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Abstract

The Geoscience Laser Altimeter System (GLAS) has the potential to accurately map global vegetation heights and

fractional cover metrics using active laser pulse emission/reception. However, large uncertainties in the derivation of

data products exist, since multiple physically plausible interpretations of the data are possible. In this study a method

is described and evaluated to derive vegetation height and fractional cover from GLAS waveforms by inversion of

the FLIGHT radiative transfer model. A lookup-table is constructed giving expected waveforms for a comprehensive

set of canopy realisations, and is used to determine the most likely set of biophysical parameters describing the

forest structure, consistent with any given GLAS waveform. The parameters retrieved are canopy height, leaf area

index (LAI), fractional cover and ground slope. The range of possible parameters consistent with the waveform is

used to give a per-retrieval uncertainty estimate for each retrieved parameter. The retrieved estimates were evaluated

first using a simulated data set and then validated against airborne laser scanning (ALS) products for three forest

sites coincident with GLAS overpasses. Results for height retrieval show mean absolute error (MAE) of 3.71 m for

a mixed temperate forest site within Forest of Dean (UK), 3.35 m for the Southern Old Aspen Site, Saskatchewan,

Canada, and 5.13 m for a boreal coniferous site in Norunda, Sweden. Fractional cover showed MAE of 0.10 for Forest

of Dean and 0.23 for Norunda. Coefficient of determination between ALS and GLAS estimates over the combined

dataset gave R2 values of 0.71 for height and 0.48 for fractional cover, with biases of -3.4 m and 0.02 respectively.

Smallest errors were found where overpass dates for ALS data collection closely matched GLAS overpasses. Explicit

instrument parameterisation means the method is readily adapted to future planned spaceborne LiDAR instruments

such as GEDI.

Keywords:

1. Introduction1

Satellite laser altimeters have the capacity to provide global estimates of vegetation height and structure (Lefsky,2

2010; Simard et al., 2011; Los et al., 2012). This can provide an important baseline for future assessment and compar-3

ison of forest structural changes, including biomass. Such estimates are needed to inform and test models of carbon4

sequestration (Ciais et al., 2013), and to monitor changes in carbon stocks due to climatic change and both natural and5

human disturbance (Goetz and Dubayah, 2011).6
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While passive optical systems have been used extensively to observe vegetation covered land by measuring the7

spectral properties of the surfaces, such systems are limited in their ability to measure vertical structure below the8

upper surface of the canopy. Active light detection and ranging (LiDAR) systems have addressed this, providing9

information about the vertical profile of a forest canopy. Waveform LiDAR has been in use since the early 1980s,10

when the Wallops Flight Facility’s AOL airborne laser scanner was used to profile a 14 km flight line near Doubling11

Gap, Pennsylvania (Nelson et al., 1984). Height and density metrics were compared with photogrammetry derived12

values and the results were encouraging; height means were within 0.6 m of their respective photointerpreted values.13

Aldred et al. (1985) also demonstrated that waveform recording LiDAR had the potential to mitigate one of the14

problems arising from the use of discrete-return LiDAR, which was the systematic underestimation of stand height.15

In the 1990s, first Scanning LiDAR Imager of Canopies by Echo Recovery (SLICER) (Means et al., 1999; Lefsky16

et al., 1999a,b; Harding et al., 2001) and then Laser Vegetation Imaging Sensor (LVIS) (Blair et al., 1999; Drake et al.,17

2002) were developed by NASA as demonstrators for potential spaceborne LiDAR.18

In the decade following, the Geoscience Laser Altimeter System (GLAS), a space-borne waveform instrument,19

was carried on the ICESat mission (Brenner et al., 2003). While GLAS was primarily designed to measure ice sheet20

topography, secondary objectives included measurements of vegetation height and land surface elevation. Launched in21

January 2003, the mission lasted until October 2009 when its instrument failed. The mission platform was placed in a22

183 day ground track repeat cycle, to provide a 15 km spacing between tracks at the equator and 2.5 km at 80◦ latitude.23

Using GLAS data, canopy height has been estimated directly from the Gaussian wave components of a decomposed24

LiDAR waveform (Harding and Carabajal, 2005; Lefsky et al., 2005, 2007; Rosette et al., 2009; Duncanson et al.,25

2010), and volume has also been successfully derived (Rosette et al., 2008a; Nelson et al., 2009; Popescu et al., 2011).26

More recently, near global datasets of height for forest (Lefsky, 2010; Simard et al., 2011) and total vegetation (Los27

et al., 2012) have demonstrated the importance of the near-global coverage of GLAS. Los et al. (2012) conclude that28

the GLAS height product appears to be better suited as an input to ecological and climate models than existing data29

sets based on land cover alone.30

For the previous two decades, the use of LiDAR to map biomass has increased dramatically. It is likely that over the31

next decade, in combination with other forms of remote sensing, LiDAR will become increasingly central to mapping32

biomass at regional, national or continental scales (Goetz and Dubayah, 2011; Wulder et al., 2012; Neigh et al.,33

2013). In particular, upcoming space borne LiDAR missions, such as the Global Ecosystems Dynamics Investigation34

(GEDI) LiDAR (Dubayah et al., 2014; Coyle et al., 2015) and the second generation ICESat-2 (Abdalati et al., 2010;35

Montesano et al., 2015) will have the potential to improve and update a definitive baseline for global biomass stocks.36

The complex structure of a vegetation canopy in combination with uncertainties arising from instrument, suggest37

that remote sensing of vegetation biophysical parameters is an ill-posed problem; that is, multiple interpretations of38

the measured radiative signal are possible. A physically based radiative transfer model (RTM) (e.g. (Sun and Ranson,39

2000; Ni-Meister et al., 2001b; Disney et al., 2006; North et al., 2010)) can be used to describe the interaction of40

radiation with canopy elements and explicitly relate canopy parameters, observation and illumination variables and41
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remote sensing signature.42

Model inversion may be considered a multi parameter optimisation problem. However iterative numerical opti-43

misation methods tend to be computationally intensive, and may not be appropriate for applications on a per-pixel44

basis for regional and global data (Kimes et al., 2002). An efficient approach to model inversion is the lookup table45

(LUT) method. It involves: generating of a table of reflectance signatures by varying the values of a set of reflectance46

model input parameters, comparing an observed signal against all signatures in the LUT to determine the best fit and47

corresponding set of parameters. Unlike iterative optimisation based approaches, LUTs can be applied to computa-48

tionally expensive and complex models without any modifications, and so are particularly suitable for Monte Carlo49

or ray tracing models such as the 3D radiative transfer model, FLIGHT, we have used in this study (Weiss et al.,50

2000; Leonenko et al., 2013). Also, unlike iterative methods, LUTs do not require a set of initial values, preventing51

the chance of poor values leading to non-global minima. The effectiveness of the LUT approach to model inversion52

is sensitive to the accuracy of the RT model, but also to assumptions concerning choice of LUT generation param-53

eters and crown macro-structure and shape. Turbid medium geometric primitives are typically used to model LUT54

canopy realisations due to their simplicity. However, studies (Calders et al., 2013; Widlowski et al., 2014) suggest55

that biophysical parameter retrieval may be sensitive to choice of crown shape or internal structure, and further work56

is recommended to improve understanding of this.57

Several studies have applied model inversion to airborne LiDAR waveform (Koetz et al., 2006, 2007; Ma et al.,58

2015). In particular LUTs have been used previously to invert LiDAR data with some success by Koetz et al. (2006),59

who inverted a 3D LiDAR waveform model (Sun and Ranson, 2000). Subsequently, Koetz et al. (2007) investigated60

the fusion of imaging spectrometer and LiDAR data, demonstrating greater constraint on LAI. The inversion was61

tested on both simulated data and waveform data synthesised from small-footprint data acquired in the Swiss National62

Park, showing good correlation with retrieved parameters.63

Existing datasets of height derived from GLAS show higher disagreement for regions of dense forest cover and64

higher ground slopes (Los et al., 2012; Xing et al., 2010); a physically-based joint retrieval of slope, cover and65

height has potential to improve accuracy over such regions. Fractional cover has previously been estimated (Los66

et al., 2012) over wider regions by statistical sampling, assuming each footprint represents either zero or complete67

vegetation cover, rather than per-footprint. This study aims to develop and evaluate a model inversion method suitable68

for satellite LiDAR waveform observations, to retrieve simultaneously parameters such as maximum canopy height69

(Htop), fractional cover (Fc), underlying topography and estimates of their error. In the following sections we will70

describe a lookup table (LUT) based inversion of the three-dimensional radiative transfer model FLIGHT (North,71

1996; North et al., 2010) and evaluate the retrieval using GLAS waveform data, validated against airborne laser72

scanning data.73
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2. Method74

In this section we first describe the FLIGHT (North, 1996; North et al., 2010) radiative transfer model applied to75

simulation of GLAS waveforms. We next outline generation of a lookup table for performing model inversion. Finally76

we describe the method for determining the most likely set of biophysical parameters describing the forest structure77

for a given waveform, and error estimates associated with these parameters.78

2.1. FLIGHT Radiative Transfer Model79

The FLIGHT radiative transfer model simulates vegetation bidirectional reflectance and LiDAR return by applying80

Monte Carlo simulation of photon transport within a three dimensional representation of vegetation structure. In the81

original radiative transfer mode of operation of FLIGHT (North, 1996), photon trajectories are traced forwards from82

the source, through a sequence of interactions between and within crown boundaries. At each interaction a photon83

may be absorbed, reflected or transmitted and this process is modelled with a continuous probability density function.84

On leaving the canopy boundary, energy is accumulated in bins defined for each solid angle of exit. The LiDAR85

mode of the model (North et al., 2010) samples the paths of individual photons received within the field of view of a86

given sensor position, accumulating path length and energy from both laser and solar sources and including multiple87

scattering events.88

Large-scale forest structure is modelled by a set of geometric primitives, either ellipsoidal or conical, giving89

approximate extent of foliage vertical and horizontal extent. The representation is widely used to allow modelling90

of the main characteristics of three-dimensional forest canopies, but which remains computationally tractable by91

allowing a semi-analytic radiative transfer approach (Ni-Meister et al., 2001a; Duursma et al., 2012; North, 1996). A92

simple growth model is used to limit the degree of overlap between neighbouring crowns. Inside each crown, foliage93

is modelled using the parameters of leaf area density, leaf angle distribution (LAD), size and the optical parameters94

of reflectance and transmittance. The parameters are set to be homogeneous within a crown but are allowed to vary95

between crowns. The effect of slope is incorporated into the model using a planar surface with defined slope angle.96

For LiDAR simulation, the model calculates the probability distribution of return of a photon emitted from the97

laser as a function of time, and has been compared with field and satellite observations (North et al., 2010; Rosette98

et al., 2010; Morton et al., 2014).99

2.2. LUT-Based Inversion100

Inverting the LiDAR waveform model was performed using a LUT approach to allow an efficient retrieval of the101

range of parameters possible for a given waveform. The LUT inversion requires two stages. Firstly, prior to inversion,102

we use the FLIGHT model to generate the LUT. Each entry in the LUT contains a waveform, and the corresponding103

biophysical parameter set which gave rise to that waveform. Secondly, during operation of the inversion, we automat-104

ically select from the LUT the solution or solutions whose simulated waveform in the LUT best matches to a given105

observed waveform.106
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The LUT was generated by modelling LiDAR waveforms, representing a total of 107100 unique canopy represen-107

tations. For each: a combination of LUT parameter values was selected from within a defined range, a corresponding108

3D representation of a forest stand was simulated and photon paths modelled. Values for leaf reflectance and trans-109

mittance were derived from the LIBERTY model (Dawson et al., 1998, 2003) based on field measurements of leaf110

structure and pigmentation from the BOREAS campaign (Hall, 1999; Plummer and Curran, 1998), while understory111

reflectance was based on field measurements from this campaign (Hall et al., 2000). Sensor configuration and location112

were fixed to appropriate GLAS specifications. The set of parameters defining the LiDAR sensor are listed in Table113

1, along with example values for GLAS (Brenner et al., 2003).114

115

Table 1: FLIGHT LiDAR sensor model and GLAS specific values.

Parameter Description Unit Value

(Px, Py, Pz) Sensor position relative m (0, 0, 600000)

relative to scene

θo Sensor zenith angle deg 0

φo Sensor azimuth angle deg 0

sl RMS pulse width ns 5

qT Half width angle of rad 0.00011

beam divergence

IFOV Detector IFOV rad 0.0004

AT Detector telescope area m2 0.709

TRT stm Roundtrip atmosphere − 0.8 (532 nm)

transmittance 0.9 (1024 nm)

Etrans Total pulse energy mJ 32 (532 nm)

72 (1024 nm)

∆t Recording bin width ns 1

Tree crowns were modelled as ellipsoidal. Horizontal tree positioning within a scene was random and tree heights116

were uniformly distributed between a specified minimum and maximum height range. The LUT was designed to117

contain a wide range of possible tree height arrangements, including stands with highly variable heights (i.e. the118

maximum range Hmin–Hmax is large) and stands with a single height canopy (i.e. the maximum range Hmin–Hmax is 1119

m). While a single layer canopy is used here, more complex structures, for example to include an understory layer,120

are possible with the same methodology.121

A subset of FLIGHT parameters, comprising leaf area index LAI, fractional cover Fc, lower limit height of first122

branch Hmin, upper limit height of first branch (Hmax), slope (S y), canopy radius (Exy) and for the ellipsoidal crowns123

used in this study, canopy radius in the vertical axis (Ez), was chosen for the LUT variables to ensure that a sufficiently124

broad range of stand height and coverage could be simulated. Slope referred to the angle from horizontal, of a flat125
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Table 2: FLIGHT parameters and ranges treated as variables for the generation of the LUT. Additional parameters (e.g. leaf optical properties and

angular distribution) were fixed to default, broadleaf canopy, settings.

Parameter Description Unit Min Max Step

LAI Mean one-sided foliage m2m−2 0.4 6.1 0.1

area per unit area

Hmax Maximum height to m 1 17 2

first branch

Hmin Minimum height to m 0 16 2

first branch

Fc Fraction of ground % 20 80 10

covered by vegetation

S y Ground slope deg. 0 20 5

Exy Crown horizontal radius m 1 4 1

Ez Crown vertical radius m 2 8 2

plane, and is assumed to mean ‘equivalent slope’, and relates to the average change in elevation within a GLAS foot-126

print. It is not possible to differentiate between localised surface roughness and footprint scale changes in elevation.127

The parameter ranges used are listed in Table 2. The remaining FLIGHT parameters were fixed to default values. The128

LUT generated using these parameters reflects a simplified representation of natural forest structures and as such the129

robustness and accuracy of this investigation can only be considered as an indication of the ability of this approach to130

retrieve accurate forest biophysical parameters.131

The solution of the model inversion was then found by ranking the distance using a Chi-Square metric (χ2) between132

a reference waveform (ωre f ) provided by GLAS and a simulated waveform (ωsim) from the LUT as modelled by133

FLIGHT. To ensure equivalence, both waveforms were normalised by total waveform energy. A merit function was134

adopted:135

χ2 =

nbin∑
i=1

(
ωre f [i] − ωsim[i]

σn

)2

(1)

where nbin is the number of bins of the waveform. The estimated total uncertainty for each bin σn is the total sum136

of uncertainties arising from errors (σmodel) such as those in the model physics and real world representation (e.g. a137

turbid medium approximation, vertical distribution of LAI), deviation from values of default parameters (e.g. leaf138

reflectance, soil reflectance), combined with the estimated measurement errors (σmeasure) associated with the data.139

The measurement and model errors are described in further detail in the following section.140

σ2
n = σ2

measure + σ2
model (2)
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2.3. Error Estimates141

A practical estimate of model error σmodel under real conditions was made empirically, derived from the error in142

model fit for a set of 66 GLAS waveforms over Forest of Dean, UK, which comprises a range of of mixed broadleaf143

and coniferous forest species on sloping ground (Rosette et al., 2008b). A full description of the Forest of Dean site144

is given in Section 3. Errors were approximated as following a Gaussian distribution, and explaining the deviation145

between GLAS waveform and FLIGHT model waveform as the combination of model and measurement error, after146

finding of the best model fit to each waveform. An estimated measurement error σmeasure, for each waveform was147

calculated as the standard deviation of the ‘noise’ from a non-signal portion of the waveform. Considering the reduced148

Chi-Square (χ2
red):149

χ2
red =

χ2

ν
(3)

where ν is Degrees of Freedom given by N − n − 1, where N is total number of observations, and n is the number150

of fitted parameters. If χ2
red ≈ 1 indicates a good model fit, then χ2 ≈ ν.151

If σn is assumed to be constant for all samples then an estimate for σn = σ can be determined empirically for each152

waveform of a set of data from (1). Using:153

σ2 =
1
ν

nbin∑
i=1

(
ωre f [i] − ωsim[i]

)2
(4)

Consequently, an estimate for σ2
model was obtained from each waveform fit of the reference data set by (2). The154

underlying assumption is that the closest model fit to the ‘true’ forest structure has been found by the inversion, and155

(2) gives an approximation of the total remaining (non-parameter) error σ2
model including model physics, errors in156

unknown/default variables such as ground reflectance, and quantisation in the LUT.157

Using the Forest of Dean data as a reference data set an estimate for σmodel was found to be ≈ 0.001 Normalised158

Intensity (IN). Subsequent analysis on all data sets: simulated, Forest of Dean (FOD), Southern Old Aspen (SOA)159

and Norunda (NOR) data sets included this previously determined σmodel alongside a measurement error σmeasure160

estimated from the non-signal region of the waveform being analysed.161

To account for the ill-posed nature of the model inversion, where a number of possible solutions may exist due162

to measurement or model uncertainties, the LUT was ranked according to a metric χ2. The first n = 1, 10, 100163

simulated waveforms were accepted to be candidate solutions and the mean of each of the parameters was considered164

the solution.165

3. Validation Data166

3.1. Forest Sites167

Three sites were selected for validation of the method: a mixed temperate forest site within Forest of Dean (FOD),168

UK, the Southern Old Aspen Site (SOA), Saskatchewan (Canada) and a boreal coniferous site in Norunda (NOR),169
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Sweden. These sites were chosen to provide a range of temperate and boreal forest types, and as they have been well170

characterised using coincident ALS data and field survey for regions overlapping with GLAS tracks. Key characteris-171

tics for the three study sites are summarised in Table 3.172

Sources of uncertainty to consider include errors in the reference ALS data. Andersen et al. (2006) aimed to173

quantify the accuracy of tree height measurements made using ALS over conifer study sites and found that accuracy174

was influenced by point density as determined by beam divergence. For a nominal 6 p/m1 the negative bias in height175

retrieval was found to be -0.73 m (SD = 0.43 m) for the narrow beam (0.33 m diameter footprint) LiDAR and -1.12176

m (SD = 0.56 m) for wider beam (0.8 m). In a previous study Gaveau and Hill (2003) attempted a similar study, this177

time for broadleaf woodland. They reported a negative bias of 1.12 m for tree height but also note that converting178

point data into grid format CHM data further propagated error, resulting in a negative bias of 2.12 m (RMSE = 1.89179

m). Canopy cover reference data was also derived from ALS data. However, Rosette et al. (2009) showed that a good180

relationship with field based estimates was possible, despite a relatively small data range. Testing ALS estimates181

of fractional cover with hemispherical photography they found R2 = 0.77 and RMSE = 0.02. A second source of182

error pertaining to the reference data may be attributed to the use of a slightly different approach for the derivation of183

parameters from FOD data to that used for the SOA and NOR reference data. At the time of the investigation only184

these derived parameters were available.185

It should be noted that the Norunda site was subject to a considerable difference in time between the acquisition186

of the GLAS data (2003) and the airborne LiDAR data (2011). Many of the Norunda height parameter estimates187

were affected by vegetation growth occurring between the two data set acquisition dates. In the case of the fractional188

cover, land cover differences through forestry activities such as harvesting or thinning may also explain a number of189

overestimated outlier points.190

3.1.1. Forest of Dean191

The first study site was located in The Forest of Dean (FOD), Gloucestershire, UK. The forest covers an area of192

approximately 11,000 ha and is managed by the Forestry Commission of Great Britain. The site comprises mixed tem-193

perate species, mainly: Norway spruce (Picea abies), oak (Quercus spp.), Corsican pine (Pinus nigra var maritima),194

Douglas fir (Pseudotsuga menziesii), Scots pine (Pinus sylvestris) and European larch (Larix decidua).195

Airborne LiDAR data were used as a proxy for ground truth data. Airborne data for the Forest of Dean study site196

were acquired during August 2006, using the Optech Airborne Laser Terrain Mapper (ALTM-3033) sensor system.197

The aerial survey was carried out by the the Natural Environment Research Council Airborne Research and Surveying198

Facility (ARSF) (through the Unit for Landscape Modelling, University of Cambridge), on behalf of the Forestry199

Commission of Great Britain Forest Research Agency.200

For FOD airborne LiDAR data, the log ASCII standard (LAS) format data were processed by Rosette et al. (2008b)201

using the method described by Streutker and Glenn (2006). Return points were classified into vegetation and ground202

classes and a ground surface model was interpolated using Delaunay triangulation. Mean footprint slope was derived203
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Table 3: Characteristics of forest sites used for validation.

FOD SOA NOR

Region Forest of Dean, Great Britain Saskatchewan, Canada Norunda Common, Sweden

Location 51.81◦ N, 2.52◦ W 53.63◦ N, 106.20◦ W 60.09◦ N, 17.48◦ E

Elevation above 50–225 524–572 34–83

sea level (m)

Topography Moderate relief Low relief Low relief

Main species Norway spruce (Picea abies), Trembling aspen (Populus tremuloides), Norway spruce (Picea abies),

Oak (Quercus spp.), Hazelnut (Corylus cornutta) Scots pine (Pinus sylvestris)

Corsican pine (Pinus nigra),

Douglas fir (Pseudotsuga menziesii),

Scots pine (Pinus sylvestris),

European larch (Larix decidua)

Max canopy 30 21 28

height (m)

from the surface model. Fractional cover (Fc) estimates were calculated as the fraction of vegetation class point count204

over the total point count. Only vegetation points over 0.5 m above the interpolated ground surface were counted such205

that, only canopy and taller understory affecting GLAS waveform were included in the observed fractional cover.206

Maximum canopy height within each airborne LiDAR subset was then calculated to allow a comparison to be made207

with estimated ICESat/GLAS height parameter.208

3.1.2. Saskatchewan209

The second study site is located within the southern boreal forest of Saskatchewan, Canada. The Southern Old210

Aspen (SOA) site was first established as part of the Boreal Ecosystem Research and Monitoring Site (BERMS) study211

(Barr et al., 2004, 2006; Black et al., 1996; Kljun et al., 2007) and lies approximately 10 km north of the transition212

zone between agriculture and forest. Located near the southern end of the Prince Albert National Park, the SOA213

site (Barr et al., 2004, 2006; Black et al., 1996; Chasmer et al., 2011) is predominately uniformly aged trembling214

aspen (Populus tremuloides Michx.) with hazelnut (Corylus cornutta Marsh) dominating the under storey (Barr et al.,215

2006). The terrain is mainly flat, with a site mean slope of ≈ 2◦ (Mahoney et al., 2014) and the ≈ 21 m stand216

height is relatively even due to natural regeneration after a wildfire in 1919 (Blanken et al., 1997; Amiro et al., 2006;217

Kljun et al., 2007). Airborne LiDAR data covering the SOA site were acquired on behalf of the authors in August218

2008, by the Applied Geomatics Research Group (AGRG) and the Canadian Consortium for LiDAR Environmental219

Applications Research (C-CLEAR), using an Optech ALTM-3100 system.220
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3.1.3. Norunda221

A third study site is located at Norunda (NOR) (Lindroth et al., 1998; Feigenwinter et al., 2010; Lagergren et al.,222

2005), situated 30 km north of Uppsala, Sweden. The site is at the southern part of the boreal forest zone and223

is part of the integrated carbon observation system (ICOS Sweden) research infrastructure. Norway spruce (Picea224

abies) and Scots pine (Pinus sylvestris) dominate the site, while there is a smaller fraction of deciduous vegetation225

(approximately 15%), predominately birch (Betula sp.) (Lindroth et al., 1998). The area is generally flat with some226

localised variations in elevation less than 10 m. Corresponding airborne data were acquired in June 2011 by the ARSF227

on behalf of the authors. A Leica ALS50-II LiDAR instrument was used.228

For both the Southern Old Aspen and Norunda sites, airborne LiDAR data were processed by Chasmer et al.229

(2011); Mahoney et al. (2014); Kljun et al. (2013). Canopy height was derived using the IDW algorithm within a 2.5230

m search radius of classified canopy reflections greater than 0.5 m above the ground (Hopkinson et al., 2005). Canopy231

fractional cover was calculated using the Beer’s Law laser intensity method (Hopkinson and Chasmer, 2009).232

3.2. GLAS Data233

Waveform data in this study were acquired by the Geoscience Laser Altimeter System (GLAS) (Brenner et al.,234

2003; NSIDC, 2014). The GLAS instrument employed three Nd:YAG lasers (designated Laser 1, 2 and 3), to operate235

one at a time, at 1064 nm and 532 nm wavelengths. The 1064 nm pulse was used for measuring surface and dense236

cloud elevations, and , and the 532 nm pulse was used to measure the vertical distribution of clouds and aerosols. For237

this study, only the 1064 nm pulse was used. The instrument was required to operate at a nominal 600 km altitude238

and with a 375 microradian field of view to illuminate a footprint size of 70 ± 10 m (Brenner et al., 2003), however239

footprints were found to be elliptical and averaged 48 m × 102 m for Laser periods 1A through to 2C and 47 m ×240

57 m for the Laser periods 3A through to 3K (NSIDC, 2014). A pulse frequency of 40 Hz resulted in a distance of241

approximately 175 m between the spots measured centre-to-centre.242

4,500,000 × 1 ns samples were collected for each transmitted 1064 nm pulse and on-board processing reduced243

this to 544 and 200 samples to be telemetered over ice sheet or land, and sea ice or water surface respectively. For244

the Laser 1a and 2a periods, this was designed to yield a range window of 81.6 m for land and ice sheet or 30 m for245

water surface (Schutz et al., 2005). However, the on-board software truncated the signal from the upper part of tall246

vegetation or particularly steep slopes and so for later operational periods a compression scheme was introduced to247

increase the overall land height range to 150 m (lower 392 bins at 1 ns = 58.8 m, upper 152 bins at 4 ns = 91.2 m)248

(Harding and Carabajal, 2005).249

All waveform data used in the study were from the level one (L1A) GLA01 product (Zwally et al., 2011) which250

comprise the raw altimetry data as transmitted from the space vehicle, and includes the long (544 or 1000 bin) and251

short (200 bin) waveforms. Waveform footprint geolocation data were taken from the GLA14 product (Zwally et al.,252

2014). Footprint geolocation accuracy was known to be < 1 m for data releases V026 and onwards.253

10



Forest of Dean data were taken from release V026, and were acquired on 22nd October 2005 (laser 3D, Id:254

885917496, 885917506, 885917516). The original dataset included 86 overpass footprints, but filtered to a set of 66255

to avoid artificial objects such as buildings and roads (Rosette et al., 2008b). For the Southern Old Aspen site, 22256

footprints of GLAS data were available from release V031, acquired 21st February 2003. The laser period was laser257

1A. Historical weather data records from Environment Canada indicate that there was approximately 23 cm snow258

cover on the date of the GLAS data acquisition (Environment Canada, Government of Canada, 2014). A total of 99259

GLAS footprints for the Norunda study site data were acquired over two dates: 49 footprints on 22nd February 2003260

(laser 1A, Id: 22494495) and 50 footprints on 25th September 2003 (laser 2A, Id: 115682811), both from release261

V033.262

3.3. Converting Fractional Cover to Projected Cover263

The standard FLIGHT model output within the LUT of fractional cover (Fc) is defined as vertically projected total264

crown cover. A further LUT entry Pc is derived to approximate fractional cover compatible with airborne LiDAR, of265

vertically projected foliage area for tree crowns. This is calculated using the conversion formula:266

Pc = Fc

(
1 − e−k

(
LAI
Fc

))
(5)

was used, where k was chosen to be 0.5.267

4. Results268

4.1. Sensitivity analysis269

The model inversion was applied first to a simulated data set to determine the ability to retrieve parameters from270

individual waveforms and assess likely error. A set of 1000 waveforms representing a range of forest canopy re-271

alisations were created by running FLIGHT. Canopy parameters were sampled randomly within a subset of ranges272

specified in Table 4.273

R2, MAE and bias for all solution-set sizes are summarised in Table 5. For the simulated data set, fractional cover274

and height were well estimated with high R2 (0.77 and 0.91, respectively) and low mean absolute errors (MAE) (6.30275

% and 1.30 m, respectively). Scatterplots with the distribution of results are shown in Figures 1a and 1b. Furthermore,276

close proximity to the 1:1 line demonstrate the potential of this method to retrieve height. For the retrieval of canopy277

vertical radius, R2 and MAE (0.77 and 0.96 m, respectively) are reasonable (Figure 1c). However, relatively large278

standard deviations in individual estimates indicate a higher degree of uncertainty in estimates for this parameter. A279

very high R2 = 0.93 for slope estimation (see Figure 1d) provides further evidence to suggest that the LUT method280

might be suitable for estimating topography simultaneously with other forest parameters. Low variability within the281

solution sets is evident from the low standard deviation.282
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Table 4: FLIGHT parameters and ranges treated as variables for the generation of waveforms representing the forest canopy realisations belonging

to the simulated data set. Additional parameters were fixed to the same default settings as with the generation of the LUT.

Parameter Description Unit Min Max

LAI Mean one-sided foliage m2m−2 2.0 6.0

area per unit area

Hmin Min height to m 0.0 16.0

first branch

Hmax Max height to m 0.0 17.0

first branch

Fc Fraction of ground % 20 80

covered by vegetation

S y Ground slope deg. 0 20

Exy Crown horizontal radius m 2.0 4.0

Ez Crown vertical radius m 2.0 6.0

Table 5: Chi-Square summary statistics on simulated dataset, for solution sizes n = 1, 10, 100.

Parameter
Chi-Square

n = 1 n = 10 n = 100

R2 0.81 0.91 0.91

Htop MAE 1.66 1.30 1.43

Bias (m) 0.54 0.69 0.94

R2 0.70 0.77 0.79

Fc MAE 7.42 6.30 5.84

Bias 2.01 2.03 2.15

R2 0.70 0.77 0.79

Ez MAE 1.26 0.96 1.00

Bias (m) 0.38 0.41 0.55

R2 0.91 0.93 0.94

S y MAE 1.44 1.23 1.11

Bias (deg.) 0.01 -0.02 0.00
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Figure 1: Chi-Square parameter estimates against FLIGHT model input parameters for simulated dataset with n = 10: a) Fractional cover, b)

Maximum height, c) Canopy vertical radius, d) Slope. Circles represent the mean of possible set of size n solutions, and error bars represent the

uncertainties related to the model inversion and are given by the standard deviation of the set of n possible solutions.
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4.1.1. Response to Signal and Model Parameter Error283

To investigate the effect of signal noise and error in assumed model parameters on the robustness of parameter284

estimation, a subset of FLIGHT parameter values were modified individually, and in combination, and the resulting285

simulated waveforms were compared against the LUT using the method described previously. Leaf and soil reflectance286

parameter values were perturbed by ±10%, and leaf diameter was set randomly to a value between 0.01–0.1 m. Wave-287

forms simulated with combined leaf and soil noise perturbations were generated by varying randomly the reflectance288

parameters between ±10%. Two further LAD functions representing erectophile and planar foliage structures were289

specified and simulated waveform data sets were modelled accordingly; all other parameters were fixed between the290

three LAD types. R2, MAE and bias for solution-set size n = 10 are summarised in Tables 6 and 7.291

As was expected, noise added to the leaf and soil reflectance FLIGHT parameters had a greater effect on the292

estimation of Fc and Ez than on parameters concerning the vertical dimension e.g. Htop and S y. In particular, negative293

bias for Fc was found to occur when leaf reflectance was decreased or when soil reflectance was increased. Conversely,294

bias moved in a positive direction when leaf reflectance was increased or when soil reflectance was decreased. Noise295

from the soil reflectance perturbation had the greatest effect on the estimation of the parameters, particularly when296

soil reflectance was increased. In this case, R2 was degraded for both Fc and Htop. Leaf diameter noise was found to297

have minimal effect on forest parameter retrieval, due to the compensatory effect of the Fc and LAI parameters.298

Table 6: Simulated: Chi-Square summary statistics of the simulated data set with added noise for leaf and soil reflectance and for leaf size, for

solution size n = 10.

Parameter Default
Noise

Leaf Spec. Leaf Spec. Soil Spec. Soil Spec. Leaf Dia. Combined

(−10%) (+10%) (−10%) (+10%) (0.01–0.1 m)

R2 0.77 0.74 0.78 0.76 0.66 0.77 0.68

Ez MAE 0.96 0.99 0.96 0.84 1.26 0.96 1.03

Bias (m) 0.41 0.37 0.49 0.13 0.87 0.42 0.51

R2 0.77 0.74 0.78 0.76 0.66 0.77 0.68

Fc MAE 6.30 6.52 7.16 10.45 8.75 6.34 7.64

Bias 2.03 -0.42 4.65 9.52 -5.23 1.94 0.47

R2 0.91 0.89 0.91 0.92 0.81 0.91 0.88

Htop MAE 1.30 1.38 1.30 1.11 2.08 1.29 1.49

Bias (m) 0.69 0.79 0.68 0.12 1.55 0.71 0.92

R2 0.93 0.94 0.93 0.93 0.94 0.94 0.93

S y MAE 1.23 1.20 1.26 1.25 1.24 1.20 1.26

Bias (deg.) -0.02 -0.19 0.21 -0.10 0.34 -0.03 0.10
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Table 7: Simulated: Chi-Square summary statistics of the simulated data set for the three LAD classes, for solution sizes n = 10.

Parameter Spherical Erectophile Planar

(Default)

R2 0.91 0.90 0.92

Htop MAE 1.30 1.39 1.15

Bias (m) 0.69 0.84 0.41

R2 0.77 0.72 0.80

Fc MAE 6.30 6.79 9.77

Bias 2.03 -0.80 9.10

R2 0.77 0.72 0.80

Ez MAE 0.96 1.02 0.88

Bias (m) 0.41 0.52 0.02

R2 0.93 0.94 0.93

S y MAE 1.23 1.21 1.21

Bias (deg.) -0.02 0.00 0.07

4.2. Validation of GLAS Retrievals Over Forest Sites299

The model inversion was validated using spatially consistent GLAS and airborne LiDAR data from the three300

forest sites. A χ2 metric was applied to every canopy realisation within the LUT and sets of various sizes of possible301

solutions were then selected. Estimates for canopy maximum height (Htop) and fractional cover (Fc) parameters were302

compared for all sites, while slope was additionally compared for the Forest of Dean study site. These parameters303

were derived from the mean of the given set of possible solutions for each waveform. Associated uncertainties were304

indicated by the standard deviations of the solution sets. Where the uncertainty was found to be less than the LUT305

parameter increment, the LUT parameter increment was used instead as the minimum uncertainty.306

Representative examples of waveform fitting over the simulated and three real forest datasets are shown in Figures307

2, 3, 4 and 5 and show a close agreement between the GLAS and simulated (LUT) waveforms. The typical bimodal308

waveform is apparent in most of the examples, however Figures 2b and 3c also show the effect of coincident vegetation309

and ground portions of the waveform due to the combination of topographic slope and low lying vegetation.310

4.2.1. Forest of Dean311

Retrieved fractional cover and height from GLAS for the Forest of Dean site are shown plotted against corre-312

sponding measurements from ALS in Figures 6a and 6b respectively, and Table 8 shows the Forest of Dean site R2,313

MAE and Bias for three values of n. Fractional cover is estimated with R2 of 0.52 and low MAE of approximately314
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Figure 2: Simulated: Chi-Square metric waveform fit examples, showing best LUT fit against examples of simulated GLAS waveforms.
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Figure 3: Forest of Dean: Chi-Square waveform fit examples, showing best LUT fit against Forest of Dean GLAS waveform examples.
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Figure 4: Southern Old Aspen: Chi-Square waveform fit examples, showing best LUT fit against Southern Old Aspen GLAS waveform examples.
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Figure 5: Norunda: Chi-Square waveform fit examples, showing best LUT fit against Norunda GLAS waveform examples.

0.10. Height was estimated with a high coefficient of determination (R2 = 0.74) and low MAE of 3.71 m. The coeffi-315

cients of determination give an indication of ability to distinguish within-site variability of height and fractional cover.316

Both parameters display good adherence to the 1:1 line. The Forest of Dean ICESat/GLAS and airborne data sets317

were acquired in closest temporal coincidence of the three datasets and the parameter regression results demonstrate318

robust retrieval of height and vegetation cover in this case. Ground slope is estimated with good accuracy (MAE ≤ 4◦319

degrees) but showing a positive bias of ≈ 3.4◦ degrees.320

4.2.2. Saskatchewan321

Canopy fractional cover and height jointly derived from GLAS footprints, compared with those from ALS for322

the Southern Old Aspen study site are shown in figures 7a and 7b. It is important to note the model inversions323

were performed on the available GLAS data, which were acquired during ‘leaf-off’ conditions (February), while324

ALS fractional cover are made during a ‘leaf-on’ period (August). Quantitative comparison for fractional cover is325

not appropriate therefore, other than to note the results show an expected lower value for leaf-off, and no significant326

correlation. Since the conditions are very different to those assumed in the LUT (bare ground, ‘leaf-on’) this provides327

a challenging test for model inversion for other structural parameters. It is interesting to note that canopy maximum328

height derived from GLAS by model inversion was nevertheless estimated as close to the 1:1 line, with MAE of only329

3.35m. The R2, MAE and Bias for all solution-set sizes are summarised in Table 9.330

4.2.3. Norunda331

The final study site, Norunda, was subject to a considerable difference in time between the acquisition of the332

GLAS data (2003) and the airborne LiDAR data (2011). Figure 8b shows most points have lower values in height333

parameter retrieval from GLAS, compared to the later ALS data. These are likely due to growth occurring between334

the two data set acquisition dates. Land cover differences through natural disturbance, growth or forestry activities335
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Figure 6: Forest of Dean: Chi-Square parameter estimates against airborne LiDAR derived parameters: a) Fractional cover, b) Maximum height,

c) Slope. Circles represent the mean of possible set of size n solutions, and error bars represent the uncertainties related to the model inversion and

are given by the standard deviation of the set of n possible solutions.
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Table 8: Forest of Dean: Chi-Square summary statistics for solution sizes n = 1, 10, 100.

Parameter
Chi-Square

n = 1 n = 10 n = 100

R2 0.71 0.74 0.70

Htop MAE 4.00 3.80 3.71

Bias (m) -3.53 -3.40 -3.26

R2 0.51 0.50 0.52

Fc MAE 0.10 0.10 0.10

Bias (m) 0.02 0.02 0.01

R2 0.57 0.56 0.54

S y MAE 3.74 3.78 4.19

Bias (deg.) 3.29 3.34 3.87
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Figure 7: Southern Old Aspen: Chi-Square estimated parameters against airborne LiDAR derived parameters: a) Fractional cover, b) Maximum

height. Circles represent the mean of possible set of size n solutions, and error bars represent the uncertainties related to the model inversion and

are given by the standard deviation of the set of n possible solutions.
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Table 9: Southern Old Aspen: Chi-Square summary statistics for solution sizes n = 1, 10, 100. Parameter S y was left out of analysis as elevation

change within the GLAS footprint was insignificant.

Parameter
Chi-Square

n = 1 n = 10 n = 100

R2 0.00 0.01 0.07

Htop MAE 4.36 3.97 3.35

Bias (m) -4.23 -3.70 -3.25

R2 0.34 0.17 0.10

Fc MAE 0.22 0.21 0.20

Bias -0.19 -0.18 -0.18

Table 10: Norunda: Chi-Square solutions summary statistics for solution sizes n = 1, 10, 100. Parameter S y was left out of analysis as elevation

change within the GLAS footprint was insignificant.

Parameter
Chi-Square

n = 1 n = 10 n = 100

R2 0.16 0.28 0.24

Htop MAE 6.00 5.22 5.13

Bias 2.77 3.75 3.39

R2 0.10 0.09 0.13

Fc MAE 0.23 0.23 0.24

Bias -0.20 -0.20 -0.22

such as clear felling and thinning also explain a number of overestimated outlier points for both height and fractional336

cover. As a result the MAE in height is somewhat higher for this comparison (5.13 m) than the first two examples.337

Fractional cover estimates show reasonable MAE (0.23), but low coefficient of determination, suggesting noise is high338

compared to within-site variability. Although making evaluation of retrieval accuracy more difficult, the large number339

of explained outlier points compared to other two sites, which did not experience significant growth or management,340

suggest the the method may be well suited to monitoring changes in height and vegetation cover over time. The R2,341

MAE and Bias for all solution-set sizes are summarised in Table 10.342

5. Discussion343

The inversion of the waveform LiDAR model using the LUT method provided estimates for the maximum canopy344

height for the Forest of Dean, Saskatchewan and Norunda sites. MAE was determined to be: 3.80 m, 3.35 m, 5.13345

m, respectively. ALS derived height estimate uncertainty bounds are well within those found using this method. An346
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(a) Fractional cover estimated using the

weighted Chi-Square metric with n = 10.
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Figure 8: Norunda: Chi-Square estimated parameters against airborne LiDAR derived parameters: a) Fractional cover, b) Maximum height. Circles

represent the mean of possible set of size n solutions, and error bars represent the uncertainties related to the model inversion and are given by the

standard deviation of the set of n possible solutions.

ability to detect the available within-site variability is shown by the R2 values of: 0.74, 0.07, 0.30, respectively.347

Maximum height was best estimated at the Forest of Dean and Saskatchewan sites but degraded at the Norunda348

site. This was likely due to the temporal difference between GLAS and ALS data sets, and forestry related activity349

at this site. Using Swedish NFI data, the GLAS were filtered to only allow footprints located in stands that were at350

or near maturity and had not been subject to forestry activities. The filtering resulted in only three remaining points351

and so was not considered to be a robust sample. However, bias and MAE for height was found to be 0.92 m and352

2.75 m, respectively — a clear improvement. Accuracy for maximum canopy height was surprisingly good at the353

Saskatchewan site, considering the height retrieval was made using GLAS data acquired during ‘leaf-off’ conditions,354

where a decrease in returned energy is likely to lower the estimated maximum canopy height (Wasser et al., 2013).355

The most commonly used height metric to derive vegetation height from GLAS LiDAR data is waveform extent,356

defined as the height difference between the first and last elevation at which the waveform energy exceeds a threshold,357

usually set as 4.5 times background noise (Lefsky et al., 2005, 2007). Results using the method described in our study358

compare well to those using the former method, presented by Los et al. (2012) and Rosette et al. (2009). Los et al.359

(2012) also additionally employ a number of filters such that up to 75% of points were removed in tropical forest360

study sites, and validating against aircraft derived height data to achieve r = 0.67 and RMSE ≈ 8 m. Rosette et al.361

(2009) use the same Forest of Dean GLAS and airborne LiDAR data as described in this study to obtain R2 = 0.68362

and MAE = 4.4 m for maximum canopy height when using GLAS data products.363

A number of the height overestimates were due to the tested metric fitting noise in a GLAS waveform to a compa-364

rably sized vegetation peak in a FLIGHT waveform representing very low fractional cover or LAI. Alternative metrics365

may increase the accuracy of the fitting of very low intensity portions of the GLAS waveform, improving vegetation366
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signal start and end point estimations. However height estimates generally agreed with field measurements acquired367

by Rosette et al. (2008b), with results close to the 1:1 line.368

Fractional cover was comparably well estimated for the combined dominant cover classes Forest of Dean site, (R2
369

= 0.50 and MAE = 0.10). Again, ALS derived uncertainty bounds are well inside those found using the presented370

method. For the Norunda site, the time difference between GLAS and airborne data acquisition dates prevented371

a more realistic parameter estimate from being obtained. When the data set was filtered, a total of three GLAS372

footprints remained. From these, MAE was determined to be 0.13. For the deciduous Southern Old Aspen site, the373

availability of only ‘leaf-off’ winter GLAS data meant that it was not possible to assess fractional cover estimates.374

Slope beneath canopy was retrieved for the Forest of Dean site, where within-footprint elevation changes were375

significant, and found to have a R2 of 0.56 compared to airborne LiDAR measurements, but with a positive bias of376

3.78◦; this overestimate of slope would be expected to lead to an underestimate of canopy height equivalent to ≈377

3–4 m to explain the same total waveform extent. This was tested over an inland water surface in Norunda, where378

the FLIGHT LiDAR return shows a narrower return peak than the GLAS waveform, requiring an equivalent slope379

of 3–5◦ to match. The reason for the widened GLAS ground peak in real waveform returns compared to modelled380

is unclear. A finer granularity slope parameter range may improve the slope estimation, where quantisation in the381

LUT leads to a ‘binning’ effect (see Figure 1d) but would not correct bias. A possible reason for the systematic slope382

mismatch could be due to small scale surface roughness detected by GLAS but not modelled in FLIGHT. A second383

potential explanation for the slope underestimate is due to an apparent small but systematic underestimate in modelled384

waveform temporal width which is based on published instrument parameters.385

Choice of optimum solution set size n was not clear from the sites investigated and varied between parameter and386

site. It was observed that solution set medians remained relatively similar as n increased. However, variances about387

the means of the solution sets were found to increase as n increased. For this study, a value n = 10 was chosen over388

n = 1 so that an indicator of solution uncertainty could be determined, while also minimising uncertainty around the389

estimated parameter. Furthermore, high values of n (e.g. n > 1000) significantly impact the speed of the calculations.390

In addition to uncertainties due to instrument and model errors, a significant source of error was attributed to391

the combination of returns from both vegetation and ground elevations, that occur due to the size of the illuminated392

footprint and as a function of ground slope (Harding and Carabajal, 2005). Ancillary topographic information (e.g.393

SRTM or ASTER DEM) may provide a means to preselect LUT waveforms to significantly increase the accuracy and394

efficiency of retrieval (Mahoney et al., 2014). Furthermore, where this LUT used fixed values for ground and canopy395

reflectance, a more comprehensive LUT implementation might vary these parameters and then use methods (Armston396

et al., 2013; Chen et al., 2014) to derive these reflectance parameters directly from the LiDAR waveform, again for397

the purpose of preselecting LUT waveforms.398

A third source of error can be directly attributed to the LUT design. Inspection of the waveform fit plots revealed399

that original choice of canopy parameters in some cases was not sufficient to span the full range found in the study400

sites, in particular where a lower canopy stratum could result in confusion with a ground return. Koetz et al. (2007)401
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also report that the good performance of their model inversion was likely due to a two strata canopy simulation within402

their formulation. However the approach presented here allows flexible specification of structure, allowing a wider403

range of parameters or easily permitting more complex structures such as row-crop or two-strata canopy structures in404

a LUT.405

6. Conclusion406

This study has developed and evaluated a new method for parameter retrieval from satellite waveform LiDAR407

based on inversion of the three-dimensional FLIGHT radiative transfer model. A lookup table approach is developed408

allowing complex canopy optical properties and multi-scale structure, instrument laser emitted signal and its return409

detection, to provide a physically-based simultaneous retrieval of forest structural parameters, terrain slope and their410

uncertainty. A sensitivity study suggested potential accuracy of retrieval of forest height from GLAS data of ≈ 1.5 m,411

and fractional cover of 8%.412

Testing using real GLAS waveforms over three forest sites demonstrated that the method for forest canopy param-413

eter retrieval from satellite waveform LiDAR was robust to cover type (Table 8). For the Forest of Dean site which414

had the nearest fitting GLAS and ALS coverage (Oct 2005 vs Oct 2006), three parameters were estimated to a high415

level of accuracy with height: MAE = 3.71 m; R2 = 0.74, fractional cover: MAE = 0.10; R2 = 0.50 and ground slope:416

MAE = 3.78◦; R2 = 0.56. This showed improvement over previous retrieval for this site using the same data as input417

(Rosette et al., 2009). Other sites showed good height retrieval (MAE = 3.3–5.1 m) but lower R2 due in part to lower418

within-site variability compared to retrieval errors.419

Results are in part dependent on the use of an appropriate LUT for the canopy being measured, although the canopy420

height retrieval appeared relatively robust to leaf-on/ leaf off conditions and snow vs bare ground. The method could421

include available ancillary information such as ground slope or vegetation type in order to optimise performance where422

these are known. The results suggest that the method used in this study is at least comparable to existing techniques and423

also offers the further advantage of being able to retrieve multiple parameters simultaneously, including sub-canopy424

terrain, and readily adaptable to future planned spaceborne LiDAR instruments (Dubayah et al., 2014; Montesano425

et al., 2015).426
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Widlowski, J.-L., Côté, J.-F., Béland, M., 2014. Abstract tree crowns in 3d radiative transfer models: Impact on614

simulated open-canopy reflectances. Remote Sensing of Environment 142, 155–175.615

Wulder, M. A., White, J. C., Bater, C. W., Coops, N. C., Hopkinson, C., Chen, G., 2012. LiDAR plots - a new616

large-area data collection option: Context, concepts, and case study. Canadian Journal of Remote Sensing 38 (5),617

600–618.618

Xing, Y., de Gier, A., Zhang, J., Wang, L., 2010. An improved method for estimating forest canopy height using619

ICESat-GLAS full waveform data over sloping terrain: A case study in Changbai mountains, China. International620

Journal of Applied Earth Observation and Geoinformation 12 (5), 385–392.621

Zwally, H., Schutz, B., Bentley, C., Bufton, J., Herring, T., Minster, J., Spinhirne, J., Thomas, R., 2011. GLAS/ICESat622

L1A Global Altimetry Data. Version 33. Boulder, Colorado USA: NASA National Snow and Ice Data Center623

Distributed Active Archive Center.624

Zwally, H., Schutz, B., Bentley, C., Bufton, J., Herring, T., Minster, J., Spinhirne, J., Thomas, R., 2014. GLAS/ICESat625

L2 Global Land Surface Altimetry Data. Version 34. Boulder, Colorado USA: NASA National Snow and Ice Data626

Center Distributed Active Archive Center.627

29


