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Red Blood Cell (RBC) aggregation and its influence on
non-Newtonian nature of blood in microvasculature.
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Zienkiewicz Centre for Computational Engineering
College of Engineering, Swansea University, Swansea, UK

November 9, 2016

Abstract

A robust computational model is proposed to investigate the non-Newtonian nature of blood due
to rouleaux formation in microvasculature. The model consists of appropriate forces responsible for
red blood cell (RBC) aggregation in the microvasculature, tracking of RBCs, and coupling between
plasma flow and RBCs. The RBC aggregation results have been compared against the available data.
The importance of different hydrodynamic forces on red blood cell aggregation has been delineated by
comparing the time dependent path of the RBCs. The rheological changes to the blood have been
investigated under different shear rates and hematocrit values and quantified with and without RBC
aggregation. The results obtained in terms of wall shear stress (WSS) and blood viscosity indicate a
significant difference between Newtonian and powerlaw fluid assumptions.
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1 Introduction

The red blood cell (RBC) is an important constituent of blood and it is often responsible for making the flow
non-Newtonian in small vessels. Its aggregation has substantial influence on in vivo haemodynamics and can
adversely affect the red blood cell distribution and flow dynamics in the microcirculation[1, 2, 3]. In addition
to filling capillaries and making these capillaries dysfunctional over time[l], the RBC aggregation has also
been found to change the blood viscosity and decrease the density of functional capillaries[3]. It is clear from
viscometric measurements that the apparent blood viscosity rises with decreasing shear rates[4, 5]. It has
also been shown that RBC aggregation plays a vital role in determining the blood viscosity at low shear rates
[5]. This is due to the fact that RBC aggregation is a major determinant of the shear thinning property of
the blood. In addition, axial migration of RBC aggregates along with plasma skimming represents a phase
separation and formation of a marginal cell-poor fluid zone near the vessel walls [6]. This phenomenon leads
to an alteration of the average hematocrit value of the blood in the branching vessels [7]. Hence the average
hematocrit of the blood in small vessels is lower than the hematocrit value measured in the blood obtained
from a large vein or artery[8].

In addition to the mentioned impact of RBC aggregation on vasculature, it is one of the important
factors responsible for low shear stress regions. It is apparent that persistent exposure to low shear stress,
as a consequence of poor blood circulation, leads to cardiovascular diseases[9]. It is also known that low
wall shear stress (WSS) regions are often responsible for lesion formation, occlusion and thrombosis, both in
arterial and venuous systems[10]. In addition, enhanced RBC aggregation and low WSS leads to reduction in
NO synthesis and also causes disturbed vascular tone[11]. While RBC aggregation or rouleaux is directly or
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indirectly responsible for some cardiovascular diseases, its formation may be influenced by hereditary blood
disorders, as well as diseases such as diabetes, sickle cell anemia and malaria[12]. All these diseases result in
reduced RBC deformability with increased viscosity and the onset and progression of the pathological state.
Other diseases that influence RBC aggregation include sepsis, myocardial ischaemia and renal failure[13].

As seen, understanding RBC aggregation is undoubtedly one of the important and useful topics within
microcirculation. However, in vivo measurements of RBC aggregation are extremely difficult to carryout.
Thus, computational models assume prominence in developing a better understanding. Although some data
is now available on the physiological and clinical importance of RBC aggregation phenomenon, its formation
and transport still is one of the poorly understood areas.

In general two approaches are adapted for modelling the red blood cells. The first is an implicit approach
in which the red blood cells are treated as points with imaginary membranes, and the second is an explicit
approach in which the RBC is described using full membrane models. The latter is a detailed approach
that is required for investigating small groups of RBCs. For large number of RBCs, this approach is very
expensive and obtaining a sensible result within a reasonable amount of time is difficult [14, 15, 16, 17, 18].
Thus, an implicit approach that models RBCs as points is often preferred for aggregation studies.

The implicit models treat the RBCs as elliptical particles and the blood cell aggregations in general is
based upon a force balance between fluid forces and the natural adhesion forces between them. The adhesion
forces between RBCs is the result of receptor-ligand bonding between the cells [19, 20, 21, 22]. Such a model
is built based on a combination of experimental data and computational techniques. The fluid forces used
normally consists of the drag resistance induced by the flow [21, 22]. In an uniform and irrotational flow, drag
resistance alone is valid and accurate. However, when blood flow is disturbed (for example in the vicinity
of bifurcations and stenoses), the lift forces may also play as significant role as drag forces. In addition, the
difference in timescales between flow and physical process of aggregation is large. Hence, multi-time step
procedure is essential to capture the rouleaux formation [23].

Tt is clear from the studies based on in vitro [24] and in vivo experiments that aggregation has a significant
influence on the velocity profiles in microvessels [25, 2, 26]. However, such change in velocity profile may not
be easily implemented in an implicit model as the coupling between flow and aggregation is one directional.
One of the best options to induce such a velocity profile change is through the introduction of non-Newtonian
nature, enacted by RBC aggregation. As mentioned earlier, rheological characteristics of blood flow in
arteries are influenced by the strength of aggregation. Hence, it is important to incorporate the effect of
local RBC concentration while solving the flow model. We propose that shear thinning behaviour of blood
flow and haemorheological changes, in the presence of RBC aggregations, may be quantified using a power
law model. Although the hematocrit values have been incorporated into the computational model in the past
to evaluate the shear dependent viscosity in the venular bifurcation [27, 28], such studies failed to integrate
particle dynamics and RBC aggregation structure. Such models are useful tools for simple situations but
may not be very relevant for physiological situations without the inclusion of an aggregation model.

The objective of the present work is therefore two fold. The first objective is to improve the existing
models for predicting RBC aggregation using a comprehensive framework that uses both drag and lift forces
of the particles and different time scales. Such a comprehensive model is then applied to predict the non-
Newtonian nature of the blood flow using a powerlaw model as the basis, which is valid for low Reynolds
number flows [29, 30].

2 Methodology

In the present model, dynamics of the blood plasma is obtained by solving the incompressible Navier-stokes
equations and assuming that the flow is Newtonian[31, 32, 30]. The RBC’s in the blood, represented using
elliptical shapes, are suspended in the plasma in a two-dimensional computational domain. These RBCs
are allowed to move with the plasma and interact. The movement of these particles is tracked using RBC
dynamics and forces responsible for aggregation. A collision detection method along with a differential
time stepping method to determine adhesion forces is used in modelling RBC aggregation. The influence of
RBC aggregation on the surrounding flow field, is introduced into the flow model through an aggregation



parameter. To determine the influence of RBC aggregation on the flow nature, a powerlaw model has been
incorporated into the flow model for the computation of shear dependent viscosity, which is suitable for low
shear flows [29, 30]. The following subsections provide a brief description of various components of the model
employed.

2.1 Fluid dynamics

The Characteristics Based Split (CBS) scheme has been adopted [31] for solving the incompressible Navier-
Stokes equations using the finite element method. This consists essentially of three steps. In the first step,
an intermediate velocity field is established without considering the pressure. The pressure is obtained in the
second step by solving a modified continuity equation and finally the intermediate velocities are corrected
to obtain the final velocities. Further details on the CBS method and higher order dual time stepping can
be found in [32] and [31]. For transient flows, the dual time stepping gives at least second order accuracy
for all variables.

2.2 Particle kinematics in two dimension

Studying the flow induced motion of the RBCs, suspended in the moving flow field, requires a convenient
representation. This requires three different coordinate systems to work in concert to produce a desired
result. They are the Cartesian coordinates of the Eulerian flow field, X = [z,y], which are non-rotating,
inertial coordinates. The local particle coordinates are given as X = [Z, 9], with the origin placed at the
particle centre. This coordinate is used to describe the rotation of the particle and it (A:oincides with the

principal axes of the particle every time step. The third coordinate system required is X = [ai", ﬁ] with its
origin coinciding with that of the particle frame and its axes parallel to the corresponding inertial frame
(Figure 1). This third coordinate system is referred to as the co-moving frame. The transformation between
the co-moving frame coordinates and particle frame coordinates is given as a linear relation [33] | i.e.,

X — AX (1)
The transformation matrix, A, may be expressed using Euler angles and Euler four parameters, i.e,
A_l|Ll™ 2063 +€3)  2(&i& +E&n) @)

T 2&& -&Gn) 1-284+&)

here, &1,&5,&3,n are Euler’s four parameters calculated from inital orientations using Euler angles in the
co-moving frame as & = cos%sing, & = sin®=Ysinl, & = sin#cosg and 3 = cos#cosg and at

2 2
subsequent time steps these are evolved as,

déi/dt &85
dés/dt | — 2| n%:
dn/dt —&382;

where, €2; is the RBC angular velocity or rotation in the particle frame, calculated in the following section.
The transformation matrix A in Equation 2 is used in representing the forces in the appropriate coordinates
as explained later.

2.3 Particle dynamics

Equation of motion of particles are described as linear and angular momentum of the particle mass centre,
ie.,
Momentum equation



Figure 1: (a) An ellipsoidal particle with inertial coordinate system, (b) Euler angles and Euler parameters
(particle frame and co-moving frame)



where, m is mass of an RBC, v velocity vector Fr the fluid and F 4 the adhesion forces respectively.
Angular Momentum

D
Dt

In the above equation, I; = tm(a? + b%) is the moment of inertia of RBCs, Q2 the rotation, My : and
M, ; are moments due to fluid and adhesion forces respectively.

I =Mps;+ Ma: (5)

2.4 Hydrodynamic forces

Hydrodynamic forces include drag and lift forces on the RBCs. They are given as:

(i) Drag force

In a general flow field, the hydrodynamic drag force acting on an ellipsoidal particle is obtained in
the form of an infinite series of fluid velocity and its spatial derivatives[34]. The higher order terms
are proportional to higher order powers of particle minor axis. The first term of the series for small
particles is,

F,= ubﬂ'f{(u —v)f (6)

where, u is the fluid velocity vector at the RBC centroid, v is the RBC velocity vector, and f =
(1—C(x,t))~>7 is the particle crowding factor with C'(z,t) being particle volumetric concentration[35]

(defined in Section 3.1) and b the particle semi-minor axis. In the equation 6, K is translation dyadic
or resistance tensor given as,

K= A'KA (7)

The particle frame translation dyadic K= [IA%] for an ellipse revolving about the Z axis is a diagonal
matrix [36] given as,

o 16(52 — 1)
kyy = kyy =
(27 B+ (B - )/ 1)+ 5 ®)

where = b/a is the RBC aspect ratio and a is the semi-major axis.

(ii) Shear induced lift force

The shear induced lift force on an arbitrary shaped particle in a channel has been adopted from [37]

as,

7 pa’ aaux T 1 (1L
Fi = 1/2 y1/2 KLK (u o V) (9)
(1/p) ’%‘

where u” = [u,,0,0] is the reference flow for the lift and L is lift tensor adopted from[36].

I — 0.0501 0.0329
~10.0182 0.0173

The drag and lift forces together form the total fluid force Fg introduced in the Equation 4.



(iii) Torque

In addition to the drag and lift forces, flow induced torque on small particles, in the particle frame for
a two dimensional flow is,

My = 167 pab?

2= 3 (2ag + 1250) [(a® = b*) dys + (a® 4+ b%) (wgs — Q2)] (11)

where My ; is the fluid induced torque about the z axis in the third direction (Equation 5), a and b
are semi-major and minor axes of an ellipse. In the particle frame, dy;z and wys are the component of
rate deformation tensor and vorticity tensor respectively, given in indicial notation as

o 1 8uz 8uj . o 1 8uz 8Uj
dij = 5 (8% + (9561')7 and w;; = 3 <8xj axi) (12)

where u; are the fluid velocity components.

2.5 Adhesive forces

RBC adhesion forces are computed often using the receptor-ligand binding model which is similar to the
one developed by Bell [19]. The adhesion forces are mathematically analogues to van der Waals forces
of attraction under certain simplifications. Receptor-Ligand binding with time dependent surface energy
density [21], which is similar to the one reported by Bell [19] may be adapted for computing the surface
energy density of the RBCs. The time dependent surface energy density is given as,

= ST Nt - tls))sds| (13)

and Adhesion Force is,

Fa=0(Xy -1 [/01 Nb(t—to(s))sds} n. (14)

where, o is a spring constant given in N/m, X} is the gap thickness between the cell surfaces within the
contact region, [ is equilibrium gap thickness at which bond force vanishes, IV, is bond number density defined
as the number of bonds per unit area of the contact region as a function of time, and s is circumference
length of an elliptical particle. The number density is given as

No(t) = 2Atanh[%(B? — 4AC)Y2(t — ty)] (15)
" T “Btanh [L(B? — 4AC)V2(t — to)] + (B2 — 4AC)1/2)
where A = kyNjoNyo, B = —[k¢(Nio + Nyo) + kr], C = ky, ks and k, are respectively the forward and
reverse reaction rate coefficients, Ny and N, are respectively the initial receptor and ligand densities on
the membrane.
An alternative and equivalent form of the adhesion force, which is used in the present study, was provided
by [21] and is given as

Fu = Fyn+ Fitg (16)

where the normal force F), is resulting from a combination of elastic repulsion of particles, viscous dissipation
and adhesive binding. The tangential force F; is the result of sliding action of RBCs in contact. The unit
normal n and unit tangent ts at the contact points are appropriately used to compute the adhesion force
components in « and y direction. The JKR equations for normal elastic force between two colliding particles
were recast by [38], in terms of contact region radius as



_\3 _\ 3/2
F
Fu :4(?) _4(?) (17)
Fc ap ao
here, F, is the critical force required to separate two attached RBCs with corresponding critical overlap,

2N\ 1/3
dc, a is the contact region radius and ag = (%) with R being the effective particle radius, i.e.,

1/R = K' + K7 with K* and K7 being the respective positive mean curvatures of two RBCs i and j at
contact points and E being the Young’s Modulus of an RBC (3.1 x 107dyne/cm?) [39]. The equations for
the critical force and critical overlap are given respectively as[38]

F.=3myR and 0.= (18)

where v is the equilibrium surface energy density given by Equation 13. The ratio between normal and

critical overlaps of RBCs is given as
(&) 4(2)"
an 3 ap

here §,, is the normal overlap between the contact points of colliding particles and is positive for intersecting
particles and negative for necking particles. Once collision between RBCs is detected (see Section 4 for
collision detection), the ratios in equations 17 and 19 are computed. If these ratios are greater than unity,
the particles are attached and if less than unity then they are detached. The remaining component needed
to calculate the adhesion force in Equation 16 is Fj, given as

)

no_gl/3 1
=0 (19)

t
F, = 7kT/ v (T)dT.ts — nrvs.ts (20)
to
where kr = 8Ga is the tangential stiffness coefficient [40] with G being the shear modulus of an RBC,
vy = v — (vgr.n)n is the slip velocity, which is the tangent projection of v to the surface at the contact
point,t, = v,/ |vs| is the slip direction, vg = vi — vJ 4+ (Qf x r* — QJ x 1J)is the relative velocity of the
particles at contact point and 7y is the viscous damping coefficient [41].
The last term required to compute the rotation of an RBC in Equation 5 is obtained from

My = F,(r" xn) + For'(n x t,) + M,.(tg x n) + M;n (21)

The normal force produces a normal torque equal to F,,r’ xn and a sliding torque F,r? xt,. An associated
torque acting on the particles due to resistance from twisting is M;n. In the presence of adhesion, particles
experience strong resistance due to rolling as well. M; is twisting resistance due to different rotation rate
of two colliding particles in the direction n. The relative twisting rate is defined as Qr = (2! — Q/).n ,
My = —kra?/2 ftto Qp(7)dT — nra®/2Qr, M,- rolling resistance induced asymmetry in the contact region,
M, = —4ch/d0(3/2)§- [42], ¢ = ftt) v (T)dr.t g is the displacement of the particle centroid due to rolling in the
t g rolling direction, tg = vi/|vi|, vp = (K + K9)7 {(¥ — Q") x n— (1/2)(K* — KJ) [vg — (vg.n)n]}
is the rolling displacement [43].

In summary, F;, is positive when two particles pushes towards each other and negative when move away
from each other due to fluid force. Even for the negative values of §,, the contact will be maintained untill
the critical point is reached at which F,, = —F, and §,, = —d.. For saving computational time F, /F. and
a/dp can be precomputed as functions of d,/d. to determine F,, and a for given value of §,, at each time
step. In the equation 5 only the 'z’ component of M4 is added.



3 Non-dimensional form of the equations

The non-dimensional form of the main equations may be obtained by employing following non-dimensional
scales.

tUso *:pll*:l

u = 77\/ = -, = —_— —,
Uno Uno LT L
UL ., K
Re — pf o0 ,K* — 770_* — % (22)
[if L prUso" L

where, Uy, is the reference velocity, L is a characteristic length, p; is density of fluid (plasma), p, is
density of RBC and p5 is dynamics viscosity of the fluid. Applying these scales give the following equations
of motion of RBCs

2 * * * ok
S (L9 [Ch ) N (23)
p* Re(/2)|(9uz /9y

dvi_ 1 |F
dt pr(14)* | Re

dQs* 1
= —(Mp:"+Ma ;" 24
a = e Mt MasT) (24)
16ma*b*? o .o .
Mp ;" = a*® —b*)d, " + (0" +0*7) (w, " — QL 25
F, 3(a*2a0 +b*2ﬂ0)Re(( ) Y ( )( Yy )) ( )
My =Fa'r" xn+Fr" X ts+ My*n+ M,"tg X n (26)

M, is given in the vector form to avoid the confusion. where, ¢; = fol Ny (t —to (s)) sds, is Bond
number density, s-circumference length of particle. In solving the equation of motion of particles involves
three important steps, such as to find out Adhesion, Hydrodynamic forces (Drag and Lift force) and detect
collision among the particles.

3.1 The modified Navier-Stokes equations and power law

The non-dimensional Navier-Stokes equations in the presence of RBCs may be written as (without asterisks)
based on [44],

o(C,
A1) | (Cyppus) =0 (27)
ot
O(Cupru;)  O(Cupruiuj) Op 1 0 Ou;  Ou;
. __nor L 0 9
ot Ox; o oz, " Re ox; | M\ o, s (28)

Where C, = 1 — C(x,t) is the voidage fraction, where particle concentration field C(x,t) is obtained
by computing the particle concentration based on variant of particle cloud approach [23]. The contribution
of the continuous particle concentration field from each particle can be distributed as a cloud around the
particle centre as determined by a weighting function f(x — x,, Ry,) such that the integral of f over all space
equals to unity and R, is a particle cloud radius assumed to be constant. The Gaussian function for f may
be expressed as,

(% = X, ) eap |~ x — xal* /2] (29)

2
~ 3nR3

The particle concentration C(x,t) at a point (z,y) is obtained by summing over contributions of all the
particles in the nearby particle cloud as,



N
C(x,t)=> Anf(x—Xn, Ry) (30)

where A, is the particle amplitude and is equal to particle volume, such that the integral of concentration
field over space equals the sum of the volume of individual particles. Particle concentration around the nodal
points in the Fluid model is computed based on the particle cloud radius with nodal point as centre.

To study the effect of non-Newtonian nature, we employ a power law. Here, u is a function of the rate of

deformation tensor A. For a two-dimensional problem, the shear strain rate computed as 4 = 4/ %A I Agr.
In the power law model used the viscosity is defined as,

p= KA (31)

where, K (0.785) is the consistency index (Pas™) and n (0.35) is the power law index [45]. For limiting the
maximum non-Newtonian viscosity value, the minimum stain rate has been limited to 10~%s~!. Also the
typical Newtonian viscosity value of plasma, (o = 0.0012kgm/s), has been used as the reference value for
non-dimensionalising the viscosity of the blood.

4 Implementation of RBC aggregation

4.1 Initial RBC distribution

The problems studied require an initial distribution of RBCs to start the computation. In the present study,
the elliptically shaped RBCs are distributed over the channel with almost equal spacing and randomly
perturbed with maximum distance between them of 1.4um. The initial RBC velocity at the centre is
fixed equal to the fluid velocity and then randomly perturbed with uniform probability density by using a
maximum value of velocity equal to half of the maximum inlet velocity at the inlet. The initial orientation of
the RBCs are also distributed randomly about z axis. Based on these initial conditions the values of initial
Euler parameters have been obtained.

4.2 Time integration and collision

In the present work, two different schemes for the time integration of Equations 4 and 5, the central finite
difference and second order Adams Bashforth method, have been tested. The latter scheme was observed
to be faster than the central difference scheme. Since the time scales involved in the collision and adhesion
process is much smaller than fluid time scale, the Adams Bashforth scheme is more suitable than the central
difference scheme due to higher order of accuracy.

Due to different time scales of fluid flow, non-collided RBCs and collided RBCs, three different timescales
are required to represent the system [21]. Thus three different time stepping procedures are introduced, one
for solving the fluid dynamics equations, second for solving the transport of free RBCs and the last one
for dealing with RBCs in contact. After a fluid time step, RBC velocities are calculated and collision is
detected using particle convective timescale, which is one order less than the fluid time step. Following this,
the collided RBCs are grouped together and a collision time step scale of the order T, = O[d(p3/ EIZ,U)(I/ 5],
where E,- particle effective elastic modulus, is used to solve the transport of aggregates [21].

While carrying out the computation, each RBC has the list of neighbouring particles within a preassigned
radius and the number of particles in the local list contains approximately 45-60 RBCs. This allows an
efficient search procedure to determine whether the particles are within the collision distance. Since RBCs
form a rouleaux by lining up along the flat faces, the collision is assumed to have occurred when the distance
between two RBCs is less than or equal to two semi-minor radius. Identification of contact points are
important to find the normal and tangential components of adhesion forces between collided particles. This
is computed using the quadratic equation of an ellipse. The position vector of an ellipses e/ satisfies the
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Figure 2: (a) Percentage of particle aggregation at time=100sec, (b) Comparison of particle path with
different hydrodynamic forces.

quadratic equation of an ellipse e’ at contact points. The surface of an ellipse can be represented by the
quadratic equation in terms of canonical coordinates as,

XQ; X" =o. (32)
1/a? 0 0
where @Q; = | 0 1/b2 0 | is a characteristic matrix of an ellipse ¢ and X is the position vector.
0 0 -1

If any vector X =[xy 1] exists, such that the above equation is satisfied for two different ellipses, with
characteristic matrix of Q' and Q?, then the corresponding point (x,y) lies on both the ellipses.

5 Results and Discussions

The fluid dynamics model used here has been widely and thoroughly tested for both Newtonian and non-
Newtonian blood flows in the past [31, 46, 30]. This flow model has been extended in the present study for the
simulation of RBC aggregation and estimation of haemorheological changes in the microcirculation. However,
benchmarking of RBC aggregation model is necessary and we use the data published[21] to qualitatively and
quantitatively verify the results obtained using the present model.

5.1 RBC aggregation

It is of fundamental interest to check whether or not the results obtained are sensible and close to the results
obtained by others. To do this, a microchannel of 700 x 140um is considered for the simulation of RBC
aggregation in a two dimensional domain. The shear rate of 5.085 ! is considered with no slip condition on
the walls. While the lower wall is static, the upper wall is allowed to move at a prescribed velocity. After
the flow simulation with Newtonian blood flow assumption, the RBCs are introduced into the plasma with
a hematocrit value of 40 percent. The initial RBC distribution has resulted in an equilibrium surface energy
value of 1.0 x 10~* dyne/cm. Figure 2a shows the percentage of RBC aggregation at the time instant of
100 sec and as seen it is also compared with the published results. It is apparant that, the result shows
an excellsent agreement with the existing result of [21] for smaller aggregation sizes. The disagreement for
larger aggregates may be the result of differences in initial conditions employed and the addition of lift forces
to the model.
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Figure 3: (a) RBC aggregation in the channel flow at ¢ = 100sec, (b) Comparison of wall shear stress
variation along the wall-dimensional H = 40, Re = 20, (c) Comparison of particle path between Newtonian
and Powerlaw flow with RBC aggregation

5.2 Impact of lift force

Since the lift force of the particles have been ignored in the past, it is of interest to understand the impact
of the lift force. To demonstrate the impact of the lift force, the time trajectory of an RBC at 385 x 105um
is computed and plotted with and without lift force as shown in Figure 2b. As seen the RBC with the lift
and drag forces takes a slightly longer path than the RBC with only drag force. Although the difference
is small, the wider impact of this lift force in complex arteries may be significant. Thus, neglecting the lift
force may lead to erroneous computation of RBC aggregation.

5.3 Impact of RBC aggregation on rheological changes

The haemorheological changes of blood flow in the channel have been investigated here using the powerlaw
model explained in the previous section. A channel of 700 x 140um has been considered again with no slip
conditions on both the lower and upper walls. A fully developed flow condition at the inlet is used for the
simulation of flow field. Figure 3a shows the RBC aggregation at the time instant of 100 sec for a shear rate
of 5.08s71. It is evident from this figure that the bigger aggregates are formed at the centre of the channel.
It is also observed that aggregated RBCs have the tendency to move away from the walls. This is due to the
fact of shear rate is lower at the centre of the channel and higher closer to the walls. The results observed
is inline with the experimental results reported in the literature [47, 2]. This phenomenon is responsible
for the formation of a cell-free layer closer to the wall. This phenomenon is normally prominent in tubes
of diameters smaller than 400um [3]. Formation of cell free layer reduces the RBC concentrations near the
vessel walls and responsible for lower viscosity here.

Figure 3b shows the wall shear stress for different flow conditions at the time instant of 100sec. Compar-
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Figure 4: Velocity profile comparison between Newtonian, powerlaw and powerlaw with RBC aggregation
across a section for H = 40, Re = 20

ison of wall shear stress value for Newtonian flow assumption bewtween numerical (—2.63x1072N/m?) and
analytical (—2.63x1073N/m?) solution shows excellent agreement. The results also show a considerable dif-
ference in wall shear stress between Newtonian and Powerlaw fluid. As seen wall shear stress value is higher
when the powerlaw is introduced. However when the powerlaw is combined with aggregation, a dramatic
drop in the value of wall shear stress is noticed. This result clearly demonstrates why powerlaw models can
not be used in isolation without RBC aggregation.

Figure 3c shows the particle path over time for Newtonian and Powerlaw model with RBC aggregation.
The result shows considerable difference and it is observed that the Powerlaw fluid show longer path due to
shear thinning behaviour. As observed in the sensitivity study with drag and lift forces on particle path,
Powerlaw fluid takes a longer path than Newtonian flow. Once again it is ascertained that due to RBC
aggregation and shear thinning property of flow, fluid forces are very different.

Velocity profiles at different sections of the channel have been plotted and compared with the veloc-
ity computed under Newtonian flow assumption and are shown in Figure 4. The velocity profile shows
tremendous difference, which necessitates the need for studying haemodynamics under shear thinning flow
assumption. Velocity profile at the centre of the channel shows highly blunted shape due to the RBC ag-
gregation and clustering, similar flow behaviour has been reported by [2] in microvessel under in-vivo study.
Velocity profile based on in-vivo study for slow flow with aggregation has been proposed in the past and
given an exponent value for K=3.8 [25] for the velocity profile as,

K) (33)

In the present study, predicted velocity profile gives a value of K=3.7.

Figures 5 to 6 show the velocity and viscosity variation across the channel for different shear rates. It
is clearly evident from the figures that the aggregation increases the viscosity at the centre of the channel.
Figures 5a and 5b show the velocity variation and viscosity contours predicted with RBC aggregation for
Re = 20 at heatocrit of 40%. As expected the viscosity is increased due to bigger aggregation at the centre
of the channel. Viscosity of flow is lower in the near wall region due to reduced RBC concentration and
increased shear rate. This increased shear rate causes the breaking up of rouleau and reduction in particle
concentration as indicated in [48]. From the figures it is clear that viscosity variation due to RBC aggregation
has a major impact on velocity distribution across the channel. At higher Reynolds numbers (Re = 50), the
viscosity (Fig. 6b) is lower, which is anticipated at higher shear rates. Figure 7a shows the RBC aggregation
for the hematocrit value of 30% and Re = 20. From the figure 7b it is observed that viscosity values have

been decreased compared to the viscosity values at 40% hematocrit. This is a result of reduction in number
of RBCs.

r

V(r) = Vinas (1.0 R
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Figure 5: (a) Velocity profile at different sections, (b) Viscosity contours, for H = 40, Re = 20
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Figure 6: (a) Velocity profile at different sections (b) Viscosity contours (c) Wall shear stress, for H=40,
Re=50
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Figure 7: (a) RBC Aggregation (b) Viscosity contours (c) Wall shear stress for H=30, Re=20
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Figure 8: Comparison of shear stress
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Wall shear stress along the length of the channel has been compared for different hematocrit values and
Reynolds numbers in Figure 8. The figure clearly shows that increase in shear rate dramatically reduces
the viscosity values and thus wall shear stress. The figure also shows that increase in RBC concentration
increases the viscosity and thus the wall shear stress.

6 Concluding summary

A numerical model has been developed for simulating RBC aggregation in the microchannel based on
receptor-ligand binding model and tested with published results. The model is capable of predicting RBC
aggregation and the effect of aggregation on rheological characteristics of blood flow in the microchannel
flow. From the investigations, it is observed that the results show clear evidence of increase in the viscos-
ity due to rouleau formation and resulted in reduction of wall shear stress. A sensitivity study shows the
shear induced lift has significant effect on particle path and RBC aggregation. In the computational model
Powerlaw model has been incorporated to study the non-Newtonian flow characteristics. Hematocrit value
of particles has been varied to study the aggregation effect on viscosity and it is observed that for higher
haematocrit value the viscosity also increased under RBC aggregation.
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