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Abstract 

Spin coating, typically used to achieve nanometre thick films, is the established method for 

depositing perovskite precursors at lab scale for use in solar cells. This paper investigates the 

dynamics of spin coating perovskite.  By combining experimental measurement with a semi-

empirical model the evaporation rate of the dimethylformamide (DMF) solvent during the spin 

coating of a mixed lead halide precursor is determined to be 1.2 x 10–8 m / s.  When K-bar 

coating the same precursor the solvent does not significantly evaporate during the deposition 

process and when this film is crystallised on a hot plate a rough film results which gives a 

power conversion efficiency (PCE) of less than 2%.   By increasing the airflow of the K-bar 

coated perovskite film during crystallisation to 2.7 x 10–4 m / s the PCE increases significantly 

to 8.5% through an improvement in short circuit current and fill factor.   

1. Introduction   

There are a number of photovoltaic technologies such as organic photovoltaics [1], dye 

sensitised solar cells [2,3] and perovskite cells [4,5], which aim to capitalise on the lower 

fabrication costs of roll-to-roll solution processing.  Since 2012 perovskite solar cells have 

become the most efficient of the solution processed photovoltaic (PV) technologies [6,7] with 

small-scale devices reporting a power conversion efficiency (PCE) in excess of 20% [8,9].  

Spin coating is often favoured as a convenient method to deposit solution processed solar 

cells when large areas are not needed.  Spin coating is limited in commercial production by a 

high percentage of material wastage, the difficulty of batch processing and constraints on 

substrate size (typically < 100 cm2).  
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In order for perovskite solar cells to realise their potential as a low cost PV technology, 

deposition methods suitable for large area production need to be developed. One of the most 

challenging layers to deposit by processes compatible with large scale production is the 

active lead halide perovskite layer itself since this usually requires in situ formation of the 

perovskite material from two precursor materials; methyl ammonium (MA) iodide and lead 

halide.   

Mixed halide perovskites are formed by a reaction between methyl ammonium halide and 

lead halide (Eqn 1). In this example, the precursor of MAI and lead (II) chloride (PbCl2) in a 

polar solvent is co-deposited onto the substrate and spin coated. Typically a heating step at 

100ºC ensures complete conversion into perovskite.   

3 MAI + PbCl2 → MAPbI + 2 MACl       (1) 

By spin coating the precursor, substantial solvent can be removed at room temperature prior 

to the annealing step [10] whereby the perovskite film is formed.  Spinning toluene onto the 

spin coated film prior to annealing has been shown to improve the quality of the film further 

[11].  

Roll-to-roll compatible techniques such as slot die coating [12-14], blade coating [15,16] and 

K-bar coating [17,18], can also be used to deposit the precursor. Slot-die coating deposits the 

solution directly onto the substrate through a precisely machined die, under which the 

substrate passes underneath, as shown in Fig. 1a.  The solution is metered by controlling the 

substrate speed and the pump speed of the solution through the die.  K-bar coating is also a 

direct deposition technique where the solution is deposited by a wire-wound bar that moves 

across the substrate, as shown in Fig. 1b-c.  The solution is metered by changing the 

diameter of the wires wound around the bar. 
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Figure 1 Schematic diagram showing (a) slot-die coating, side view. (b) K-bar coating, 

front view, (c) K-bar coating side view 

Both slot die and K-bar coating involve the direct deposition of the precursor onto the 

substrate and therefore these techniques use much less material overall than spin coating (5 

ml m–2 rather than 240 ml m–2).  

The disadvantage of the direct deposition is that there is no dynamic drying before the 

deposition step and this can make it very difficult to control the crystallisation process. To date 

the highest performing devices have been produced by spin coating [19]. The composition of 

the spin coated solution, the spin speed, the initial acceleration, the spin duration were shown 

to be essential for the grain size of the crystals [21]. These parameters also govern the rate at 

which the films thin as reported by the Meyerhofer [22] equation, 

  

𝑑ℎ

𝑑𝑡
= −

2ω2

3η
− 𝑒     .               (2) 

 

Here h is the film thickness, ω the spin speed, η the viscosity and e a constant evaporation 

rate. The first term on the right of Eqn 2 is the vertical velocity of the film. In other words the 

magnitude at which the film reduces in thickness is equal to the axial velocity plus the 

evaporation rate. Solvent evaporation is controlled by two phenomena: the diffusion of the 

solvent molecules in the film and the solvent partial pressure above the film.  

a. 

c. 

b. 
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Despite the proven effectiveness of spin coating to deposit the lead halide perovskite layer 

the dynamics of this process has not been investigated. Understanding the dynamics of spin 

coating is key to develop a processing method which will enable the scale-up of perovskite 

cells. This paper examines the dynamics of spin coating perovskite precursor materials in 

order to understand the key parameters governing film formation during spin coating. An initial 

study into the effect of airflow on the performance of K-bar coated perovskite devices is 

undertaken. 

2. Experimental 

2.1 Film deposition and characterisation 

Perovskite films were prepared on 7 Ω / □ conductive fluorine-doped tin oxide (FTO) glass, 

cleaned with 2% Hellmanex in deionised water, rinsed with deionised water and then oxygen 

plasma treated.  A compact TiO2 layer (50 nm) was deposited via spray pyrolysis at 300°C 

from a solution 1:10 of titanium di-isopropoxide bis(acetylacetonate) and isopropanol before 

undergoing a sintering step at 550°C (30 min).  A 40 wt% precursor solution of MAI and PbCI2 

(3:1 molar ratio) in DMF was prepared in a nitrogen atmosphere and used for the spin coating 

and K-bar coating trials, which were both carried out in laboratory conditions. The spin-coated 

films were prepared by dropping 150 µl of perovskite precursor solution onto the substrate (25 

mm2) and spinning at 2000 rpm for 45 s before heating on a hot plate at 100ºC. The K-bar 

samples were prepared by coating 50 µl of perovskite precursor solution at a speed of 0.6 m / 

min onto a substrate (100 mm x 200 mm) and heating on a hot plate for 1 h at 100ºC or by a 

forced air oven with an air flow of 2.7 x 10–4 m/s (1000 l / m2 / h). Surface roughness 

measurements were taken using a DEKTAK profilometer over a distance of 1 mm and with a 

resolution of 330 nm. 

2.2 Solar cell fabrication and characterisation 

To fabricate solar cells a compact TiO2 layer (50 nm) was deposited onto laser etched FTO 

via spray pyrolysis as detailed in section 2.1. Then a mesoporous TiO2 film was deposited 

and sintered at 550ºC.  The perovskite film was deposited by either spin coating or bar 

coating as described in section 2.1.  A 10 wt%  solution containing 2,2′,7,7′-tetrakis-(N,N-di-p-
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methoxyphenyl-amine)-9,9′-spirobifluorene (Spiro-OMeTAD) in chlorobenzene, doped with 4-

tert-butylpyridine  and lithium bis-trifluoromethane sulfonimide, was spin coated over the spin 

coated perovskite layer at 2000 rpm to form the hole transport layer (HTL). For the K-bar 

coated devices poly(3-hexylthiophene-2,5-diyl) Mr 15000 – 45,000 in chlorobenzene (15 mg / 

ml) K-bar coated at a speed of 0.6 m / min, was used as the HTL Gold contacts were been 

thermally evaporated onto the HTL to complete the device stack. I-V testing was performed 

using  an  Oriel  solar  simulator  with  a  KG5  filter, at 1 sun AM1.5  and  a  Keithley 2400 

source meter. The cells had 10 s of light soaking before each measurement and were 

scanned at a rate of 0.15 V / s from 1.1 V to –0.1 V. The active area of solar cells was defined 

through a metal aperture mask with an open area of 0.09 cm2. 

2.3 Optospinometery  

In situ light scattering of the spin coating process (optospinometry, Fig. 2) was performed 

using a 633 nm laser focused onto a chuck rotating at 2000 rpm. The angle between the laser 

and the photo diode was 45º. The refractive index of the perovskite precursor was measured 

as 1.4 by refractometry.  The viscosity of the perovskite precursor was measured using a 

Bohlin Rheometer, with a 55 mm diameter cone and plate, the cone angle was 2°. 

 

 

 

Figure 2 Set-up of the optospinometer. 

 

3. Results and Discussion 

In order to fully understand the extent of dynamic drying during spin coating, optospinometry 

was performed. Fig. 3a shows the reflectivity of the perovskite precursor during spin coating. 
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The peaks are obtained when light reflected by the top and bottom of the film is in phase i.e. 

Bragg’s law is satisfied. The destructive interference is caused when this is out of phase.  

The change in film thickness (Δh) was obtained from the distance between interference 

peaks, 

∆ℎ =  
λ

2𝑛sinθ
        (2)  

where n is the refractive index, θ the incident angle and λ is the laser wavelength.  Knowing 

the final thickness of the film, the change in thickness can be calculated as shown in Fig. 3b. 

In previous work it was shown [23] was shown that the Meyerhofer equation does not account 

for the inertial forces which are important in the early stage of the process. A semi-empirical 

model was used to model the thinning of the film [23] shown in Fig. 3b by 

 
𝑑ℎ

𝑑𝑡
= −

2ω2

3η
−

𝐵

exp(𝑈
𝑡
𝜏)

− 𝑒,        (3) 

where B and U are fitting parameters which are functions of viscosity (η) but independent of h. 

Here τ = 1 s.  B represents initial resistance to the thinning of the film due to the presence of 

the inertial force and B / exp(Ut/ τ) represents the rate at which the resistance decreases. The 

axial velocity of the fluid is expressed by  

 

 𝑣𝑟 = −
2ω2

3η
−

𝐵

exp(𝑈
𝑡
τ)

.            (4) 

The axial velocity was plotted (Fig. 3c) by replacing the fitting parameters in Eqn 4. Spin 

coating is a two-stage process; initially the film thickness is governed by the viscous forces. In 

the second stage the film is too dense to flow and the evaporation of solvent dominates the 

process. This is clearly illustrated in Fig. 3c, where the axial velocity of the film decreases 

rapidly and becomes negligible after 10 s. The model gives an evaporation rate equal to 1.2 x 
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10–8 m/s, demonstrating that following initial film thinning due to radial material displacement 

there is significant evaporation of the solvent. 

 

 

Figure 3 (a) Specular reflectivity during the spin coating of perovskite precursor. (b) 

Comparison of modelled and experimental data showing the thickness of the drying 

film as a function of time during spin coating. (c) Modelled axial velocity as a function 

of time 

After 45 s of spinning, an intermediate phase of transparent crystals has already formed, Fig. 

4a. After K-bar coating a liquid film remains (not shown) on the substrate until the start of the 

annealing. In order to confirm whether the fast solvent evaporation during spin coating 

controls the quality of the film, we studied the morphology of K-bar coated films annealed 

under different conditions. Solvent evaporation is driven by two phenomena: the diffusion of 
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the solvent molecules in the film and the solvent partial pressure above the film.  Annealing of 

the spin coated perovskite film, required for perovskite formation and crystal growth, leads to 

a film with rounded perovskite crystals; Fig. 4b, a film thickness of ~ 200 nm and a roughness 

(Ra) of 150 nm.  Further advances in the spin-coating process which use the toluene drip 

method [11] in order to remove further the solvent have been shown to create much smoother 

films but these are outside the scope of this work. 

By comparison, films coated using the K-bar method and using standard hot plate annealing 

have crystals which grow vertically and a dendritic type structure is produced as shown in Fig. 

4c, with an average thickness of 1.2 µm and an Ra of 920 nm. 

 

Figure 4 Optical microscopy images of (a) Perovskite precursor film after spin coating. 

(b) Spin coated perovskite film after hot plate annealing. (c) K-bar coated perovskite 

film after hot plate annealing (d) K-bar coated perovskite film annealed in a forced air 

oven 1000 l / m2 /h 

By heating the K-bar coated film in a forced-air oven (instead of using a hot plate) with a flow 

rate of 1000 l / m2 / h (equivalent to 2.7 x 10-4 m / s) the solvent evaporation was increased 

since the air above the film is not saturated with solvent. Fig. 4d shows that films dried in a 

forced-air oven have an appearance more similar to the spin coated sample and with a film 

thickness of 420 nm and an Ra of 310 nm.    
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In order to investigate whether dewetting also has an influence on the film formation, the 

contact angle of the perovskite precursor on different substrates was measured.  The contact 

angle of the perovskite precursor with the TiO2 coated FTO glass is less than 25º, indicating 

good wetting, as shown in Fig. 5.   

 

Figure 5 Comparison of contact angle of perovskite precursor on mesoporous and 

compact TiO2 films. Inserts are photographs of contact angle measurement, the drop 

size is 4 µl. The lower image shows a reduction in contact angle signifying better 

surface wetting. 

 

When a mesoporous TiO2 scaffold is used complete wetting is achieved within 5 s as the 

perovskite precursor infiltrates the porous TiO2. This implies that whilst substrate choice can 

affect the film wetting it is not a primary cause of rough perovskite crystal morphology.  This 

supports previous findings where slot-die coated perovskite films deposited on glass and TiO2 

mesoporous scaffold have very similar morphologies when annealed under similar conditions 

[14]. 

To confirm the effect of annealing air flow rate on device performance perovskite films 

processed using the same conditions as the films in Fig 4b-c were manufactured into solar cell 

devices, i.e. spin coated annealed with a hot plate, K-bar coated annealed with a hot plate and 

K-bar coated annealed in a forced air oven with a flow rate of 1000 l / m2 / h.  The device 

performances of these cells are compared in Fig. 6.   
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Figure 6 (a) Comparison of perovskite processing conditions on short-circuit current 

(Jsc) and open-circuit voltage (Voc) of perovskite solar cell devices.  (b) Comparison of 

perovskite processing condition on fill factor and PCE of perovskite solar cell devices.  

Error bars indicate the standard deviation of eight identical devices 

 

The hot plate annealed K-bar coated cells have low Jsc attributed to poor perovskite coverage 

and a low Voc also attributed to poor coverage causing shunting between the HTM and the 

TiO2.  The best K-bar coated cell with forced air annealing had similar characteristics to the 

spin-coated samples with a PCE of 8.5% (compared with the spin coated hot plate device 

with a PCE of 9.9%).  Across the batch the current density of the forced air devices is more 

variable than for the spin coated devices indicating that the conversion process is not as 

controlled as for the spin coated device.  Further work is needed to improve the uniformity of 

the perovskite film formation, focussing on high air flow in-line solutions as well as in-line 

compatible anti-solvent methods. 

4. Conclusions  

The high efficiencies of perovskite cells mean they have great promise as a low cost PV 

technology. By studying the dynamics of spin coating it has been demonstrated that fast 

solvent evaporation is a key parameter in the formation of the perovskite film. It has also been 

shown that better coverage and improved cell performance can be obtained with K-bar coated 
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by increasing the solvent evaporation rate using a forced air oven, increasing the maximum 

PCE from 2.4% to 8.5%.  Whilst this improvement is significant further improvements are 

needed to improve the consistency of the devices and to match the performance of the best 

spin coated devices. 
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