. If we have ∇g = 0 then we also have ∇QgQ = 0 to O(λ2) as an application
of Theorem 3.5. Moreover, if λ∗ = −λ then gQ is ‘real’ and ∇Q is ∗-preserving to this
order.

Proof. We consider the metric as a morphism g̃ ∶ C∞(M) → Ω1(M) ⊗0 Ω1(M) in D0,
where g = g̃(1) and Ω1(M), is equipped with the background connection (assumed now
to be metric compatible). Then q−1

Ω1,Ω1Q(g̃) ∶ Q(C∞(M)) → Q(Ω1(M)) ⊗1 Q(Ω1(M))
and we evaluate this on 1 to give the element gQ ∈ Ω1(A) ⊗1 Ω1(A). In this case the
morphism property of qΩ1(M),Ω1(M) implies (suppressing M for clarity)

∇Q(Ω1)⊗1Q(Ω1)q
−1
Ω1,Ω1 ○Q(g̃)(1) = (id⊗ q−1

Ω1,Ω1)∇Q(Ω1⊗0Ω1)Q(g̃)(1)

and the right hand side is zero since ∇Ω1⊗0Ω1g = 0. One can also see this another
way, which some readers may prefer: By Lemma 3.6 (which is best summarised by
the commuting diagram (3.17)), as long as the corresponding qs are inserted, the tensor
product of the quantized connections is the same as the quantisation of the tensor product
connection. We take a special case of (3.17), remembering that Ω1(A) = Q(Ω1(M)).

Q(Ω1(M)) ⊗1 Q(Ω1(M)) q //

∇Q⊗1Q

��

Q(Ω⊗2(M))

∇Q(Ω⊗2(M))
��

Ω1(A) ⊗1 Q(Ω1(M)) ⊗1 Q(Ω1(M))
id⊗q

// Ω1(A) ⊗1 Q(Ω⊗2(M))

(5.3)

Now we suppose that classically the background connection preserves the classical Rie-
mannian metric g ∈ Ω⊗2(M), i.e. that ∇Ω⊗2(M)g = 0. By Lemma 3.13 we have ∇Q(Ω⊗2(M))g =
0, which gives g central in the quantized system. Also by (5.3) we see that gQ = q−1g ∈
Ω1A ⊗1 Ω1A is indeed preserved by the tensor product of the quantized connections
∇Q⊗1Q. Moreover, we know from Lemma 3.8 that ∇Q preserves the star operation hence
in this case we also have hermitian-metric compatibility with gQ in the sense

(∇̄Q ⊗ id + id⊗∇Q)(⋆ ⊗ id)gQ = 0 .
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Over C, reality of gQ in the sense Υ−1(⋆ ⊗1 ⋆) gQ = gQ reduces by (3.15) to the classical
statement for g and ⋆ ⊗0 ⋆, which is trivial certainly if the classical coefficients gij are
real and symmetric. �

However, gQ is not necessarily ‘quantum symmetric’. We can correct for this by an
adjustment at order λ.

Proposition 5.2. Let (ω,∇) be a Poisson tensor with Poisson-compatible connection
and define the associated ‘generalised Ricci 2-form’ and adjusted metric

R = gijHij , g1 = gQ − λqΩ1,Ω1
−1R

where on the right the 2-form is lifted to an antisymmetric tensor. Suppose that ∇g = 0.

(1) If the lowered Tijk is totally antisymmetric then dR = 0.
(2) ∧1(g1) = 0, and q2∇Qg1 = −λ∇R to O(λ2). Here ∇Qg1 = 0 to this order if and

only if ∇R = 0.
(3) If λ∗ = −λ then g1 is ‘real’ (and ∇Q is star-preserving) to O(λ2).

Proof. (1) We use the formula for dHij proven in part (2) of Theorem 4.4 in the following,

d(gijHij) = gij,p dxp ∧Hij + gij dHij

= gij,p dxp ∧Hij − gij (Γirp dxp ∧Hrj + Γjrp dxp ∧Hir)
= (gij,p − grj Γrip − gir Γrjp)dxp ∧Hij .

If ∇ preserves the metric we also have

0 = ∇p(gij dxi ⊗ dxj) = (gij,p − grj Γrpi − gir Γrpj)dxi ⊗ dxj ,

and using this, if the lowered Tijk is totally antisymmetric

d(gijHij) = (grj Γrpi + gir Γrpj − grj Γrip − gir Γrjp)dxp ∧Hij

= (grj T rpi + gir T rpj)dxp ∧Hij = (Tjpi + Tipj)dxp ∧Hij = 0 .(5.4)

(2) Clearly ∧1(gQ) = λR so ∧1(g1) = 0. Likewise q2∇Qg1 = q2∇QgQ − λ∇R = −λ∇R
by Lemma 5.1, where the last term here is viewed as an element of Ω1(M)⊗03 by an
antisymmetric lift. The antisymmetric lift commutes with ∇ so ∇1g1 = 0 if and only if
∇R = 0 on R as a 2-form. To give the formulae here more explicitly, we remember our
2-form conventions so that

(5.5) R = 1
2
Rnmdxm ∧ dxn, Rnm = 1

2
gijω

is(T jnm;s −Rjnms +Rjmns).

in which case,

g1 = gQ +
λ

2
Rmndxm ⊗1 dxn.

(3) Over C, we also have the condition Υ−1(⋆ ⊗1 ⋆)g1 = g1, as the correction is both
imaginary and antisymmetric. ∇Q is still star-preserving because that statement is not
dependent on the metric (which means that it is also hermitian-metric compatible with
the corresponding hermitian metric (⋆ ⊗ id)g1). �

In general we may not have either of these properties of R but we do have ∇Qg1 being
order λ and that is enough to make g1 commute with elements of A to order λ which is
what we wanted to retain at this point. The terminology for R comes from the Kähler
case which is a subcase of the following special case.

Corollary 5.3. If the background connection ∇ is taken to be the Levi-Civita one,
(1) Poisson-compatibility reduces to ω covariantly constant.
(2) ∇Q is quantum torsion free to O(λ2) and R = 1

2
ωjiRinmjdxm ∧ dxn is closed.

(3) ∇Qg1 = O(λ2), i.e. ∇Q is a quantum-Levi-Civita connection for g1, to this order if
and only if ∇R = 0.
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Proof. This is a special case of Proposition 5.2. For the quantum torsion we use Propo-
sition 4.6 where the torsion T of ∇ is currently being assumed to be zero. In this case
dR = 0 as T = 0 is antisymmetric. Note that if ∇R ≠ 0 we still have ∇Qg1 is order λ by
Lemma 5.1. �

5.2. Relating general ∇ and the Levi-Civita ∇̂. In general there is no reason to
take the background connection ∇ to be the same as the classical Levi-Civita connection
∇̂ for our chosen metric on M . The role of the former in controlling the quantisation of
the differential structure is very different one from the role of the latter in controlling
the geometry. We still need ∇g = 0 as a quantisation condition on the metric since the
quantum metric has to be central to O(λ2) in the noncommutative geometry (it being
shown in [10] that this is necessary for the existence of a bimodule map ( , ) inverse
to the metric.) There is no reason here to think that ∇ should have zero torsion T
and indeed Lemma 3.1 tells us that it cannot be torsion free unless ω is covariantly
constant. In this case we can write ∇̂ in the general form ∇S = ∇+S for some contorsion
tensor S ∶ Ω1(M) → Ω1(M) ⊗0 Ω1(M) which will then allow us to quantise it via Q(S).
Moreover, it is well-known (see [28]) that given an arbitrary tensor T of the correct type
there is a unique metric compatible covariant derivative ∇ with that torsion, given by
Christoffel symbols

Γabc = Γ̂abc + 1
2
gad(Tdbc − Tbcd − Tcbd)(5.6)

where Tabc = gad T dbc and Γ̂abc are the Christoffel symbols for the Levi-Civita connection
so that ∇S(dxa) = −Γ̂abc dxb ⊗ dxc. Hence

(5.7) Sabc = 1
2
gad(Tdbc − Tbcd − Tcbd) .

As a quick check of conventions, note that this formula is consistent with (4.3). Through-
out this section T is arbitrary which fixes ∇ such that this is metric compatible, and S
is the above function of T so that ∇S = ∇̂, the Levi-Civita connection.

Lemma 5.4. The curvatures are related by

R̂lijk =Rlijk − Slki;j + Slji;k + Smkj Slmi − Smjk Slmi + Smki Sljm − Smji Slkm ,

where semicolon is derivative with respect to ∇.

Proof. This is elementary: Γ̂mji = Γmji − Smji so that

R̂lijk = Γ̂lki,j − Γ̂lji,k + Γ̂mki Γ̂ljm − Γ̂mji Γ̂lkm
=Rlijk − Slki,j + Slji,k − Γmki S

l
jm + Γmji S

l
km − Smki Γljm + Smji Γlkm + Smki Sljm − Smji Slkm

=Rlijk − Slki;j + Slji;k − Tmjk Slmi + Smki Sljm − Smji Slkm
and we then write T in terms of S to obtain the answer stated. �

This gives a different point of view on some of the formulae below, if we wish to rewrite
expressions in terms of the Levi-Civita connection. In the same vein:

Proposition 5.5. Suppose that a connection ∇ is metric-compatible. Then (∇, ω) are
Poisson-compatible if and only if

(∇̂kω)ij + ωir Sjrk − ω
jrSirk = 0

or equivalently

ωjmSimk = 1
2
((∇̂kω)ij − (∇̂rω)mj gri gmk + (∇̂rω)im grj gmk ) .

Proof. The compatibility condition gives

0 = (∇̂mω)ij + ωik (T jkm + 1
2
gjd(Tdmk − Tmkd − Tkmd))

+ωkj (T ikm + 1
2
gid(Tdmk − Tmkd − Tkmd))
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= (∇̂mω)ij + ωik 1
2
gjd(Tdkm + Tmdk − Tkmd) + ωkj 1

2
gid(Tdkm + Tmdk − Tkmd)

= (∇̂mω)ij + 1
2
(ωik gjd − ωjk gid)(Tdkm + Tmdk − Tkmd)

which is the first condition stated in terms of S. From this,

(∇̂mω)ij gir gjs = −ωik gir Sskm + ωjk gjsSrkm .

Now define

−Θmrs ∶= (∇̂mω)ij gir gjs − ωjk gjs2Srkm = −ωik gir Sskm − ωjk gjsSrkm
and note that Θmrs is symmetric on swapping r, s. Hence

Θmrs = −(∇̂mω)ij gir gjs + 2ωjk gjsSrkm ,(5.8)

2ωjkSrkm = (∇̂mω)ij gir +Θmrs g
sj .(5.9)

From (5.8) we obtain the following condition, which we repeat with permuted indices

Θmrs +Θrms = −(∇̂mω)ij gir gjs − (∇̂rω)ij gim gjs ,
Θrsm +Θsrm = −(∇̂rω)ij gis gjm − (∇̂sω)ij gir gjm ,

Θsmr +Θmsr = −(∇̂sω)ij gim gjr − (∇̂mω)ij gis gjr .
Taking the first of these equations, subtracting the second and adding the third gives

Θmrs = (∇̂rω)ij gis gjm + (∇̂sω)ij gir gjm .

Now we rewrite (5.9) as

2ωjkSrkm = (∇̂mω)ij gir + ((∇̂rω)it gis gtm + (∇̂sω)it gir gtm) gsj
= (∇̂mω)ij gir − (∇̂rω)ij gim + (∇̂sω)it gir gtm gsj

which we write as stated. �

5.3. Quantising the Levi-Civita connection and metric compatibility. Now we
look for a quantum Levi-Civita connection in the general case where the background
connection ∇ may not be the Levi-Civita connection ∇̂. As in Section 5.1 we assume a
metric g ∈ Ω1⊗2(M) and ∇g = 0 and as in Section 5.2 we let S be a function of the torsion
T of ∇ such that ∇S = ∇ + S = ∇̂. We consider straight quantum metric compatibility
in this section (which makes sense over any field) and the hermitian version in the next
section (recall that the two versions of the metric-compatibility coincide if the quantum
connection is star-preserving).

Lemma 5.6. For ∇S the Levi-Civita connection, the quantum metric compatibility tensor
and quantum torsion T∇QS

(ξ) = λ
2
ξpA

p
nmdxm ∧ dxn to O(λ2) are given respectively by

q2∇QS⊗1QS(gQ) = −λωij grs Ssjn(Rrmki + Srkm;i)(dxk ⊗ dxm ⊗ dxn)

Apnm = − 1
4
ωij (gpd (Tisd + Tsid) (T snm;j −Rsnmj +Rsmnj) + T snmRpsij − T psmRsnij + T psnRsmij)

where q2 ∶= qΩ1,Ω1⊗0Ω1(id⊗ qΩ1,Ω1) = qΩ1⊗0Ω1,Ω1(qΩ1,Ω1 ⊗ id).

Proof. Following the general theory in Proposition 3.11 we set

H = S ⊗ idF + (τ ⊗ id)(id⊗ S) ∶ Ω1⊗2(M) → Ω1(M) ⊗0 Ω1⊗2(M)
and note that H(g) = 0 since both ∇ and ∇S preserve g. Hence Q(H)(g) = 0 and
∇QH(g) = 0 by application of Lemma 3.13. Now applying Proposition 3.11 gives

q2∇QS⊗1QS(q−1g) = (q∇QH q + λ rem)(q−1g) = λ rem(q−1g) ,
rem(e⊗1 f) = ωij (dxk ⊗ [∇k,∇i]e −∇∇i(S)(e)) ⊗ Sj(f)(5.10)

where q2 is as stated in the lemma, S(f) = dxk ⊗ Sk(f) and q−1g ∶= qΩ1,Ω1
−1g. Then by

(5.10),

q2∇QS⊗1QS(q−1g) = λ rem(q−1g) = λ rem(grs dxr ⊗1 dxs)
= λωij grs (dxk ⊗ [∇k,∇i](dxr) − ∇∇i(S)(dxr)) ⊗ Sj(dxs)
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= λωij grs Ssjn (dxk ⊗ [∇k,∇i](dxr) − ∇∇i(S)(dxr)) ⊗ dxn

which we write as stated. For the torsion we used Spij + S
p
ji = − gpd(Tijd + Tjid) in

Corollary 4.9 and relabelled. �

We see that the quantisation ∇QS given by the procedure outlined in Section 3.4 is only
quantum metric compatible to an error of order λ. However, the quantum metric g1

in Section 5.1 has an order λ correction to gQ as above we similarly make an order λ
correction to ∇QS .

Theorem 5.7. Let ∇S be the Levi-Civita connection. There is a unique quantum connec-
tion of the form ∇1 = ∇QS +λK such that the quantum torsion and merely the symmetric
part of ∇1g1 vanish to O(λ2). The antisymmetric part,

(id⊗ ∧)q2∇1g1 = −λ (∇̂R + ωij grs Ssjn(Rrmki + Srkm;i)dxk ⊗ dxm ∧ dxn) ,

to O(λ2) is independent of K. A fully metric compatible torsion free ∇1 exists if and only
if the above expression vanishes, in which case it is given by the unique ∇1 discussed.

Proof. Here q2 is the same as in Lemma 5.6. If we write K(ξ) = ξpKp
nm dxn ⊗ dxm,

then the results in Lemma 5.6 (with semicolon given by the background connection) are
clearly adjusted to

q2∇1(g1) = −λωij grs Ssjn(Rrmki + Srkm;i)dxk ⊗ dxm ⊗ dxn

− λ
4
∇S⊗S(gij ωis(T jnm;s −Rjnms +Rjmns)dxm ⊗ dxn)

+λ (gpnKp
km + gmpKp

kn)dxk ⊗ dxm ⊗ dxn

T∇1(ξ) = λ
2
ξp (Kp

nm −Kp
mn −Apnm)dxn ∧ dxm .

Looking at the first expression reveals that the second term is purely antisymmetric in
nm, whereas the third term (the only one to contain the order λ correction Ka

bc) is purely
symmetric in nm. Hence there is nothing we can do by adding Ka

bc to make the part
of the metric compatibility tensor which is antisymmetric in nm vanish, it will have the
value stated, but we show that we can choose Ka

bc to make the part which is symmetric
in nm vanish, namely by setting

gnpK
p
km + gmpKp

kn =Bknm
where

Bknm = 1
2
ωij grs (Ssjn(Rrmki + Srkm;i) + Ssjm(Rrnki + Srkn;i))

while for vanishing torsion, clearly we need Kp
nm−Kp

mn = Apnm. If we set Knkm = gnpKp
km

then these conditions become

Knkm +Kmkn = Bknm , Kknm −Kkmn = gkpApnm .

Now

Knkm =Bknm −Kmkn = Bknm + gmpApnk −Kmnk ,

and continuing in this manner six times gives a unique value of K,

Knkm = 1
2
(Bknm −Bnkm +Bmnk + gmpApnk + gkpA

p
nm + gnpApkm) .(5.11)

where A describes the quantum torsion of ∇QS as in Lemma 5.6 and

Bknm −Bnkm +Bmnk
= 1

2
ωij grs (Ssjn(Rrmki + Srkm;i) + Ssjm(Rrnki + Srkn;i))

− 1
2
ωij grs (Ssjk(Rrmni + Srnm;i) + Ssjm(Rrkni + Srnk;i))

+ 1
2
ωij grs (Ssjn(Rrkmi + Srmk;i) + Ssjk(Rrnmi + Srmn;i))

= 1
2
ωij grs (Ssjn(Rrmki +Rrkmi + Srmk;i + Srkm;i) + Ssjm(Rrnki −Rrkni − Srnk;i + Srkn;i)

+Ssjk(Rrnmi −Rrmni − Srnm;i + Srmn;i))
= 1

2
ωij grs (Ssjn(Rrmki +Rrkmi − grd (Tmkd;i + Tkmd;i)) + Ssjm(Rrnki −Rrkni + T rkn;i)
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+Ssjk(Rrnmi −Rrmni + T rmn;i))
using Srmk + Srkm = − grd (Tmkd + Tkmd). �

This clearly reduces to Corollary 5.3 in the case where T = 0 but more generally we have
a free parameter, the value of T for the background connection provided only that (∇, ω)
are Poisson-compatible. We might hope to use this freedom to set R = 0 so that our
differential calculus remains associative at the next order in λ, and/or we might hope to
choose T so that the antisymmetric part of the quantum metric compatibility tensor also
vanishes. Otherwise we still have a ‘best possible’ choice of ∇1 given by (5.11).

5.4. Hermitian-metric compatibility. We again assume that our Poisson-compatible
connection ∇ obeys ∇g = 0 and that ∇S = ∇ + S = ∇̂ the Levi-Civita connection for g.
We set ∇1 = ∇QS + λK, for some real K, and ask this time that ∇1 is hermitian-metric
compatible with the hermitian metric (⋆⊗id)g1 corresponding to g1. This is a potentially
different condition from straight metric compatibility unless ∇1 is star-preserving, in
which case it is equivalent.

Proposition 5.8. If λ∗ = −λ and ∇S is the Levi-Civita connection then the condition
for ∇QS + λK to be hermitian-metric compatible with g1 to O(λ2) is

Knpm −Kmpn = Rnm;̂p + 1
2
ωij (grm∇∇i(∇∇j(S))rpn − gnr∇∇i(∇∇j(S))rpm)

where ;̂ denotes the Levi-Civita derivative. This condition on K can always be solved
simultaneously with vanishing of the quantum torsion.

Proof. (1) If we write the quantum correction to the metric in Proposition 5.2 as g1 =
gQ − λgc, then hermitian-metric compatibility tensor for ∇QS becomes

((id⊗ ⋆−1)Υ qΩ1⊗Ω1−1Q(S) ⊗ id + id⊗ qΩ1⊗Ω1
−1Q(S))(⋆ ⊗ id)gQ

−λ(∇̄S ⊗ id + id⊗∇S)(⋆ ⊗ id)gc(5.12)

From Proposition 3.4 we can write this as

(q
Ω1⊗Ω1

−1(id⊗ ⋆−1)ΥQ(S) ⊗1 id + id⊗1 qΩ1⊗Ω1
−1Q(S))(⋆ ⊗ id)gQ

−λ(∇̄S ⊗ id + id⊗∇S)(⋆ ⊗ id)gc .
The definition of Q(S) gives

(q
Ω1⊗Ω1

−1(id⊗ ⋆−1)ΥS ⊗1 id + id⊗1 qΩ1⊗Ω1
−1S)(⋆ ⊗ id)gQ

+λ
2
ωij (− (id⊗ ⋆−1)Υ∇i ○ ∇∇j(S) ⊗ id + id⊗∇i ○ ∇∇j(S))(⋆ ⊗ id)g

−λ((id⊗ ⋆−1)Υ∇S ⊗ id + id⊗∇S)(⋆ ⊗ id)gc .

Now apply q2 ∶= q
Ω1,Ω1⊗0Ω1(id⊗qΩ1,Ω1) = q

Ω1⊗0Ω1,Ω1(qΩ1,Ω1⊗ id) and use Proposition 3.3,

q2(q
Ω1⊗Ω1

−1(id⊗ ⋆−1)ΥS ⊗1 id + id⊗1 qΩ1⊗Ω1
−1S)(⋆ ⊗ id)gQ

= q2(q
Ω1⊗Ω1

−1(id⊗ ⋆−1)ΥS ⊗1 id + id⊗1 qΩ1⊗Ω1
−1S)(⋆ ⊗ id) q−1g

= ((id⊗ ⋆−1)ΥS ⊗0 id + id⊗0 S)(⋆ ⊗ id) g
+ λ

2
ωij (∇i((id⊗ ⋆−1)ΥS) ⊗0 ∇j +∇i ⊗0 ∇∇j(S))(⋆ ⊗ id) g

= ((id⊗ ⋆−1)ΥS ⊗0 id + id⊗0 S)(⋆ ⊗ id) g
+ λ

2
ωij ((id⊗ ⋆−1)Υ∇∇i(S) ⊗0 ∇j +∇i ⊗0 ∇∇j(S))(⋆ ⊗ id) g

= ((id⊗ ⋆−1)ΥS ⊗0 id + id⊗0 S)(⋆ ⊗ id) g
− λ

2
ωij ((id⊗ ⋆−1)Υ∇∇i(S) ○ ∇j ⊗0 id + id⊗0 ∇∇j(S) ○ ∇i)(⋆ ⊗ id) g

as g is preserved by ∇ so that (∇i ⊗ id)g = −(id⊗∇i)g.

Then q2 applied to (5.12) gives

((id⊗ ⋆−1)ΥS ⊗0 id + id⊗0 S)(⋆ ⊗ id) g
− λ

2
ωij (−(id⊗ ⋆−1)Υ∇∇j(S) ○ ∇i ⊗0 id + id⊗0 ∇∇j(S) ○ ∇i)(⋆ ⊗ id) g
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+λ
2
ωij (− (id⊗ ⋆−1)Υ∇i ○ ∇∇j(S) ⊗ id + id⊗∇i ○ ∇∇j(S))(⋆ ⊗ id)g

−λ((id⊗ ⋆−1)Υ∇S ⊗ id + id⊗∇S)(⋆ ⊗ id)gc
= ((id⊗ ⋆−1)ΥS ⊗0 id + id⊗0 S)(⋆ ⊗ id) g
+λ

2
ωij (− (id⊗ ⋆−1)Υ∇∇i(∇∇j(S)) ⊗ id + id⊗∇∇i(∇∇j(S)))(⋆ ⊗ id)g

−λ((id⊗ ⋆−1)Υ∇S ⊗ id + id⊗∇S)(⋆ ⊗ id)gc .(5.13)

Now set g = gnm dxn ⊗dxm and ∇∇i(∇∇j(S))(dxa) = ∇∇i(∇∇j(S))anm dxn ⊗dxm, and using
the reality of S the first two lines of the result of (5.13) become

(grm Srpn + gnr Srpm)dxn ⊗ dxp ⊗ dxm

+λ
2
ωij (− grm∇∇i(∇∇j(S))rpn + gnr∇∇i(∇∇j(S))rpm)dxn ⊗ dxp ⊗ dxm ,

and the first line of this vanishes as ∇S preserves g. Now we write gc = − 1
2
Rnm dxn⊗dxm

where Rnm is antisymmetric giving

q2(∇̄QS ⊗ id + id⊗∇QS)(⋆ ⊗ id)g1 = − λCnpm dxn ⊗ dxp ⊗ dxm;

Cnpm = − 1
2
Rnm;̂p + 1

2
ωij (grm∇∇i(∇∇j(S))rpn − gnr∇∇i(∇∇j(S))rpm).

(2) Now we look at ∇1 = ∇QS + λK, then clearly

(∇̄1 ⊗ id + id⊗∇1)(⋆ ⊗ id)g1 = λ (gnaKa
pm − gmaKa

pn −Cnpm)dxn ⊗ dxp ⊗ dxm

so we need to solve Knpm −Kmpn = Cnpm to preserve the hermitian metric, and also
Kknm−Kkmn = gksAsnm if we want to have zero torsion as in the previous section. These
equations have a required compatibility condition

Cnpm +Cmnp +Cpmn + gmsAspn + gpsAsnm + gnsAsmp = 0 .

We use the formula (5.7) for Sabc in terms of the torsion to write

Cnpm = − 1
2
Rnm;̂p + 1

2
ωij (grm Srpn;ĵi

− gnr Srpm;ĵi
)

= − 1
2
Rnm;̂p + 1

4
ωij ((Tmpn − Tpnm − Tnpm) − (Tnpm − Tpmn − Tmpn));ĵi

= − 1
2
Rnm;̂p + 1

2
ωij (Tmpn − Tpnm − Tnpm);ĵi ,

and taking the cyclic sum gives

Cnpm +Cmnp +Cpmn = − 1
2
Rnm;̂p − 1

2
Rpn̂;m − 1

2
Rmp̂;n + 1

2
ωij (Tmpn + Tpnm − Tnpm);ĵi .

We have

− gpaAanm = 1
4
ωij (Tisp + Tsip) (T snm;j −Rsnmj +Rsmnj)

+ 1
4
ωij gpa (T snmRasij − T asmRsnij + T asnRsmij)

= 1
4
ωij (Tisp + Tsip) (T snm;j −Rsnmj +Rsmnj) + 1

2
ωij Tpnm;ĵi ,

so now the cyclic sum becomes

Cnpm +Cmnp +Cpmn = − 1
2
Rnm;̂p − 1

4
ωij (Tisp + Tsip) (T snm;j −Rsnmj +Rsmnj)

− 1
2
Rpn̂;m − 1

4
ωij (Tism + Tsim) (T spn;j −Rspnj +Rsnpj)

− 1
2
Rmp̂;n − 1

4
ωij (Tisn + Tsin) (T smp;j −Rsmpj +Rspmj) .(5.14)

This is totally antisymmetric in npm, so we may equivalently consider the 3-form

α = ( − 1
2
Rnm;̂p − 1

4
ωij (Tisp + Tsip) (T snm;j −Rsnmj +Rsmnj))dxp ∧ dxn ∧ dxm

= dxp ∧ (− 1
2
Rnm;̂p dxn ∧ dxm) + (Tisp + Tsip)dxp ∧His

= dxp ∧ ∇̂p(gijHij) + 2Tisp dxp ∧His

where we use Hij = 1
4
ωis(T jnm;s − 2Rjnms)dxm ∧ dxn and the symmetry of Hij . Now we

have as in (5.4) (but not requiring this to be zero)

dR= (Tjpi + Tipj)dxp ∧Hij = −2Tijp dxp ∧Hij ,

so vanishing of α = dxp ∧ ∇̂p(R) − dR is the condition for a joint solution. But this is
zero as the Levi-Civita connection is torsion free. ◻
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Note that Proposition 5.8 does not say that such a torsion free quantum connection
preserving the hermitian metric is unique. If we take the collection of Kijk for all per-
mutations of the ijk, then the equations fix relative values such Kijk −Kkij but we can
add a number to Kijk as long as we add the same amount to each Kπ(i,j,k) where π is a
permutation of the indices.

Corollary 5.9. Let λ∗ = −λ and ∇S be the Levi-Civita connection. If a torsion free
metric compatible quantum connection of the form ∇1 = ∇QS + λK exists to O(λ2) then
it is star-preserving to this order and coincides with the unique star-preserving quantum
connection in Theorem 4.11.

Proof. From Lemma 4.10 and Theorem 4.11 the star preserving connection is given by
Ka
nm = 1

4
ωijDa

ijnm, or

Ka
nm = 1

4
ωij (2Saip Spnm;j − (SbnmRabij − SarmRrnij − SanrRrmij) − 2SajrR

r
mni)

= 1
4
ωij (2Saip Spnm;j + 2SaipR

p
mnj − (SbnmRabij − SarmRrnij − SanrRrmij))

= 1
2
ωij Saip (Spnm;j +R

p
mnj) − 1

4
ωij ([∇∇i,∇∇j](S))anm

= 1
2
ωij Saip (Spnm;j +R

p
mnj) − 1

2
ωij ∇∇i(∇∇j(S))anm .

From this we get

Knpm = 1
2
gan ω

ij Sais (Sspm;j +Rsmpj) − 1
2
gnr ω

ij ∇∇i(∇∇j(S))rpm .

From Proposition 5.8 the condition for ∇1 = ∇QS+λK to be hermitian-metric compatible
is the following, where ;̂ denotes Levi-Civita derivative

Knpm −Kmpn = − 1
2
Rnm;̂p + 1

2
ωij (grm∇Ω1⊗Ei(∇∇j(S))rpn − gnr∇Ω1⊗Ei(∇∇j(S))rpm) ,

so on substituting for Knpm we find the single condition

∇̂R = −ωij grs Ssjn(Rrmki + Srkm;i)dxk ⊗ dxm ∧ dxn .

This is the same as the condition for existence of a fully metric compatible torsion free
connection of our assumed form in Theorem 5.7. So, if such a connection exists, our
star-preserving one gives it. The converse direction is also proved, but obvious (if our
star-preserving connection is hermitian-metric compatible then it is also straight metric
compatible and hence the stated condition must hold by Theorem 5.7.) �

6. Quantized surfaces and Kähler-Einstein manifolds

We have seen that our theory applies in particular to any Riemannian manifold equipped
with a covariantly constant Poisson-bivector, with the choice ∇ = ∇̂. We then always
have a quantum differential algebra by Theorem 4.4 and Corollary 5.3 says that the nicest
case is when the ω-contracted Ricci tensor is covariantly constant. In this case we have
a quantum symmetric g1 and a quantum-Levi-Civita connection for it.

Proposition 6.1. In the case of a Kähler manifold, R in Corollary 5.3 is the Ricci
2-form. A sufficient condition for this to be covariantly constant is for the metric to be
Kähler-Einstein.

Proof. Here ωij = −gikJkj = Jk
igkj where J2 = −id and R = 1

2
Rnmdxm ∧ dxn in our

conventions so in Corollary 5.3 we have Rnm = ωjiRinmj = gkjωjiRinmk = −JjiRinmj .
Now we use standard complexified local coordinates za, z̄a in which Jab = ıδab and Jāb̄ =
−ıδāb̄. The only nonzero elements of Riemann are then of the form

Rābc
d = −Rbācd, Rab̄c̄

d̄ = −Rb̄ac̄d̄.
Hence Rn̄m = −ıRan̄ma = ıRn̄ama = ıRiccin̄m and similarly Rnm̄ = −ıRiccinm̄ = −Rm̄n by
symmetry of Ricci. Then Rij = −JikRiccikj in our conventions for 2-form components.
Equivalently, R = 1

2
Rab̄dzb̄ ∧ dza + 1

2
Rb̄adza ∧ dz̄b = ıRicciab̄dz

a ∧ dz̄b as usual. Clearly
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in the Kähler-Einstein case we have also that Ricci = αg for some constant α. Then
Rij = −Jikαgkj = −αωij in terms of the inverse ωij of the Poisson tensor, or R = αω/2
in terms of the symplectic 2-form ω = ωijdxi ∧ dxj . This is covariantly constant by our
assumption of Poisson-compatibility by Lemma 3.1. �

Note that the Ricci 2-form here is closed and represents the 1st Chern class. It is known
that every Kähler manifold with c1 ≤ 0 admits a Kähler-Einstein metric and that this is
also true under certain stability conditions for positive values. This includes Calabi-Yau
manifolds (admitting a Ricci flat metric) and CPn with its Fubini-study metric. Also
note that on a Kähler manifold the J is also covariantly constant and we may hope to
have a noncommutative complex structure in the sense of [12] to O(λ2). This will be
considered elsewhere.

Any orientable surface can be given the structure of a Kähler manifold so that the above
applies. In fact we do not make use above of the full Kähler structure and in the case
of an orientable surface we can consider any metric and Poisson tensor ω = −Vol−1 as
obtained from the volume form, which will be covariantly constant. The generalised Ricci
2-form is then a constant multiple of SVol where S is the Ricci scalar (this follows from
the Ricci tensor being gS/2 for any surface). So R will be covariantly constant if and
only if S is constant, i.e. the case of constant curvature.

Some general formulae for any surface are as follows, in local coordinates (x, y). Here
Vol =

√
det(g)dxdy where g = (gij) is the metric. The Poisson tensor ω = −Vol−1 is then

ω = w ( ∂

∂x
⊗ ∂

∂y
− ∂

∂y
⊗ ∂

∂x
) ; ω12 = w(x, y) ∶= 1√

det(g)
which of course gives our product as x ● x = x2, y ● y = y2, x ● y = xy + λ

2
w, y ● x =

xy− λ
2
w, or commutation relations [x, y]● = λw on the generators. Similarly, the bimodule

commutation relations from the form of ω are

[f, ξ]● = λw (∂f
∂x

∇y −
∂f

∂y
∇x) ξ

where ∇x,∇y are the covariant derivatives along ∂
∂x

and ∂
∂y

respectively. In terms of Γ,

[f,dxj]● = λw(f,2Γj1mdxm − f,1Γj2mdxm)
or on generators and with ε12 = 1 antisymmetric,

[xi,dxj]● = −λwεinΓjnmdxm.

There are similar expressions for ● itself in terms of the classical product plus half of the
relevant commutator.

Next, Ricci = S
2
g implies by symmetries of the Riemann tensor that

R1212 = 1
2
S det(g) =∶ ρ(x, y)

say, with other components determined by its symmetries. In this case

R12 = −R21 = −ωisRi12s = wρ, R = −wρdxdy = −S
2

Vol

and
Hij = −1

2
ωisRinmsdxmdxn

which we compute first with j lowered by the metric as

H1
1 =H2

2 = −
wρ

2
dxdy = −S

4
Vol, H1

2 =H2
1 = 0

so we conclude in terms of the inverse metric that

Hij = − 1
4
SgijVol.
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By Theorem 4.4 we necessarily have a differential graded algebra to O(λ2). Here Propo-
sition 4.3 in our case becomes

dxi ● dxj = dxi ∧ dxj + λ
2
w (Γi11Γj22 − 2Γi12Γj12 + Γi22Γj11)dx ∧ dy − λS

4
gijVol

so that the anticommutation relations for the quantum wedge product have the form

{dxi,dxj}● = λ (w2 (Γi11Γj22 − 2Γi12Γj12 + Γi22Γj11) − S
2
gij)Vol.

Finally the quantized metric, from (5.1) and since ∇g = 0,

g1 = gQ + λR12Ṽol = g̃ + λw
2
εijgmaΓaibΓ

b
jndxm ⊗1 dxn + λS

2
Ṽol(6.1)

where the first two terms are gQ and

g̃ ∶= gijdxi ⊗1 dxj , Ṽol ∶= 1
2w

(dx⊗1 dy − dy ⊗1 dx)

are shorthand notations. Similarly, the connection ∇Q is computed from the local formula
(5.2). As explained, we will have ∇Qg1 = 0 at order λ if and only if S is constant. We
compute further details for the two basic examples.

6.1. Quantized hyperbolic space. As the basic example we look at the Poincaré upper
half plane with its hyperbolic metric

M = {(x, y) ∈ R2 ∣ y > 0}, g = 1
y2

(dx⊗ dx + dy ⊗ dy)

which is readily found to have nonzero Christoffel symbols

Γ1
12 = Γ1

21 = Γ2
22 = −y−1 , Γ2

11 = y−1

or Γi1j = −εijy−1 and Γi2j = −δijy−1. The bivector ω12 = −ω21 = y2 is easily seen to be
the unique solution to (3.1) up to normalisation. This is the inverse of the volume form
Vol = y−2dxdy.

Clearly from the Poisson tensor

ω = y2( ∂
∂x

⊗ ∂

∂y
− ∂

∂y
⊗ ∂

∂x
)

we have [x, y]● = λy2, which relations also occur for the standard bicrossproduct model
spacetime in 2-dimensions in terms of inverted coordinates in [10]. Also note that
[x, y−1]● = λ. Note that although the relations do extend to an obvious associative
algebra A, this is not unique and not immediately relevant.

Next, from Γ we see that

[f,dx]● = λy(
∂f

∂x
dx − ∂f

∂y
dy), [f,dy]● = λy(

∂f

∂y
dx + ∂f

∂x
dy)

or on generators we have

[x,dx]● = [y,dy]● = λydx, [x,dy]● = −[y,dx]● = λydy.

There are similar expressions for ● itself in terms of the classical product.

The Ricci scalar here is S = −2 so

R = Vol, Hij = 1
2
gijVol

and from the latter we obtain

dxi ● dxj = dxi ∧ dxj + λ
2
y2 (Γi11Γj22 − 2Γi12Γj12 + Γi22Γj11)dx ∧ dy + λ

2
δijdx ∧ dy

which from the form of Γ simplifies further to

dxi ● dxj = dxi ∧ dxj − λ
2
δijdx ∧ dy, {dxi,dxj}● = −λδijdx ∧ dy
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which has a ‘Clifford algebra-like’ form. The result here is the same as obtained by
applying d to the bimodule relations, i.e. is consistent with the maximal prolongation of
the first order calculus.

Finally, we have our constructions of noncommutative Riemannian geometry. In our case

εijgmaΓaibΓ
b
jn = 0

so that gQ has the same form as classically but with ⊗1 and

g1 =
dxi

y2
⊗1 dxi − λṼol

(sum over i). Similarly, one may compute using the form of Γ in (5.2) that

∇Qdxi = dy
y
⊗1 dxi + dx

y
⊗1 εijdxj

which again has the same form as classically. There is an associated generalised brading
σQ making this a bimodule connection. As per our general theory, ∇Q is quantum torsion
free and metric compatible with g1.

All constructions above are invariant under SL2(R) and hence under the modular group
and other discrete subgroups. Indeed, the metric is well known to be invariant. The
volume form can also easily be seen to be and correspondingly ω is invariant. As these
are the only inputs into the theory it follows that the deformed structures are likewise
compatible with this action. The quotient of the constructions corresponds to replacing
the Poincaré upper half plane by a Riemann surface of constant negative curvature,
constructed as quotient. Development of the fuller noncommutative and nonassociative
geometry to the point of contact with modular forms and with physics such as the
fractional quantum Hall effect[31] are interesting directions for further work.

6.2. Quantized sphere. The case of a surface of constant positive curvature, the sphere,
is the n = 1 case of CPn which will be covered elsewhere in holomorphic coordinates.
Here we give it is as an example of the analysis for surfaces above.

Our construction is global but we focus on the upper hemisphere in standard cartesian
coordinates, with similar formulae for the lower hemisphere. Thus for now,

M = {(x, y) ∣ x2 + y2 < 1}, z =
√

1 − x2 − y2,

g = 1
z2

((1 − y2)dx⊗ dx + xy(dx⊗ dy + dy ⊗ dx) + (1 − x2)dy ⊗ dy)

which is readily found to have symmetric Christoffel symbols

Γ1
11 =

x

z2
(1 − y2), Γ1

22 =
x

z2
(1 − x2), Γ1

12 =
x2y

z2

Γ2
11 =

y

z2
(1 − y2), Γ2

22 =
y

z2
(1 − x2), Γ2

12 =
xy2

z2
.

or compactly Γijk = xigjk. The inverse of the volume form Vol = z−1dxdy gives the
Poisson bivector

ω = z( ∂
∂x

⊗ ∂

∂y
− ∂

∂y
⊗ ∂

∂x
)

so we have relations

[x, y]● = λz, [z, x]● = λy, [y, z]● = λx,
the standard relations of the fuzzy sphere. In this case there is an obvious associative
quantisation to all orders as the enveloping algebra U(su2) modulo a constant value of
the quadratic Casimir. It is known that this algebra A does not admit an associative 3D
rotationally invariant calculus[6] so there won’t be a zero-curvature Poisson-compatible
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connection ∇. We use the Levi-Civita connection according to Corollary 5.3. Then from
Γ we have

[f,dxj]● = −λz xjf,iεikgkmdxm

for the bimodule relations of the quantum differential calculus, where ε12 = 1 is antisym-
metric. Explicitly,

[x,dxi]● = −λ
xi

z
(xydx + (1 − x2)dy), [y,dxi]● = λ

xi

z
((1 − y2)dx + xydy).

Next, the Ricci scalar of the unit sphere is S = 2 so

R = −Vol, Hij = −1
2
gijVol , where gij = (1 − x2 −xy

−xy 1 − y2) .

From this and Γ we obtain

dxi ∧● dxj = dxi ∧ dxj + λ(xixj − 1
2
gij)Vol, {dxi,dxj}● = λ (2xixj − gij)Vol

for the exterior algebra relations. One can verify that this is the maximal prolongation
of the bimodule relations.

Finally, we note that from the form of g that xagai = xiz−2 and ωabgaigbj = εijz−1. The
first of these and the form of Γ gives us

gij,k = Γakigaj + Γakjgia = xa(gkigaj + gkjgia) = z−2(xjgki + xigkj)
using metric compatibility. One may then compute the quantum metric and connection
from (6.1) and (5.2) respectively as

g1 = g̃ +
λ

2z3
xmdxm ⊗1 x

aεandxn + λṼol

∇Qdxi = −xig̃ − λxiṼol − λ

2z
xmdxm ⊗1 (εibgbn +

xixb

z2
εbn)dxn

= −xig1 −
λ

2z
xmdxm ⊗1 ε

ibgbndxn = −xi ● g1

(sum over m). Here on the left xig̃ is a shorthand notation for the previously defined
element of Ω1 ⊗1 Ω1 but now with an extra classical xi in the definition. One can think
of it as made with the classical product when the classical and quantum vector spaces
are identified, and ditto for xig1. The expression xi ● g1 is computed with the quantized
product but only on the first tensor factor of g1 ∈ Ω1 ⊗1 Ω1 (since this is the relevant
bimodule structure).

The formulae are analogous in any other cartesian coordinate patch of M = S2 and
together can be expressed in a spherically symmetric way in terms of variables x, y, z,
which we denote collectively as xi, i = 1,2,3, with relations ∑i(xi)2 = 1 and

[xi, xj] = λεijkxk, [xi,dxj] = λxjεikmxkdxm, {dxi,dxj}1 = λ(3xixj − δij)
to O(λ2). Here ε123 = 1 is totally antisymmetric with the same values for any raised
indices. In fact, this example recovers the first order differentials previously obtained
in [6] as a cochain twist of Ω(S2) by a certain action of the Lorentz group on the
sphere (the so-called ‘sphere at infinity’). This can in principle be used to construct the
full noncommutative nonassociative Riemannian geometry by cochain twist, including a
Dirac operator, in the formalism of [9].

7. Bicrossproduct and black-hole models

In this section we give two examples where we cannot take ∇ = ∇̂. The black-hole is
our main goal but before doing that we warm-up with the easier bicrossproduct model
example to illustrate all our semiclassical theory but where the algebraic version is already
exactly solved by computer algebra[10]. In both cases there is a natural g1 and a unique
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∇1 that is star-preserving, quantum torsion free and quantum metric compatible. In the
bicrossproduct model we use an existing differential calculus, derived from the theory of
quantum groups, giving ω and a flat ∇ while ∇g = 0 then forces the metric, while for
the black hole model we fix g and solve for reasonable ω and ∇, which has curvature.
The bicrossproduct model can be viewed as having a strong gravitational source, so
strong that even light can’t escape (so something like the inside of a black hole, but
with decaying rather than zero Ricci tensor) [10], as well as a different, cosmological,
interpretation. Both models will be developed further in a sequel [24].

7.1. 2D bicrossproduct model. Setting x0 = t and x1 = r, we have ω10 = −ω01 = r as
the semiclassical data behind the bicrossproduct model commutation relations [t, r]● =
λr. It is known that this model has a standard 2D differential calculus with nonzero
relations

[r,dt]● = λdr, [t,dt]● = λdt,
which has as its underlying semiclassical data a connection with Christoffel symbols
Γ0

01 = −r−1 and Γ0
10 = r−1 and all other Christoffel symbols zero. This has torsion T 0

10 =
−T 0

01 = 2 r−1 and T 1
ij = 0 and one can check that it Poisson-compatible. One can calculate

T i01;p = T i01,p + Γipn T
n
01 − Γnp0 T

i
n1 − Γnp1 T

i
0n

= δ0i (T 0
01,p + Γ0

pn T
n
01 − Γnp0 T

0
n1 − Γnp1 T

0
0n)

= δ0i (T 0
01,p + Γ0

p0 T
0
01 − Γ0

p0 T
0
01) = δ0i δ1p T 0

01,1 = 2 r−2 δ0i δ1p

and that the curvature is zero, as it should since the standard calculus is associative to
all orders. To see this, without loss of generality, we look at j = 0, k = 1:

Rli01 =
∂Γl1i
∂x0

− ∂Γl0i
∂x1

+ Γm1i Γl0m − Γm0i Γl1m

= δ0l (
∂Γ0

1i

∂t
− ∂Γ0

0i

∂r
+ Γ0

1i Γ0
00 − Γ0

0i Γ0
10)

= δ0l (−
∂Γ0

0i

∂t
− Γ0

0i Γ0
10) = δ0l δ1i (−

∂Γ0
01

∂r
− Γ0

01 Γ0
10) = 0 .

Next we compute,

Hij ∶= 1
4
ωis(T jnm;s − 2Rjnms)dxm ∧ dxn

= 1
4
δ0j ω

isT 0
nm;1 δ1s dxm ∧ dxn = 1

4
δ0j ω

i1T 0
nm;1 dxm ∧ dxn

= 1
4
δ0j δ0i ω

01T 0
nm;1 dxm ∧ dxn

= 1
4
δ0j δ0i ω

01(T 0
01;1 dx1 ∧ dx0 + T 0

10;1 dx0 ∧ dx1)
= 1

4
δ0j δ0i ω

012T 0
01;1 dr ∧ dt

= 1
2
δ0j δ0i (−r)2 r−2 dr ∧ dt = δ0j δ0i r−1 dt ∧ dr .

The wedge product obeying the Leibniz rule in Theorem 4.4 is then;

ξ ∧1 η = ξ ∧ η + λ
2
ωij ∇iξ ∧∇jη

+(−1)∣ξ∣+1 λr−1 dt ∧ dr ∧ (∂0 ⌟ ξ) ∧ (∂0 ⌟ η) .(7.1)

For ξ and η being either dr or dt, the only potentially deformed case is

dt ∧1 dt = λ
2
ωij ∇i(dt) ∧ ∇j(dt) + λr−1 dt ∧ dr ∧ (∂0 ⌟ dt) ∧ (∂0 ⌟ dt)

= λ
2
(ω01∇0(dt) ∧ ∇1(dt) + ω10∇1(dt) ∧ ∇0(dt)) + λr−1 dt ∧ dr

= λ
2
ω01 (∇0(dt) ∧ ∇1(dt) − ∇1(dt) ∧ ∇0(dt)) + λr−1 dt ∧ dr = 0 .

The exterior algebra among these basis elements is therefore undeformed, in agreement
with the noncommutative algebraic picture where this is known (and holds to all orders).

Our goal is to study the semiclassical geometry of this model using our functorial meth-
ods. First of all, the above connection is not compatible with the flat metric, but is
compatible with the metric

g = gij dxi ⊗ dxj = b r2 dt⊗ dt − b r t (dt⊗ dr + dr ⊗ dt) + (1 + b t2)dr ⊗ dr .
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where b is a non-zero real parameter. This is our semiclassical analogue of the obstruction
discovered in [10]. For our purposes it is better to write the metric as the following, where
v = r dt − tdr

g = dr ⊗ dr + b v ⊗ v .
Note that ∇ applied to both dr gives zero. We quantize the classical bicrossproduct
spacetime with this metric. First

q−1(g) = dr ⊗1 dr + b v ⊗1 v .

From the expression for Hij , we have R = gijHij = b r dt ∧ dr = b v ∧ dr = ±
√

∣b∣Vol and
according to our general scheme, we take

g1 = dr ⊗1 dr + b v ⊗1 v + bλ
2
(dr ⊗1 v − v ⊗1 dr).

To compare with [10], if we let

(7.2) ν ∶= r ● dt − t ● dr = v + λ
2

dr, ν∗ ∶= (dt) ● r − (dr) ● t = v − λ
2

dr

and identify these with v, v∗ in [10] (apologies for the clash of notation) then the quantum
metric there gives the same answer as g1 above, i.e. this is the leading order part of the
noncommutative geometry. From Theorem 3.5 we get ∇Q vanishing on both dr and v,
and for all 1-forms ξ, σQ(dr ⊗1 ξ) = ξ ⊗1 dr and σQ(v ⊗1 ξ) = ξ ⊗1 v.

Next we express the classical Levi-Civita connection for the above metric in the form
∇S . We use (5.7) together with the only nonvanishing downstairs torsions being T010 =
−T001 = 2 b r and T110 = −T101 = −2 b t and

Sabc = 1
2
ga0(T0bc − Tbc0 − Tcb0) + 1

2
ga1(T1bc − Tbc1 − Tcb1) ,

to give

Sa11 = − ga0 T110 , S
a
00 = − ga1 T001 , S

a
10 = ga1 T110 , S

a
01 = ga0 T001 .

The upstairs metric is given by

g00 = (1 + b t2)/(b r2) , g01 = g10 = t r−1 , g11 = 1 .

Sa11 = 2 b t ga0 , Sa00 = 2 b r ga1 , Sa10 = −2 b t ga1 , Sa01 = −2 b r ga0,

which we write compactly as Saij = 2bεimxmεjngan, where ε01 = 1 is antisymmetric. Then
its covariant derivative is zero in the t direction, and in the r direction we have

S0
µν;1 =

⎛
⎝
− 2bt
r

2(1+bt2)
r2

2bt2

r2 − 2t(1+bt2)

r3

⎞
⎠
, S1

µν;1 = (−2b 2bt
r

2bt
r
− 2bt2

r2

) .

We also have ∇̂R = 0 since R was a multiple of the volume form, and R = 0 for the
curvature of ∇, so the obstruction in Theorem 5.7 for a torsion free metric compatible
quantum connection is

∇̂R + ωij grs Ssjn(Rrmki + Srkm;i)dxk ⊗ dxm ∧ dxn = ωij grs SsjnSrkm;i dxk ⊗ dxm ∧ dxn = 0

when we put in the compact form of S and its covariant derivative. Hence Theorem 5.7
tells us that there is a unique such quantum connection of the form ∇1 = ∇QS + λK.
Corollary 5.9 tells us that this is also the unique star-preserving connection of this form.
In short, all obstructions vanish and we have a unique quantum Levi-Civita connection
with all our desired properties.

It only remains to compute ∇1. We take the liberty of changing the basis to write, for
K real,

K(v) =Kv
vv v ⊗ v +Kv

rv dr ⊗ v +Kv
vr v ⊗ dr +Kv

rr dr ⊗ dr ,
K(dr) =Kr

vv v ⊗ v +Kr
rv dr ⊗ v +Kr

vr v ⊗ dr +Kr
rr dr ⊗ dr .
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Proposition 7.1. The unique star-preserving quantum connection of the form ∇1 =
∇QS + λK is also torsion free and metric compatible (‘quantum Levi-Civita’) and given
by non-zero components

Kr
vr =Kv

vv = −2 b r−1

in our basis, leading to

∇1dr = 2bv r−1 ⊗1 v − 2bλ r−1v ⊗1 dr, ∇1v = −2v r−1 ⊗1 dr − 2bλ r−1v ⊗1 v .

Proof. Note that v∗ = v and dr∗ = dr and also that Theorem 4.11 tells us the value of K
which can be computed out as the value stated. But we still need to compute ∇1 and,
moreover, since this is an illustrative example we will also verify its properties directly
as a nontrivial check of all our main theorems.

First we compute S as an operator from the components stated above (or one can readily
compute the classical Levi-Civita connection and find S as the difference between this
and ∇). Either way,

S(dr) = 2 b r−1 v ⊗ v, S(dt) = 2 b t r−2 v ⊗ v − 2 r−2 v ⊗ dr, S(v) = −2 r−1 v ⊗ dr

Next we compute ∇QS and its associated generalised braiding. In the following calcula-
tion, ∇0,∇1 denote the components ∇i of the classical connection ∇ (apologies for the
clash of notation). We have ∇∇0(S) = 0 and

∇∇1(S)(v) = ∇1(S(v)) = ∇1(−2 r−1 v ⊗ dr) = 2 r−2 v ⊗ dr ,
∇∇1(S)(dr) = ∇1(S(dr)) = ∇1(2 b r−1 v ⊗ v) = −2 b r−2 v ⊗ v

since ∇i(dr) = ∇i(v) = 0. From Corollary 3.10,

σQS(v ⊗1 ξ) = σQ(v ⊗1 ξ) + λω01 ξ0∇∇1(S)(v)
= ξ ⊗1 v − λr ξ0∇∇1(S)(v) = ξ ⊗1 v − 2λξ0 r−1 v ⊗ dr ,

σQS(dr ⊗1 ξ) = ξ ⊗1 dr − λr ξ0∇∇1(S)(dr) = ξ ⊗1 dr + 2λξ0 b r−1 v ⊗ v .

and

Q(S)(v) = S(v) + λ
2
ωij ∇Ω1⊗Ei(∇∇j(S)(v)) = S(v) + λ

2
ω01∇0(∇∇1(S)(v))

= S(v) = −2 r−1 v ⊗ dr ,
Q(S)(dr) = S(dr) + λ

2
ωij ∇Ω1⊗Ei(∇∇j(S)(dr)) = S(dr) + λ

2
ω01∇0(∇∇1(S)(dr))

= S(dr) = 2 b r−1 v ⊗ v .

Then

∇QS(v) = ∇Q(v) + q−1Q(S)(v) = −2 q−1(r−1 v ⊗ dr) = −2 r−1 v ⊗1 dr ,
∇QS(dr) = ∇Q(dr) + q−1Q(S)(dr) = 2 b q−1(r−1 v ⊗ v) = 2 b r−1 v ⊗1 v .

We can add this to the K obtained from Theorem 4.11 to obtain the result stated for
the quantum Levi-Civita connection. �

One can also check that this quantum connection is indeed the part to O(λ2) of the full
connection found in [10] by algebraic methods, provided we make the identification (7.2).
In summary, all steps can be made to work in the 2D bicrossproduct model quantum
spacetime including a quantum metric g1 and quantisation of the Levi-Civita connection
and our Poisson-level analysis agrees with the previous algebraic approach for this model.
In [24] we further compute the quantum Laplacian to O(λ2) and fully diagonalise it in
terms of Kummer M and U functions. Meanwhile in [37] we solve for g for a different
choice of calculus on the same algebra (with n − 1 commuting spatial variables in place
of r) and this time are forced to the Bertotti-Robinson metric of Sn−2 × dS2.
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7.2. Semiquantisation of the Schwarzschild black hole. We take polar coordinates
plus t for 4-dimensional space, where φ is the angle of rotation about the z-axis and θ
is the angle to the z-axis. We take any static isotropic form of metric (including the
Schwarzschild case)

g = −eN(r)dt⊗ dt + eP (r)dr ⊗ dr + r2(dθ ⊗ dθ + sin2(θ)dφ⊗ dφ)(7.3)

The Levi-Civita Christoffel symbols are zero except for

Γ̂0
01 = Γ̂0

10 = 1
2
N ′, Γ̂1

11 = 1
2
P ′, Γ̂1

00 = 1
2
N ′ eN−P

Γ̂1
22 = −r e−P , Γ̂1

33 = −r e−P sin2(θ), Γ̂2
12 = Γ̂2

21 = Γ̂3
13 = Γ̂3

31 = r−1

Γ̂2
33 = − sin(θ) cos(θ), Γ̂3

23 = Γ̂3
32 = cot(θ) .(7.4)

We shall only consider rotationally invariant Poisson tensors ω. Consider a bivector and
rotation invariance in the spherical polar coordinate system. To generate the Lie algebra
of the rotation group, we only need two infinitesimal rotations, about the z axis and
about the y axis. For the first, denoting change under the infinitesimal rotation by δ, we
get δ(θ) = 0, δ(φ) = 1, and δ(dθ) = δA(dφ) = 0. The infinitesimal rotation about the y
axis is rather more complicated in polar coordinates:

δ(θ) = cosφ , δ(φ) = − cot θ sinφ , δ(dθ) = − sinφdφ ,
δ(dφ) = − cot θ cosφdφ + csc2 θ sinφdθ .

It is now easily checked that a rotation invariant 2-form on the sphere is, up to a multiple,
sin θ dθ∧dφ. It follows that a rotation invariant bivector on the sphere is, up to a multiple,
given in polars by ω23 = csc θ.

Proposition 7.2. If ω is rotationally invariant and independent of x0, then only ω01 =
−ω10 = k(r) and ω23 = −ω32 = f(r)/ sin θ are non-zero. The condition to be a Poisson
tensor is that ω01 ω23

,1 = 0, i.e. k(r) f ′(r) = 0.

Proof. We now suppose that ω is rotationally invariant as a bivector field. To analyse
this, we use our Minkowski-polar coordinates to view Ei = ω0i as a spatial vector in polar
coordinates and to view ωij where i, j ≠ 0 as a spatial 2-form which we view as another
vector, B. Now consider their values at the north pole of a sphere of radius r. Under
rotation about the z-axis the north pole does not move so there is no orbital angular
momentum. There is, however, rotation of the vector indices unless both E,B point
along the z-axis. This applies equally at any point of the sphere, i.e. E,B must point
radially. Equation (3.3) gives the Poisson result. �

We now write the Christoffel symbols Γabc for the background connection ∇ in terms of
its torsion T and use Mathematica. Then we obtain the following result:

Proposition 7.3. Assume time independence and axial symmetry (i.e. that the torsions
Tijk are independent of the coordinates t and φ). Then the general solution for the
Poisson-compatibility and metric-compatibility conditions for (∇, ω) is given by ω23 =
1/ sin θ (up to a constant multiple set to one), ω01 = 0, and the following restrictions on
Tijk, apart from the obvious Tijk = −Tikj:

T012 = T201 + T102 T013 = T301 + T103 T023 = 0
T123 = 0 T202 = 0 T203 = −T302

T212 = r T213 = −T312 T223 = 0
T303 = 0 T313 = r sin2(θ) T323 = 0

As T313 and T212 are non-zero, we cannot take for ∇ the Levi-Civita connection. To
reduce the moduli space to a manageable size we further assume that T is rotationally
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invariant. This then gives the following as the only non-zero torsions, apart from the
obvious Tijk = −Tikj :

T001 = f1(r) T101 = f2(r) T203 = −T302 = − f3(r) sin θ
T212 = r T313 = r sin2(θ) T213 = −T312 = − f4(r) sin θ

where f1(r), f2(r), f3(r), f4(r) are arbitrary functions of r only. At least under this
simplifying assumption we then get the following value of Hij , independently of any
choice in the torsions:

Hij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

− 1
2

sin θ dθ ∧ dφ i = j = 2
− 1

2
csc θ dθ ∧ dφ i = j = 3

0 otherwise
.

From this R = gijHij = −r2 sin θ dθ∧dφ. Moreover, we find in Theorem 5.7 (remembering
that semicolon refers to the background connection) that there is no obstruction to a full
quantum Levi-Civita connection and ∇1g1 = 0 exactly at our first order level.

Finally, we specialise further to the Schwarzschild case, where eN = c2 (1 − rs/r) and
eP = (1 − rs/r)−1, where rs is the Schwarzschild radius. A short calculation then gives

Lemma 7.4. For the Schwarzschild metric the non-zero Rijkl, up to the obvious Rijkl =
−Rijlk are

R1
010 = R0

110 = −
f ′1(r) + c2 rs r

−3

c2 (1 − rs/r)
R2

310 = sin θ (2 f3(r) − r f ′3(r)) r−3

R3
210 = − csc θ (2 f3(r) − r f ′3(r)) r−3 R3

223 = −1 R2
323 = sin2 θ.

In particular, the curvature cannot vanish entirely.

We also have (using row i column j notation)

S0
ij =

⎛
⎜⎜⎜
⎝

0 −e−Nf1(r) 0 0
0 −e−Nf2(r) 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
, S1

ij =
⎛
⎜⎜⎜
⎝

−e−P f1(r) 0 0 0
−e−P f2(r) 0 0 0

0 0 e−P r 0
0 0 0 e−P r sin2(θ)

⎞
⎟⎟⎟
⎠
,

S2
ij =

⎛
⎜⎜⎜⎜
⎝

0 0 0 − f3(r) sin(θ)
r2

0 0 0 − f4(r) sin(θ)
r2

0 − 1
r

0 0
0 0 0 0

⎞
⎟⎟⎟⎟
⎠
, S3

ij =
⎛
⎜⎜⎜⎜
⎝

0 0 f3(r) csc(θ)
r2 0

0 0 csc(θ)f4(r)
r2 0

0 0 0 0
0 − 1

r
0 0

⎞
⎟⎟⎟⎟
⎠
,

and the Christoffel symbols for the background connection are are

Γ0
ij =

⎛
⎜⎜⎜⎜
⎝

0 N ′
(r)
2

− e−Nf1(r) 0 0
N ′
(r)
2

−e−Nf2(r) 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟
⎠
, Γ2

ij =
⎛
⎜⎜⎜⎜
⎝

0 0 0 − f3(r) sin(θ)
r2

0 0 1
r

− f4(r) sin(θ)
r2

0 0 0 0
0 0 0 − cos(θ) sin(θ)

⎞
⎟⎟⎟⎟
⎠
,

Γ1
ij =

⎛
⎜⎜⎜
⎝

1
2
e−P (eNN ′(r) − 2f1(r)) 0 0 0

−e−P f2(r) − 1
2
N ′(r) 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
, Γ3

ij =
⎛
⎜⎜⎜⎜
⎝

0 0 f3(r) csc(θ)
r2 0

0 0 csc(θ)f4(r)
r2

1
r

0 0 0 cot(θ)
0 0 cot(θ) 0

⎞
⎟⎟⎟⎟
⎠
.

We can chose the fi to minimise but not eliminate either the torsion T or the curvature
R of ∇, i.e. we can’t set ∇ = ∇̂ and the quantum differentials will be nonassociative at
order λ2. It is also clear from the form of the Poisson tensor that the first two rows of
the Γ matrices do contribute to the relations of the calculus, so we have a unique black
hole differential calculus at our order and this has dt,dr central. One can also observe
that the remaining angular sector for each r, t, as a unit sphere, has the same quantum
calculus as for the sphere in Section 6.2.
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According to our Poisson-Riemannian theory, once we know that the quantum Levi-
Civita connection exists to O(λ2), which we have established above, it can be computed
in the form ∇1 = ∇QS + λK either from Theorem 5.7 or, in view of Corollary 5.9, as
the unique ∗-preserving quantisation of the classical Levi-Civitia connection provided by
Theorem4.11. One finds the non-zero components

K1
23 = −K1

32 =
e−P

2r
sin θ(7.5)

where the quantum torsion free connection with vanishing symmetric part of the metric
compatibility tensor gives the only nonzero Aijk = gisAsjk as

A123 = −A132 = r sin θ

in Lemma 5.6 and the only nonzero Bknm in the proof of Theorem 5.7 are

B213 = B231 = 1
2
r sin θ, B312 = B321 = − 1

2
r sin θ .

In summary, we find that we inevitably have curvature of ∇ and hence a nonassociative
calculus at order λ2 if we try to quantize the black-hole and keep rotational invariance
and classical dimension, an anomaly in line with experience in quantum group models[5].
As with those models, the alternative is to quantize associatively but have an extra
cotangent dimension as in the wave-operator quantisation of the black hole achieved to
all orders in [33]. The above nonassociative model is explored further at order λ in the
sequel[24], including the quantum Ricci tensor. This sequel also shows that the above
uniqueness and central r, t,dr,dt phenomena apply generically for spherically symmetric
spacetimes in the absence of certain degeneracies.
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