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Abstract 

Surface lubricity on TiO2-coated galvanized steels can be controlled by solution 

depositing perfluorooctanoic (C8), lauric (C12) or stearic (C18) acids to avoid 

lubricating oils/emulsions or substrate pre-etching to remove surface oxide which add 

cost and waste. Water contact angles (WCA) reveal increased surface hydrophobicity 

on coated samples which correlate with linear friction testing (LFT) suggesting WCA 

can be used to screen lubricity compounds. LFT shows that C12 and C18 lower the 

coefficient of friction (µ) by 50-60% compared to uncoated substrates whilst C8 drops µ 

from 0.31 to 0.22. Surfaces have been characterized by XPS, SEM and AFM whilst IR 

confirms that as-deposited coatings contain physisorbed and deprotonated acids 

chemisorbed through esters and TGA confirms increasing loadings from C8 to C12 to 

C18. Surface washing removes physisorbed material and lowers µ by increasing surface 

organization and alkyl chain packing which enhances frictional energy dissipation 

through steric quenching.  

 

Keywords: Lubricity; Friction; Sorption; Automotive steel; Sheet metal forming 

 

1. Introduction 

Galvanized steel is formed into complex shapes for vehicle bodies through techniques 

such as deep drawing which relies on material ductility to create new shapes as the 

substrate is forced over tools by the mechanical action of a punch1,2. Adequate 

lubrication is essential to reduce friction to avoid wear on the substrate surface caused 

by frictional force at the interface between the substrate and the shaping tools3. 

Currently, drawing oils, emulsions or colloids are deposited onto automotive steels by 

spray, roll or drip coating to act as deep drawing lubricants4. Whilst these emulsions are 

non-toxic, they rely on the surface texture of the substrate to remain in place during 
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forming5. However, the poorer paint finish which can result from surface roughness6 

means the automotive sector is increasingly driving towards smoother substrates. 

Consequently, there is a need to develop alternative lubricants which can operate 

at a wider range of surface texture specifications of automotive steels. Conformal 

deposition at a molecular level avoids macro-surface roughness issues because it 

operates at an entirely different length scale (pm compared to µm). Previously, low 

surface energy monolayers have been used to generate low friction surfaces on different 

materials; e.g. stearate on Al7 or steel8,9, silanes on Si10 or phosphonates on Cu11. In 

general, the organic molecules that form such monolayers contain linker groups that 

bind to substrate surface atoms and alkyl chains that orient away from the surface to 

reduce interfacial shear forces12. However, prior reports for the surface functionalize 

metals or metal oxides have often used pre-treatments such as polishing13 or plasma 

cleaning8 to generate homogeneous, ultra-clean and/or oxide-free surfaces. In a 

laboratory, these approaches work well but, on a production line, these extra steps 

increase cost and waste. Thus, we have taken the opposite approach and, rather than 

remove surface oxide, we have studied the self-assembly of carboxylic acids either onto 

pre-cast TiO2 films or, where there is incomplete TiO2 surface coverage, directly onto 

the native ZnO surface layer of galvanized steel. We have chosen to use study the 

addition of a TiO2 layer onto the galvanised substrate because carboxylic acids have 

been observed to chemisorb as monolayers onto metal oxide surfaces (e.g. TiO2) 

through ester linkages14-15 in a similar way to that used in dye-sensitized solar cells16-17.  

In this paper, we report studies of using stearic, lauric or perfluorooctanoic acid 

to generate cost effective, low toxicity, processable films with controlled surface 

lubricity on low surface roughness, galvanized automotive steel. Whilst low friction, 

stearate films have been reported on Al7, steel8,9,13, and mica19, to our knowledge, lauric 

and perfluorooctanoic acid have not been studied in this context. We have linked 

detailed characterization of these surfaces with coefficient of friction (µ) and contact 

angle data. Whilst correlations between atomic force microscopy friction coefficients 

and contact angle data have been reported for glass substrates18, we also report the first 

attempts to determine whether such a correlation exists for galvanized steel substrates as 

such correlation would enable contact angle measurements to be used as screening 

methods for compounds that could imbue surface lubricity. 

 

2. Materials and Methods 

2.1 Samples and chemicals 

Galvanized steel (DX56, Tata Steel) was cut into 10×20 mm2 coupons for 

characterization and 50×300 mm2 strips for linear fiction testing. The steel composition 

(% wt) was Al 0.036, C 0.0022, Mo 0.001, Ni 0.001, N 0.0035, P 0.009, Si 0.003, S 

0.010, Sn 0.004, Ti 0.050, V 0.002, Cr 0.012, Cu 0.026, Mn 0.088, B 0.002 and the 

balance was Fe. The surface roughness was 0.97 ± 0.05 µm; measured using a Marsurf 

profilometer. All other chemicals were sourced from Sigma Aldrich and used without 

further purification. 
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2.2 Surface functionalization 

Samples were air dried after each of the following steps. Surface oil was removed from 

the steel by scrubbing with water and detergent and then ultra-sonicating in acetone for 

5min. Selected substrates were immersed in an isopropanolic solution of Ti(OPr)4 

(10mM) for 30s. Substrates were then immersed in 100 mM isopropanolic solutions of 

the carboxylic acids for 30s before analysis. Selected samples were then either rinsed 

with acetone for 2 min or immersed in 100mM NaOH(aq) for 30s.  

 

2.3 Characterization  

Contact angle measurements (n = 5, 5µl D.I. water) were made using the sessile drop 

technique with a USB 2.0 camera and goniometer and the data were fitted using FTA 32 

software (FTA 32 Europe). IR spectra (4 scans, 4cm-1 resolution) were recorded on a 

Perkin Elmer 100 Series ATR-FTIR spectrometer, between 650 and 4000cm-1. Field 

emission gun scanning electron microscopy (FEG-SEM) was carried out on a Hitachi 

S4800 at 1.0kV (Jemission = 5µA, working distance = 11.5mm). Energy dispersive X-Ray 

(EDX) spectra were recorded using a Silicon Drift X-Max EDX detector and Inca EDX 

software (Oxford Instr.) at 15.0kV (Jemission = 15µA, working distance = 17.0mm, 

acquisition = 100s). AFM data were measured over 10 x 10 µm scan areas on a JPK 

Nanowizard 3 AFM in contact mode using a Si tip (thickness 3 µm, length 225 µm) 

with a force constant of 2.8 N m-1. The tip velocity was 20 µm s-1 with a line rate of 0.5 

Hz. X-Ray photoelectron spectra (XPS) were recorded on an Axis Supra XPS (Kratos 

Analytical) using a monochromated Al Kα source and large area slot mode detector (300 

x 800µm analysis area). Data were recorded using a charge neutralizer to limit 

differential charging and binding energies were calibrated to the main hydrocarbon peak 

(BE 284.8 eV). For each etch, a survey scan was recorded using a pass energy of 

160eV. Data were fitted using CASA software with Shirley backgrounds. A 0.1 eV step 

size was used when recording the high resolution spectra and a pass energy of 20 eV. 

Thermal gravimetric analysis (TGA) data were recorded on a Pyris 1 TGA, heating 

from 25 oC to 550oC at 25 oCmin-1 under N2 (20 mlmin-1). Coefficients of friction were 

measured using linear friction testing (LFT), a strip drawing test similar to that reported 

by Trzepiecinski et al.20 at 22-24oC and 30-45% RH (ESI Fig. 1). To do this, samples 

(50x300mm, n = 3) were pulled between round and cylindrical tools, clamped together 

with a force of 5kN, at 0.345mms-1 for a track length of 60mm. This sliding speed is 

slower than that typically used in deep drawing but was used to invoke very high 

friction to cause much faster removal of the zinc layer. Otherwise the tests would have 

required prohibitively very large amounts of material to study LFT. A new tool pair was 

used for each LFT test. The pulling force was measured and used to calculate the 

coefficient of friction (µ) by taking an average of the data between 40 and 50 mm along 

the track length (where the values for µ had typically reached a plateau and where there 

is no longer believed to be any contribution from static friction behaviour which might 

occur at < ca. 10 mm) and using Eq. 1. All LFT tests were carried out in triplicate with 

mean values quoted (errors quoted are standard deviations from the mean). 
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  µ = Pulling Force / (2 x Normal Force) Eq. 1 
 

Wear was assessed using digital photographs of the wear tools and by confocal 

microscopy using a Nanofocus µSurf Mobile on 2.1mm x 2.1mm areas of steel samples 

at 20x magnification. The data were plotted using Mountains software, version 7.3. 

 

3. Results and Discussion 

3.1 Lubricity Compounds and Substrate 

Lubricity compounds typically contain three main functionalities; a linker group to fix 

the compound to the substrate surface, a long (usually alkyl) chain which reduces 

surface energy and side groups attached to the long chain (Scheme 1a). In this work, 

three compounds have been studied all of which possess a carboxylic acid linker group. 

However, the compounds chosen vary in the length of alky chain and side groups they 

possess. Thus, perfluorooctanoic acid possesses only C-F side groups and consists of an 

8 carbon chain and is subsequently labelled here as C8. By comparison, lauric and 

stearic acid possess only C-H side groups but consist of twelve and eighteen carbon 

chains and so are labelled here as C12 and C18, respectively. The substrate chosen for 

lubricity testing (DX56) is galvanized steel with low surface roughness, which is 

designed for use in the automotive sector. The DX56 surface consists of a galvanic 

coating weight of 50-90 g m-2 which corresponds to a thickness of ca. 9-13 µm made up 

of 99.7 wt% Zn and 0.3 wt% Al. Thus, the outer surface of the DX56 substrate is 

expected to consist of a thin layer of predominantly ZnO.  

 

Scheme 1 here  

 

3.2 Infrared Spectroscopy  

After removing surface oil from the DX56 substrate, the lubricity compounds have been 

deposited onto the steel by dip coating. IR data for C8-coated steel show a broad peak at 

ca. 3250cm-1 (Fig. 1) which also appears in the spectrum of the neat acid (ESI Fig. 2). 

This is ascribed to inter-molecular H-bonding between the carboxylic acid moieties, 

suggesting there is physisorbed acid on the surface. However, the υC=O of neat C8 is 

not observed at 1711cm-1 in the coated sample. Instead, two bands are observed at 1727 

and 1652cm-1 (Fig. 1), which are assigned as υC=O and the asymmetric υCO2 of the 

carboxylate linker of C8 bound to the oxide surface in the bridging coordination 

mode21. Bands at 1430 and 1366cm-1 are assigned to the symmetric υCO2 of the 

bridging coordination mode and tentatively to the asymmetric υCO2 of carboxylates 

bound through monodentate coordination21. Whilst this suggests multiple coordination 

modes for C8, no bands for the monodentate carboxylate symmetric stretching vibration 

are observed.  

 

Fig. 1 here 

 

Previous studies have shown that carboxylic acids can chemisorb to metal oxide 

surfaces through covalent ester bonds7, 10, 21 and that physisorbed molecules can be 
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readily removed by solvent rinsing7, 8, 22. To study this, acetone rinsing shows that, 

whilst no carbonyl or carboxylate stretching bands are observed, υC-F are present 

between 1358 and 1140cm-1 (ESI Fig. 3). This confirms that C8 remains adsorbed and 

suggests that the dipole moments of the carboxylate-related bands may be oscillating 

parallel to the surface and so are invisible in the IR spectrum23. Further evidence for this 

is that, after NaOH(aq) treatment to de-esterify the C8, there are no carboxylate or C-F 

bands in the spectrum confirming that all the remaining C8  has been desorbed (ESI 

Fig. 4). 

IR spectra for C12- and C18-coated DX56 show υC-H at 3000-2800cm-1 (Fig. 

1). Both spectra show intense υC=O bands at ca. 1700cm-1 and weaker carboxylate 

asymmetric υCO2 at ca. 1550cm-1 whilst symmetric υCO2 bands are expected to be 

coincident with carboxylate-related bands from physisorbed C12 or C18. The signals 

observed are ascribed to non-dissociated C12 and C18 acids along with surface-bound 

esters7, 10, 13 suggesting that both of these coatings contain physi- and chemisorbed C12 

and C18, respectively. For both acetone rinsed coatings, symmetric and asymmetric 

υCO2 bands are observed at 1542 and 1400cm-1, respectively along with a band ascribed 

to methylene scissoring at 1465cm-1 24 (ESI Fig. 3). These bands confirm that esterified, 

chemisorbed C12 and C18 remain on the surface whilst any physisorbed material is 

removed. Analysis of ∆υ between υ CO2 asym and υ CO2 sym gives a value of ca. 140 cm-

1 for C12 and C18 coatings which is consistent with carboxylate groups coordinating to 

surface atoms in a bridging coordination mode25. Such sorption has been observed in 

prior studies whereby bonding proceeds through coordination of both carboxylate 

oxygen atoms to two different surface sites 4, 10, 22. Scheme 1b shows bidentate 

coordination of C8, C12 and C18 on a substrate surface.   

 

3.3 Scanning Electron Microscopy (SEM) 

SEM for “as received” DX56 steel shows contamination ascribed to oil deposited before 

transit to minimize corrosion. After cleaning, SEM confirms oil removal (ESI Fig. 5a). 

After dip coating DX56 in Ti(OiPr)4 solution, the surface topography reduces due to the 

deposition of a TiO2 film whilst EDX data confirms Ti is present (ESI Fig. 5b). For the 

lubricity compounds, the C8 surface shows few new features beyond the TiO2-coated 

DX56 although the surface appears darker suggesting that the coating interacts 

differently with the electron beam (Fig. 2a). The C12 surface shows more surface 

features suggesting a thicker film has been deposited (Fig. 2b) whilst the C18 surface 

shows needle-like structures (Fig. 2c) suggesting stearic acid has deposited as a separate 

phase.  

AFM data (ESI Fig. 7) of 10 x 10 µm areas of the samples show low surface 

topography for the DX56 substrate (± 10 nm). After Ti(OPr)4 treatment, new features 

are observed which are 200-250 nm in height and which are ascribed to TiO2 particles 

that we observe in the SEM.  After deposition of C8 (ESI Fig. 8), a much higher surface 

topography is observed (± 1,000 nm) but this drops to ± 80 nm after rinsing in line with 

removal of some physisorbed C8. However, the surface topography is still much greater 

than the substrate suggesting that a model similar to Fig. 6d is occurring for C8. For the 

C12 surface, the surface topography is ± 200 nm but this drops to ± 10 nm barring 
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spikes for residual TiO2 particles (ESI Fig. 9). However, the WCA remains hydrophobic 

and the coefficient of friction remains low. This suggests monolayer C12 coverage 

represented in Fig. 6c. The as-deposited C18 surface shows angular particles with 

surface topography ± 80 nm (ESI Fig. 10). XRD shows that these particles are 

crystalline indicating phase separation of excess stearate material (ESI Fig. 11). After 

acetone rinsing, these particles disappear but the surface topography (± 50 nm) suggests 

multiple layers of C18 remain.  

 

Fig. 2 here 

 

3.4 X-ray photoelectron spectroscopy (XPS) 

XPS data for cleaned DX56 show Zn 2p1/2 and Zn 2p3/2 photoelectron peaks at 1021.2 

and 1044.0eV, respectively26-28 as well as a weak Al 2p photoelectron peak at 73.9eV 

(ESI Fig. 12 and 13). This is expected as Al is added to the galvanic Zn coating to 

control the structure of the intermetallic formed at the interface between the Zn coating 

and the underlying steel26. A broad O 1s signal at 531.70eV also confirms the presence 

of surface oxide26; mostly ZnO for the DX56 substrate. Fig. 3 shows that, after 

Ti(OiPr)4 treatment, Ti 2p1/2 and Ti 2p3/2 peaks are observed at 458.0 and 463.7eV in 

agreement with previous studies29-31. The O 1s signal also splits into two peaks at 531.2 

and 529.5eV for ZnO and the newly formed TiO2
32.  

TiO2-coated DX56 treated with C8 shows an intense F 1s photoelectron peak at 

689.9eV (ESI Fig. 14) confirming the presence of fluorine on the surface33. A C 1s peak 

centred at ca. 291.8eV de-convolutes to reveal the presence of C=O, CF2, and CF3 

moieties for the fluorinated carboxylic acid34 (Fig. 3). For the TiO2-coated DX56 treated 

with C12 or C18, the C 1s peak envelopes de-convolutes to reveal the presence C=O, 

C-CO2 and C-C components (Fig. 3) as expected for these alkyl carboxylates. The 

assignments are in line with related studies for carboxylic acids binding to steel13 or iron 

oxide surfaces10.  

As a way to compare the loadings of C8, C12 and C18, the at% of C 1s was 

found to be 31.6%, 66.4% and 91.7%, respectively. In this context, for typical photo-

electron kinetic energies (10-1000eV), mean free path escape depths are 1-10nm 

corresponding to 2-10 monolayers35. Thus the lower at% of carbon and the higher 

intensity Zn 2p peaks for C8 (3.7 at% Zn) suggest either poor coverage with substantial 

surface area not occupied by C8 and/or a C8 loading of 1-2 monolayers. For C12, the 

at% of C more than doubles whilst the Zn drops accordingly (1.2 at% Zn) suggesting 

either a higher coverage of C12 and/or a multilayer C12 loading. By comparison, the 

C18 coating shows the highest at% for C along with the lowest intensity Zn 2p peaks 

(0.2 at% Zn) which suggests almost complete coverage of C18 on the surface and/or a 

many multilayer loading of C18. To further understand loadings on TiO2 surfaces, C8, 

C12 or C18 were sorbed onto Degussa P25 powder and then thermal gravimetric 

analysis (TGA) was measured to study the mass loss following their combustion (ESI 

Fig. 15 and ESI Table 1). From these data, the mass of C8, C12 or C18 initially sorbed 

onto P25 was found to be 10.9%, 71.0% and 78.8%, respectively. After acetone 

washing, the sorbed masses of C8, C12 or C18 drop to 8.7%, 24.9% and 44.5%, 
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respectively. Whilst these data show very little change in the C8 loading after washing, 

the C12 loading drops by almost two-thirds and C18 drops by almost a half. These data 

correlate strongly with the IR data which lower peak intensities for the lubricity 

compounds (C8, C12 or C18) spectra after acetone washing. 

Assuming 10mg of coated P25 TiO2, the acetone-washed loadings correspond to 

2.1µmoles, 12.4µmoles and 15.6µmoles of C8, C12 or C18. Given that P25 has a 

surface area of ca. 50m2g-1 15, a 10mg sample has an surface area of 0.5m2. The cross-

sectional area of C18 have been reported to be 20.7Å2 36. Thus, to form a monolayer of 

C18 on 10mg of P25 should require 4.0µmole of C18. Given that C8 and C12 both 

possess a similar carboxylate linkers to C18, it can be assumed that their cross-sectional 

areas should also be similar and thus should require similar loadings to achieve 

monolayer coverage. Thus, these data suggest an average of ca. 0.5, 3.0 and 4.0 

monolayer coverage for C8, C12 and C18, respectively.  

 

Fig. 3 here 

 

3.5 Water contact angle measurements 

The water contact angle (WCA) of “as received” DX56 galvanized steel were highly 

variable, which is ascribed to surface oil used to reduce corrosion in transit. After 

thorough cleaning, DX56 displays a more consistent WCA (55 ± 5o) (Fig. 4). Whilst the 

WCA did not vary after Ti(OiPr)4 treatment, the addition of either C12 or C18 

generates hydrophobic surfaces with WCA of 88 ± 3o and 110 ± 8o respectively 

suggesting these surfaces have been covered by the carboxylic acids. Similar WCA 

values have been reported for alkythiols on gold37, alkylsilanes on paper38 and 

carboxylic acids on mica39. By comparison, the equivalent C8 samples display 

hydrophilic WCA similar to the TiO2-coated and uncoated DX56 (58 ± 7o). This may be 

due to lower or less homogeneous C8 surface coverage or potentially the formation of a 

C8 bi-layer whereby a second layer of C8 molecules orient their carboxylic acid groups 

away from the surface, increasing interaction with droplet water molecules (Fig. 6d). 

However, the TGA data for C8 adsorbed onto P25 TiO2 show only 0.5 monolayer 

loading which suggests low coverage is the main reason for the low WCA value. To test 

this further, the WCA of acetone rinsed samples were also measured to ensure the 

removal of any physisorbed C8, C12 or C18. 

As expected, acetone rinsing did not affect the WCA of DX56 or TiO2-coated 

DX56. However, acetone rinsing C8-coated samples does increase WCA to 75 ± 6o, 

suggesting more of the surface consists of C-F terminated chains. Similarly, the WCA 

of C12 increases to 108 ± 6o in line with a more hydrophobic surface. In this case, 

removing physisorbed C12 increases the proportion of the surface which is C-H alkyl 

terminated. Finally, rinsing C18-coated samples does not change the WCA which 

suggests that, prior to rinsing, the surface was already alkyl terminated (Fig. 6d). 

 

Fig. 4 here 

 

3.6 Linear Friction Testing (LFT) 
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Coefficients of friction (µ) have been determined using LFT which is an aggressive 

tribological test, during which the galvanized coating is completely removed (Fig. 5a). 

Fig. 5b shows how µ varies along the samples. Cleaned DX56 shows the highest 

friction during the first 10mm (µ > 0.35), which then drops to between µ = 0.22-0.30. 

The initial increased friction observed may be due to several reasons including stick-slip 

behaviour resulting from substantial differences in roughness across the substrate 

surface, running in behaviour being influenced by surface roughness, the presence of a 

built-up transfer layer or adhesive friction between the tool and substrate. The dynamic 

value of µ (0.23) for TiO2-coated DX56 suggests that adding TiO2 to the surface does 

not influence lubricity. For the coated samples, µ displays little variation along the 

samples and this absence of variable friction behaviour suggests that surface coverage is 

sufficiently homogeneous to overcome substrate surface roughness.  

Interestingly, the C8 coating displays a dynamic µ of 0.20, which remains the 

same after acetone rinsing (Fig. 5c). The high friction observed is in agreement with 

previous studies; high µ values have also been observed for perfluorinated carboxylic 

acids on silicon40 and for perfluorinated phosphonates on copper11. High µ values have 

also been observed on related systems involving fluorinated41 or perfluorinated11, 40 

monolayers; discussions in the literature have attributed this to a number of factors 

including lower packing densities, relative to their hydrocarbon analogues, the 

molecular size of terminal groups, and molecular disorder in the molecular films42. By 

comparison, the C12 and C18 coatings give µ values of 0.11 and 0.10 (Fig. 5c). This is 

in agreement with previously reported studies where large reductions in µ values have 

been reported for phosphonates on copper11, silanes on silicon10, and carboxylic acids 

on Al7 and steel9, wherein it is believed that energy dissipation occurs through steric 

quenching between neighbouring alkyl chains43. After acetone rinsing, the dynamic µ of 

C12 and C18 coatings remain the same suggesting that sufficient chemisorbed material 

remains to imbue lubricity to these surfaces. Prior studies have shown that the 

stabilization energy incurred through increasing the number (n) of methylene (CH2) 

groups in a chain saturates between n = 8-1043.  

Analysis of the wear tools using digital photography (ESI Fig. 16) shows that, 

after LFT testing, there is less build-up of larger zinc flakes on the wear tools that had 

been used to test the C12 and C18 coatings compared to the uncoated FF substrate 

which is in agreement with the LFT data that these coatings reduce the coefficient of 

friction for these samples. Also in line with the wear tool imaging and LFT data, 

confocal microscopy (ESI Fig. 17) shows smaller scratches for the C12 and C18 

coatings which suggests that less material has been removed and hence that the wear is 

lower for these coatings. 

A plot of µ vs WCA (Fig. 6a) shows that a negative correlation exists between 

the coefficient of friction and surface wettability. This suggests that it should be 

possible to predict substrate lubricity from contact angle data because, whilst WCA data 

only provide averaged information across the surface area of the water droplet used, 

these data do provide a measure of the extent of functionalization of surfaces. This is 

key because it has been reported that close-packed monolayers can facilitate low 

friction behaviour on some surfaces by enabling energy dissipation by steric quenching 
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between neighbouring alkyl chains during tribological contact43. Thus, whilst the 

correlation between WCA and µ effectively reflects surface coverage, the observed 

trend cannot take into account multiple layers and/or the molecular orientation within 

the surface films. However, with these provisos, our data do show that WCA can be 

used as a rapid screening method to identify substrate friction properties.  

Applying this to our samples, for C8 this explains the high value of µ because 

the low surface coverage of C8 reduces inter-molecular steric quenching whilst 

uncoated areas possess no effective barrier during sliding (Fig. 6c).  By comparison, 

SEM and XPS data for the unrinsed C12 and C18 samples, show that the films are 

thicker than C8, show higher surface coverage and contain both physisorbed carboxylic 

acids and chemisorbed carboxylates (Fig. 6c,d). Therefore, it is plausible to suggest that, 

prior to rinsing, the films act as more like barrier coatings, preventing interfacial contact 

between the substrate and tool during tribological contact. Interestingly, µ does not vary 

for these samples after solvent rinsing even through IR data shows that only 

chemisorbed carboxylates remain on the surface. This can be ascribed to the 

chemisorbed C12 and C18 carboxylates forming more ordered films where the alkyl 

chains are sufficiently ordered and close packed to enable steric quenching between 

neighbouring chains and thus to reduce frictional forces. This model for the structures 

of the coatings is shown (Fig. 6b-d). This shows that the TiO2 layer formed as a result 

of dip coating process produces a partially covered surface. Between the TiO2-rich areas 

is ZnO from oxidation of the Zn-rich galvanic layer. Where metal oxide is present, the 

carboxylic acids can then chemisorb through esterification to surface hydroxide groups 

to form a monolayer where the alkyl groups orient themselves away from the substrate 

surface. However, if the loading is high enough, additional layers can physisorb as 

shown in Fig. 6d. Where free carboxylic acid groups orient themselves away from the 

substrate surface, it is possible for this to lower the WCA and increase µ. Whilst solvent 

rinsing can remove this physisorbed material, only de-esterification using strong base 

can remove the chemisorbed species. 

 

Fig. 5 here  
 

4. Conclusions 

Controlling surface lubricity is key for reducing wear during metal forming. At the 

same time, reducing waste and improving surface finish are driving the need to avoid 

oil-based lubrication and to reduce the substrate surface roughness required for such 

emulsions to work. Our approach to these problems has been to develop films which 

imbue inherent lubricity to metal surfaces. Whilst previous reports have suggested this 

is possible by pre-etching the substrate to remove surface oxide, we have instead 

attached monolayers of oriented alkyl chains directly to the oxide surface through 

carboxylate linkers. This approach is both cost effective and scaleable and we have used 

it on substrates up to 30cm in dimension. We have also screened different alkyl chain 

lengths and side groups (C-F vs C-H) and found that the initial deposits are thicker, 

multi-layer films but that acetone washing removes physisorbed material for all the 

compounds tested. However, C12 (lauric acid) is the most effective in terms of 
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monolayer coverage, WCA and coefficient of friction. By comparison, C8 (octanoic 

acid) shows low WCA and high µ whilst, for C18 (stearic acid), phase-separated 

particles of C18 are observed but, even after acetone rinsing, there is still too much 

material resulting in multi-layer surface films. Whilst stearic acid is not expensive this 

is still inefficient and wastes material. Through analysis of these data, it was also found 

that water contact angles can act as an effective screening method for compounds that 

could increase the surface lubricity. 

 

Fig. 6 here 
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List of Schemes and Figures 

 

Scheme 1 Schematic of C18 (top), C12 (middle) or C8 (bottom) bound to surface sites 

in bridging coordination mode. H atoms omitted for clarity. 

 

Fig. 1 Infrared spectra of DX56 steel treated with (a) C8 (b) C12 or (c) C18.  

● νC-H, ♣ νO-H, ▼ νC=O, † ν CO2 asym bridge, γ νCO2 sym bridge, ‡ νCO2 asym mon, α νC-F 

 

Fig. 2 SEM data for TiO2-coated DX56 steel treated with (a) C8, (b) C12 or (c) C18. 

 

Fig. 3 High resolution XPS spectra of TiO2-coated DX56 substrate (a) Ti 2p and (b) O 

1s are regions. Other spectra show C 1s regions after treatment with (c) C8 or (d) C12. 

C=O (▼), C-CO2 (♦), C-C (‡), CF3 (■), CF2 (●), COO (†), C-O (♣).  
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Fig. 4 (a) contact angles before (dark) and after (light) acetone rinsing and images for 

(b) TiO2-coated DX56 and TiO2-coated DX56 with (c) C8, (d) C12 and (e) C18.  

 

Fig. 5 (a) Image of sample after linear friction testing (LFT), (b) dynamic coefficient of 

friction (µ) data and (c) mean µ for substrates before (dark shading) or after (light 

shading) acetone rinsing. DX56 steel (grey), TiO2-coated DX56 (black) and DX56 

coated with C12 (circles), C18 (hashed) and C8 (light grey).  

 
Fig. 6 (a) Data for µ versus contact angle for DX56 steel (grey), TiO2-coated DX56 

steel (black), and DX56 steel with C12 (dotted), C18 (hashed) and C8 (open). Circles 

are before acetone rinsing and triangles are after acetone rinsing, (b) schematic of 

lubricity compound, and proposed models for (c) monolayer and (d) multilayer coatings 

of carboxylic acids on DX56 steel.  
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Scheme 1 Schematic of C18 (top), C12 (middle) or C8 (bottom) bound to surface sites in bridging 
coordination mode. H atoms omitted for clarity.  

Scheme 1 here  

190x275mm (96 x 96 DPI)  
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Fig. 1 Infrared spectra of DX56 steel treated with (a) C8 (b) C12 or (c) C18.  
● νC-H, ♣ νO-H, ▼ νC=O, † ν CO2 asym bridge, γ νCO2 sym bridge, ‡ νCO2 asym mon, α νC-F  

 
Fig. 1 here  

190x275mm (96 x 96 DPI)  
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Fig. 2 SEM data for TiO2-coated DX56 steel treated with (a) C8, (b) C12 or (c) C18.  
Fig. 2 here  

190x275mm (96 x 96 DPI)  
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Fig. 3 High resolution XPS spectra of TiO2-coated DX56 substrate (a) Ti 2p and (b) O 1s are regions. Other 
spectra show C 1s regions after treatment with (c) C8 or (d) C12. C=O (▼), C-CO2 (♦), C-C (‡), CF3 (■), CF2 

(●), COO (†), C-O (♣).  

Fig. 3 here  
190x275mm (96 x 96 DPI)  
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Fig. 4 (a) contact angles before (dark) and after (light) acetone rinsing and images for (b) TiO2-coated DX56 
and TiO2-coated DX56 with (c) C8, (d) C12 and (e) C18.  

Fig. 4 here  

190x275mm (96 x 96 DPI)  
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Fig. 5 (a) Image of sample after linear friction testing (LFT), (b) dynamic coefficient of friction (µ) data and 
(c) mean µ for substrates before (dark shading) or after (light shading) acetone rinsing. DX56 steel (grey), 

TiO2-coated DX56 (black) and DX56 coated with C12 (circles), C18 (hashed) and C8 (light grey).  

Fig. 5 here  
190x275mm (96 x 96 DPI)  
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Fig. 6 (a) Data for µ versus contact angle for DX56 steel (grey), TiO2-coated DX56 steel (black), and DX56 
steel with C12 (dotted), C18 (hashed) and C8 (open). Circles are before acetone rinsing and triangles are 
after acetone rinsing, (b) schematic of lubricity compound, and proposed models for (c) monolayer and (d) 

multilayer coatings of carboxylic acids on DX56 steel.  
Fig. 6 here  

190x275mm (96 x 96 DPI)  
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