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Abstract 

The role of sodium (Na) in cadmium telluride (CdTe) thin film photovoltaic absorbers deposited on a 

metal-coated substrate is investigated. Introducing Na during the growth of the structure influences 

the morphological and crystallographic properties of the CdTe layer grown by metal-organic chemical 

vapour deposition (MOCVD). It is observed that the introduction of Na between the metal and CdTe 

layers induces a slight randomisation via promotion of (400) and (220) orientations. It is shown that 

the inclusion of Na between the substrate and the Mo back metal contact enlarges the CdTe grains 

following a CdCl2 treatment by 50% but weakens the adhesion to the substrate. The introduction of 

Na between the Mo back contact and CdTe layer promotes the formation of large faceted grains for 

the as-grown films with an average grain size ten times larger than in the case of Na free deposition 

while maintaining good adhesion to the substrate. There is no further grain growth following CdCl2 

treatment however the CdTe grain size is still double that of the Na-free samples. 

Keyword: Thin films; vapour deposition; MOCVD; CdTe; grain growth; sodium. 

1 Introduction 

Cadmium telluride (CdTe) based photovoltaics (PVs) is currently the leading thin-film material 

mainly due to its optimal direct energy bang gap of 1.5 eV, high optical absorption coefficient and 

variety of scalable fabrication methods [1]. First Solar holds the record efficiencies for both small area 

and large module with 22.1 % [2] and 18.6 % [3], respectively, on-par with multi-crystalline silicon. 

These recorded efficiencies are for superstrate configuration where the incoming photons enter the 

structure through the transparent conductive oxide (TCO) via a transparent glass substrate. However 

the use of alternative lightweight, opaque and flexible substrates would provide an evident advantage 

in building integrated PV and for this the solar cell structure must be grown in the substrate 

configuration starting with the back contact. Additional advantages of the substrate configuration 

include further possible reduction in optical losses at the front surface and potential for better control 

of the junction formation following the absorber heat treatment. For CdTe in substrate configuration 
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the record efficiencies are 13.6 % [4] for devices grown on glass (borosilicate or aluminosilicate) and 

11.3 % [5] for those grown on metal foils, well short of the leading results from First Solar, primarily 

due to lower open circuit voltage (Voc) and fill factor (FF) values. 

Amongst the variety of deposition techniques, metal-organic chemical vapour deposition (MOCVD) 

is capable of depositing high quality semiconductor and has been shown to be an effective technique 

for the deposition of polycrystalline CdTe PV cells [6]. The ability to fabricate the entire device 

structure using one method at atmospheric pressure and the potential to have an inline roll-to-roll 

process also provide further benefits of using this technique [7]. Impurities and dopants play a major 

role in PV devices and prime examples are chlorine (Cl) in CdTe and sodium (Na) in CuInGaSe2 

(CIGS) solar cells. Cl is fundamental to the “activation” of the CdTe film while Na affects grain size, 

crystal texture and conductivity in CIGS [8, 9]. The presence of Na in CdTe solar cells can result in 

increased grain size of the absorber layer, increased acceptor density and Voc as it acts as a shallow 

acceptor in CdTe with low activation energy [10-13]. The increase in CdTe grain size is still 

paramount to reducing the volume of grain boundaries and defect concentration to increase device 

efficiency, and the role of Na merits further investigations. In this contribution, it is shown that it is 

challenging to control Na diffusion from the soda-lime glass (SLG) substrate through the 

molybdenum (Mo) back contact layer to create a high quality thin film. We subsequently investigate 

the morphological and structural properties of CdTe grown by MOCVD when Na is introduced via an 

evaporated sodium fluoride (NaF) thin layer and show that this results in relatively large grains 

suitable for PV applications.  

2 Experimental procedures 

Mo thin films (1.0 µm thick) were deposited on either SLG or quartz substrates (76 x 26 x 1 mm3) 

using direct current (DC) magnetron sputtering with target currents of 1.5, 3 and 4.5 A, at room 

temperature and at argon (Ar) pressures of 3, 7 and 10 mTorr, from a rectangular target with 

dimensions 248 x 133 x 10 mm3. A subset of Mo films was annealed in a tube furnace at temperature 

of 450 – 550 °C backfilled with 10 mbar of Ar after evacuating to 10-3 mbar in order to observe the 

effect of temperature on the back contact and Na content.  

Arsenic (As) doped CdTe thin films were grown by MOCVD on Mo coated substrates in a horizontal 

reactor, using purified H2 as the carrier gas and with a growth temperature of 390 °C. The As doping 

of the CdTe absorber layer during the MOCVD growth is essential in order to achieve high p-type 

conductivity and high efficiency for superstrate configuration devices [14]. The organic precursors 

used were dimethylcadmium (DMCd), diisopropyltelluride (DiPTe) and trisdimethylaminoarsine 

(tDMAAs) for Cd, Te and As, respectively. An in-situ triple wavelength laser reflectometer was used 

to monitor the growing layer thickness of CdTe:As+ (250 nm) and CdTe:As (2500 nm), where the As 
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dopant concentrations are ~ 1019 atoms/cm3 and ~ 1018 atoms/cm3, respectively [6]. When required, a 

cadmium chloride (CdCl2) activation treatment was carried out in-situ immediately after the growth of 

the CdTe film, by depositing a 1 µm thick CdCl2 layer followed by annealing in H2 at 420 °C for 

10 min. In order to investigate the influence of Na on the properties of the CdTe films, three different 

sample layouts were prepared using quartz substrates: (i) CdTe/Mo/quartz, (ii) CdTe/Mo/NaF/quartz 

and (iii) CdTe/NaF/Mo/quartz where sodium fluoride (NaF, ~ 10 nm) was deposited by thermal 

evaporation at room temperature.  

The thicknesses of the fabricated layers were examined at every stage using a Bruker Dektak XT 

stylus profilometer. Elemental depth profiling was performed using secondary ion mass spectroscopy 

(SIMS) using a Hiden Analytical gas ion gun and quadrupole detector. A primary Ar+ beam with an 

impact energy of 4 keV and beam current of 600 nA was used to sputter over a 600 × 600 µm2 

rastered area. A 10% gating area was employed to remove any sidewall effects from the data. The 

depth profiles were then normalised and an average count was calculated for the measured sets. The 

film morphology of the CdTe thin films was investigated using a FEI Quanta 200 or Tescan Mira3 

scanning electron microscope (SEM). The structure of the Mo and CdTe layers were examined using 

X-ray diffraction (XRD) carried out with a Siemens D-5000 diffractometer using a Cu Kα radiation 

source.  

3 Results and discussion 

3.1 Mo growth and Na diffusion 

CdTe is normally deposited on SLG and generally includes barrier layer(s) such as Si3N4, Al2O3 or 

SiO2 to prevent diffusion of impurities from the glass [10, 13, 15]. Na, a major constituent of SLG, is 

known to diffuse during thermal processes > 300 °C and has been shown to promote uncontrolled 

grain enlargement in CdTe deposited using vacuum evaporation [13, 16, 17]. For films grown by 

MOCVD this is also the case as is demonstrated next. Figure 1 shows the SEM surface micrographs 

of CdCl2-treated CdTe films deposited by MOCVD on Mo-coated quartz and SLG substrates. When 

deposited on quartz (figure 1 a) the CdTe grains are small (~ 0.5 µm) and compact whereas when 

deposited on SLG, grains grow larger (up to 5 µm) but the CdTe film is no longer continuous (figure 

1 b), creating possible shunting paths in the solar cell structure, likely reducing its output power. It is 

therefore advantageous to adequately control grain growth while maintaining film continuity.  
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Figure 1: SEM micrographs of CdCl2-treated Mo/CdTe films deposited on (a) quartz and (b) SLG 
substrates. 

In the case of CIGS, the rate of Na diffusion from the SLG substrate into the absorber is dependent on 

the Mo properties themselves [18] and it is expected that similar behaviour should occur in a CdTe 

thin film deposited on Mo/SLG. In order to optimise the Mo film layer, the influence of sputtering 

pressure and power (target current) on Na diffusion in Mo films were first explored. The Mo layer 

thickness was set at nominal value of 1.0 µm with sheet resistance R□ and resistivity ρ ranging from 

0.16 – 0.59 Ω/☐ and 16 – 66 µΩ·cm, respectively as shown in table 1. At deposition current of 3.0 

and 4.5 A the resistivity increases with sputtering pressure as is usually observed in sputtered Mo 

where increased pressure yields less dense films and more intra grain voids, increasing resistivity [19]. 

It is noticed that at a lower deposition power of 1.5 A this trend is broken at the highest pressure, 

which results in the most conductive film. For a given deposition pressure the Mo film resistivity 

reduces as power increases in agreement with other reports [20-22]. 

Table 1: Electrical properties of as-grown Mo thin films deposited at room temperature. The 
thickness is 1.0 ± 0.1 µm for all films. 

Pressure 

(mTorr) 

Current 

(A) 

R□  

(Ω/☐) 

ρ 

(µΩ·cm) 

3 

1.5 

0.59 53 

7 0.59 66 

10 0.16 16 

3 

3.0 

0.40 40 

7 0.41 51 

10 0.47 54 

3 

4.5 

0.27 22 

7 0.33 34 

10 0.39 39 

(a) (b) 10 µm
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Qualitative SIMS measurements were performed in order to assess the Na content in the deposited Mo 

layers and a representative example is shown in figure 2 for as-deposited and post-annealed films. An 

average count across the film thickness was calculated at the three different Ar pressures and DC 

currents and the data is shown in figure 3. In the as-deposited state, the Na content does not vary 

significantly with changes in pressure but we note a small reduction in Na as the deposition pressure 

increases for higher deposition power. Figure 3 also displays the resistivity of the as-grown layer and 

although the parameters investigated here do not produce broad changes in resistivity (see for 

example [19]) there is a clear relationship between the Na SIMS count and film resistivity on all three 

series of samples: at a given deposition power, an increase in resistivity yields a lower Na diffusion in 

the Mo film (dashed and solid black lines, respectively in figure 3). In general, sputtering of Mo at 

lower Ar pressure yields denser films with less voids and porous grain [23] thus reducing the film 

resistivity as mentioned earlier. More interestingly is the fact that Na content in the as-deposited Mo 

film increases at lower pressure indicating that Na diffusion from the glass is greater for denser films.  

 

Figure 2: Na SIMS depth profiles in Mo films deposited at 10 mTorr and 4.5 A. The data has been 
normalised with respect to the Mo signal. 

Figure 3 also includes the Na counts after heat treatment at 450 °C and 550 °C to mimic the range of 

CdTe post-deposition chloride treatment used to fabricate state-of-the-art solar cells. As expected it 

was observed that the Na content increases as the annealing temperature increases due to out-diffusion 

from the SLG substrate. At the lowest deposition current (figure 3 a), the Na content has a decreasing 

trend with sputtering pressure following annealing. At a deposition current of 3 A, saturation is 

observed as pressure increases. 

Overall, these data indicate that it is difficult to predict the out-diffusion of Na from the glass 

especially when one considers the inhomogeneous concentration of constituents in SLG and a more 

robust approach is chosen, focusing on samples deposited on quartz substrate with an intentionally 

added NaF layer. For consistency and reproducibility purposes a Mo deposition current of 3 A was 

selected to carry out the next stage of this study on quartz substrates.  

0 200 400 600 800 1000

103

104

105

106  550 oC

 450 oC

 As-deposited
 Normalised Mo

In
te

n
si

ty
 (

cp
s)

Depth (nm)



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
  

6 
 

 

Figure 3: SIMS analysis (filled symbols and solid lines) for sodium content in the Mo layer at 
different annealing temperatures at sputtering current of (a) 1.5 A (b) 3 A (c) 4.5 A. The resistivity 

plots of the as-grown layers are also shown (open symbols and dashed lines). The lines are a guide to 
the eye.  

3.2 Using NaF to control CdTe grain growth  

Both Na and F have previously been investigated in CdTe superstrate devices with some success. Na 

is a shallow acceptor (NaCd) in CdTe [24], while F, like Cl, is a donor (FTe). In the case of F, the 

literature reports investigations where F is used in conjunction with Cl as a replacement to CdCl2 

using CdF2 [25] or HCF2Cl [26]. The combined used of CHF3 treated CdS and HCF2Cl treated CdTe 

leads to efficiency as high as 15.8% [27]. It is likely that both Cl and F are incorporated in the CdTe 

and demonstrates that F (along with Cl) can contribute to effective p-doping of CdTe via the 

formation of complexes [28]. Extrinsic doping of CdTe using NaF [10] and NaCl [10, 29] leads to 

degraded device performances due to excessive CdS-CdTe intermixing irrespectively of the halogen 

(Cl, F) species. The performance of the superstrate device can be maintained if the NaF layer is 

deposited at the back of the structure, i.e. after the CdTe deposition [13], likely protecting the pn 

junction from degradation. On the other hand, when the presence of Na in the structure is carefully 

controlled the open circuit voltage, a key limitation for CdTe technology, of the device can be 

improved owing to an increase in acceptor concentration while a small drop in short circuit current 

0.0

8.0x104

1.6x105

2.4x105

3.2x105

2 4 6 8 10

0.0

8.0x104

1.6x105

2.4x105

3.2x105

2 4 6 8 10
0.0

8.0x104

1.6x105

2.4x105

3.2x105
 

 As-deposited
 450oC
 550oC

(c)

(b)

In
te

n
si

ty
 (

cp
s)

(a)

 

Pressure (mTorr)

0.0

0.2

0.4

0.6

0.8

1.0 Resistivity

R
es

is
ti

vi
ty

, ρ
 ρ ρ ρ 
( µµ µµ

ΩΩ ΩΩ
m

)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
  

7 
 

due to a lower transmission of the SLG compare to Na-free glass results in a slightly lower overall 

efficiency [10, 13, 30]. The detailed chemical analysis by Emziane and co-workers [1-3, 31] provides 

further insights on the possible effects of both F and Na. Firstly, when originating from the CHF3 

plasma used in the sputtering of the CdS layer ([F]=1017 at/cm3 for the as-deposited CdS), F 

segregates at the surface of the CdTe following CdCl2 treatment with a SIMS signal in the absorber 

itself equal to the background detection limit. Secondly, Emziane found a significant amount of Na to 

be present in CdTe devices (up to 1018 at/cm3) even when using Na-free substrate and this is due to the 

large concentration of impurities in the raw CdCl2 powder material. The use of Na, or NaF, is yet to 

be explored in substrate configuration and the following section provides new insights on the effect of 

NaF on MOCVD-grown CdTe. 

 
Figure 4: SEM micrographs of CdTe thin films with the following configurations: (a-b) Na-free 

(CdTe/Mo/Quartz), (c-d) CdTe/Mo/NaF/quartz with (a-c) as-grown and (b-d) CdCl2-treated. The Mo 
was deposited at a DC current of 3 A and Ar pressure of 10 mTorr. Grain size (diameter) distribution 

histograms are shown in (e) for CdCl2-treated films. Top: CdTe/Mo/quartz and bottom: 
CdTe/Mo/NaF/quartz. 

Figure 4 shows the impact of NaF (10 nm) on the surface morphology of MOCVD-grown CdTe films 

with and without CdCl2 treatment for the layout CdTe/Mo/(NaF/)quartz. The micrographs were 

analysed using the Gwyddion software package to determine the grain size (grain pixel area modelled 

to a circular shape) distribution and were fitted to a Rayleigh function to obtain average values. 

Throughout the text “grain size” refers to the diameter of the modelled grain. In the as-grown state the 

grains show very small < 0.2 µm pyramid shaped structures (figure 4 a and c), with a marginal 

increase for the Na containing film (figure 4 c). Following CdCl2 treatment, the grains become more 

rounded with less sharp faceted edges and a grain growth is observed as expected for MOCVD-grown 

CdTe thin films [32] (figure 4 b and d). The histograms in figure 4 e show the grain size distributions 

(b) 10 µm(a)

(c) (d)

(e)5 µm
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of the chlorine treated films. The average grain size for the film grown in the absence of NaF is 

520 nm and 880 nm when a NaF layer is inserted in the structure. 

Films prepared with the layout CdTe/Mo/NaF/quartz were not suitable for further possible processing 

due to delamination of the CdTe/Mo film during the pn junction formation trials. This is due to the 

weak adhesion between Mo and NaF, where NaF dissolves in the aqueous solution. A more robust 

approach is to deposit the NaF after the Mo back contact deposition. Figure 5 shows the effect of Na 

on CdTe/NaF/Mo/quartz layout with varying Mo sputtering pressure. Compared to layout 

CdTe/Mo/NaF/quartz (figure 4 c), there is a clear morphological change: large faceted CdTe grains 

are formed in the presence of Na even in the as-deposited state. Pre-CdCl2 treatment (figure 6 a) the 

CdTe grain size average is 1.9 µm at pressure of 3 mTorr and 1.6 µm for films deposited at higher 

pressure of 7 and 10 mTorr. The three sets of data showed broad distributions with grain sizes ranging 

between 0.5 – 4 µm. As with the previous example the CdCl2 annealing step yields more rounded 

grains and smoother films: the root mean square roughness values of samples shown in figure 5 were 

225 nm and 195 nm before and after CdCl2 treatment, respectively. On the other hand, the histograms 

in figure 6 b show a reduced average grain size of ~ 1 µm following CdCl2 with a narrower 

distribution regardless of the back contact sputtering pressure. The cross section images, also shown 

in figure 4, do not reveal measurable differences between the two sets of samples. 

 

Figure 5: SEM micrographs of CdTe thin films as-deposited (top row) or following CdCl2 heat 
treatment (bottom row) deposited on NaF/Mo/quartz at varying Mo pressures: (a, d) 3 mTorr, (b, e) 

7 mTorr and (c, f) 10 mTorr. 
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Figure 6: Grain size distribution of CdTe films as a function of Mo sputtering pressure for the layout 
CdTe/NaF/Mo/quartz. (a) Pre-CdCl2 treatment and (b) post-CdCl2 treatment. Note the change of scale 

between (a) and (b). 

 

  

Figure 7: SIMS depth profiles showing the Na content in the as-grown CdTe thin films (a) 
CdTe/NaF/Mo/quartz and (b) CdTe/Mo/NaF/quartz. The Mo was sputtered at pressures of 3, 7 and 

10 mTorr and target current of 3 A. The data was normalised against the Mo signal intensity. Note the 
linear scale on the intensity axis. The average counts in the CdTe layer are shown in (c) and (d), 

respectively. 

Sodium SIMS depth profiles are displayed in figure 7 a and b for the as-grown CdTe films deposited 

using the following configurations: CdTe/Mo/NaF/quartz and CdTe/Mo/NaF/quartz. An average count 

was calculated at the three different Ar pressures for each of the configurations and is shown in figure 

7 c and d. The greatest sodium content is seen at the lowest sputtering pressure (3 mTorr) in both 

cases while for higher Mo deposition pressures the Na profiles are of similar shape and intensity. The 

layout CdTe/Mo/NaF/quartz yields the greatest variations in Na as a function of sputtering pressure 

(figure 7 d) and this reemphasises the fact that the Mo layer controls the rate of diffusion. Comparing 

the Na content for the films with the configuration of CdTe/NaF/Mo/quartz (figure 7 a and c) and their 
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average grain size (figure 6 a), it is noticeable that the sodium content is at its highest where the grain 

size is the largest (~ 1.9 µm). It is also noticed that in this particular configuration there seems to be 

more Na diffusing into the Mo film at lower sputtering pressure. 

 

 

Figure 8: XRD patterns for as-grown (a) and CdCl2-treated (b) samples deposited at constant current 
of 3 A with the following configurations: (i) NaF-Free, (ii) CdTe/Mo/NaF/quartz, (iii) 

CdTe/NaF/Mo/quartz. The Mo was deposited at Ar pressure of 10 mTorr. The peaks corresponding to 
the Mo layer are marked by the asterisks.  

X-ray diffraction was used to analyse the crystallographic properties of the deposited layers. For CdTe, 

the following peaks for the (111), (220), (311), (400), (331), (422) and (511) planes, which 

correspond to the diffraction angles of 23.76°, 39.32°, 46.43°, 56.82°, 62.35°, 71.22° and 76.3° were 
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observed for all samples (figure 8). All CdTe samples have a face-centred cubic zincblende structure. 

In addition to the listed peaks a reflection at 2θ = 40.5° is observed (represented by “*”) which 

corresponds to the (110) planes of the Mo substrate. Other Mo peaks are observed at 73.6° and 87.4°. 

In both the as-grown and CdCl2-treated state, the samples without NaF and with layout 

CdTe/Mo/NaF/quartz display a very low intensity for (220), (400) and (331) peaks (i and ii in figure 8) 

in comparison with the sample CdTe/NaF/Mo/quartz (iii in figure 8). [111] is the dominant direction 

for all films.  

The effects of growth conditions on texture and preferred orientation of the samples were investigated 

by calculating texture coefficient Chkl and preferred orientation σ as explained in [32]. The σ values 

are used to compare the degree of orientation between different samples, so that lower σ values 

indicate more randomly oriented samples. The reference sample (i.e. random sample) would have 

texture coefficients of 1 and preferred orientation of 0 while for a fully aligned sample the Chkl would 

be 7 (as 7 peaks were used in the calculation) for that particular direction and 0 for the others. The 

calculated σ values for the Na-free samples ranged between 1.5 to 1.7 indicating less randomly 

oriented samples compared to the samples with Na that had a σ value ranging between 0.7 – 0.9. The 

texture coefficient C111 increases post-CdCl2 treatment for samples prepared without NaF; however 

the opposite was observed when Na is present. Moreover, the decrease in C111 correlates with an 

increase in C400 and C220. This shows an increase in crystallite orientation in the (400) and (220) 

directions for samples that have both NaF and CdCl2 deposited even though the favoured preferred 

orientation of the films is still long the (111) plane. 

4 Conclusion 

The effect of sodium and sodium fluoride on the morphological and structural properties of CdTe thin 

films has been investigated. The microstructural investigation shows that the presence of NaF 

between the back-contact layer and CdTe film was found to lead to a marked increase in grain size of 

the as-deposited CdTe absorber, with average grain sizes up to 1.9 µm compared with < 0.2 µm for 

Na-free CdTe. Post-CdCl2 treatment the grains transformed from faceted to round shape with a 

reduction in grain size (1.0 µm) but still significantly larger than sample processed without Na (0.5 

µm). Na doping is only viable when induced after the Mo back deposition due to poor adhesion 

between the glass, NaF and Mo layers. NaF does not induce large crystallographic changes and the 

films remains (111) orientated with a small promotion of (400) and (220) crystallites. This combined 

NaF and Cl treatment provides a new avenue for the development of MOCVD CdTe thin films which 

should be further exploited at device level in substrate configuration. 
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• First investigation of Na-doped MOCVD-grown CdTe films in substrate 
configuration.  

• Introducing Na after Mo back-contact causes a ten-fold increase in CdTe grain size. 
• Introducing Na prior the back-contact causes delamination during further processing. 
• CdCl2 treatment softens the surface with an apparent reduction in grain size.  


