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Abstract 27 

Biorational insecticides are being increasingly used in integrated pest management 28 

programs. In laboratory bioassays the pathogenicity of blastospores and conidia of the 29 

entomopathogenic fungus Metarhizium brunneum ARSEF 4556 were evaluated against 30 

larvae of three mosquito species. Three propagule concentrations (1x106, 1x107, and 1x108 31 

spores ml-1) were used in the bioassays. Results showed that Aedes aegypti had lower 32 

survival rates when exposed to blastospores than when exposed to conidia, whereas the 33 

converse was true for Culex quinquefasciatus larvae. Anopheles stephensi larvae survival 34 

rates were similar when exposed to  blastospores and conidia except at the higher doses 35 

where blastospores were more virulent.  Several assays showed little difference in 36 

mortalities when using either 1x107 or 1x108 spores ml-1, suggesting a threshold above 37 

which no higher control levels or economic benefit would be achieved. When tested at the 38 

lowest dose, the LT50 of Cx. quinquefasciatus using blastospores, wet, and dry conidia was 39 

3.2, 1.9, and 4.4 days respectively. The LT50 of Ae. aegypti using blastospores, wet, and dry 40 

conidia was 1.3, 3.3, and 6.2 days, respectively. The LT50 of An. stephensi using blastospores, 41 

wet, and dry conidia was 2.0, 1.9, and 2.1 days respectively. These observations suggest that 42 

for optimized control, two different formulations of the fungus may be needed when 43 

treating areas where there are mixed populations of Aedes, Anopheles, and Culex.  44 

 45 

Key Words: Metarhizium, Aedes, Culex, Anopheles, conidia, blastospores, bioassays. 46 

 47 
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There are over 3200 species of mosquito worldwide of which the three most important 48 

genera are Aedes (= Stegomyia), Anopheles and Culex (Becker et al. 2010). Mosquitoes are 49 

vectors of a wide range of diseases affecting human and animal health. Some of the notable 50 

diseases include malaria, dengue, yellow fever, heartworm, lymphatic filariasis, zika, 51 

Western Nile fever, and chikungunya. Mosquitoes impact on over half the world’s 52 

population (Cancrini and Kramer 2001, Tolle 2009, Marcondes and Ximenes 2016). The 53 

mosquito range is gradually increasing due to climate change, globalization of cargo 54 

transport, and their ability to rapidly adapt to local environments (Medlock et al. 2012, 55 

Medlock et al. 2015). Exotic species such as Aedes albopictus and Aedes japonicas have now 56 

become firmly established in the USA and Europe (Kaufman and Fonseca 2014, Kraemer et 57 

al. 2015, Akiner et al. 2016). Mosquitoes pose both an economic (e.g. tourism, land usage, 58 

trade) and public health threat.  For example, the cost of treating dengue alone is estimated 59 

to be several billion dollars per annum (Schaffner and Mathis 2014, Guzman and Harris 60 

2015).  61 

Mosquitoes will breed in disparate habitats where water is available for larval development. 62 

Aedes species will lay eggs, which can survive desiccation, near polluted and unpolluted 63 

water, in natural and artificial containers whether indoors or outdoors, while Culex oviposit 64 

in stagnant dirty water (Hamdan et al. 2005). Anopheles species usually prefer clean water 65 

for oviposition but have also been known to lay eggs in mud (Gimnig et al. 2001, Miller et al. 66 

2007). All mosquito species will utilise permanent and temporary bodies of water and have 67 

overlapping habitat ranges (Lounibos 1981, Yasuoka and Levins 2007, Becker et al. 2010). 68 

One major strategy in mosquito control is larval source management (LSM) which is 69 

indiscriminate of species and provides the benefits of reducing numbers of both house-70 
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entering mosquitoes and those that bite outdoors (Fillinger and Lindsay 2011). Currently, 71 

the most common interventions for mosquito larval control are the application of 72 

entomopathogenic bacteria (e.g. Bacillus thuringiensis israelensis , Bacillus sphaericus), 73 

chemical insecticides (e.g. temephos and diflubenzuron), habitat management (e.g. land 74 

filling, drainage,  covering water container etc.) and the introduction of predatory fish into 75 

mosquito breeding sites.  Each has its limitations. For example, chemical pesticides are 76 

discouraged because of the risk they pose to human health, pollution of the environment 77 

and increasing incidence of insect resistance. Entomopathogenic bacteria are 78 

environmentally friendly but there are reports of resistance developing to these agents in 79 

mosquito populations (Hongyu et al. 2004, Liu et al. 2004, Paul et al. 2005). 80 

Entomopathogenic fungi (EPF) such as Tolypocladium cylindrosporum, Beauveria bassiana 81 

and Metarhizium anisopliae show promise for mosquito control (Goettel 1988, Scholte et al. 82 

2004, Bukhari et al. 2011). One of the advantages of using EPF against mosquitoes is that 83 

they can infect and  kill eggs, larvae, and adults (Scholte et al. 2007, Luz et al. 2008, 84 

Greenfield et al. 2015). Entomopathogenic bacteria can only infect the mosquito larval 85 

stages as they need to be ingested to cause death, whereas EPF infect their hosts primarily 86 

by penetrating the integument (Shah and Pell 2003, Sanahuja et al. 2011).  87 

The use of EPF against the adult stage of the mosquito life cycle is highly promising. One of 88 

the current strategies for deployment of EPF against adult mosquitoes is lure and kill. This 89 

approach normally involves the use of fungus impregnated surfaces onto which mosquitoes 90 

land and following brief contact with the fungal inoculum, become infected and die. Black 91 

cloths impregnated with M. anisoplaie have been show to significantly reduce Aedes aegypti 92 

survival rates in simulated field conditions (Paula et al. 2013). In Africa, bait stations 93 
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impregnated with M. anisoplaie were efficient at reducing mosquito survival. Ninety-five 94 

percent of Anopheles arabiensis mosquitoes that visited the bait stations died within 14 95 

days (Lwetoijera et al. 2010). 96 

To date two forms of EPF inoculum have been tested for larval mosquito control namely 97 

conidia and blastospores. Conidia are commonly used for control of agricultural pests and 98 

are the natural dispersal form of many EPF, produced by structures known as conidiophores 99 

on the surface of infected hosts. Conidia are generally resistant to desiccation and can 100 

remain dormant in the soil for long periods (Fuxa 1987, Scheepmaker and Butt 2010). 101 

Blastospores on the other hand are produced “naturally” only in the hemolymph of the 102 

infected host insect (Pendland et al. 1993). Blastospores possess thin cell walls and do not 103 

readily withstand desiccation therefore they could be more suitable for use in aquatic 104 

environments.  When comparing the pathogenicity of Metarhizium brunneum blastospores 105 

and conidia against Aedes aegypti larvae, it was found that conidia did not readily adhere to 106 

the larval integument, whereas the blastospores adhered and rapidly infected this host 107 

(Alkhaibari et al. 2016). However, M. brunneum conidia killed Ae. aegypti larvae following 108 

ingestion as a result of the toxicity of proteolytic enzymes on the surface of the conidia (Butt 109 

et al. 2013)  110 

Both conidia and blastospores have their merits and drawbacks. For example, liquid 111 

production of blastospores is cheaper and more rapid (2-3 days) than production of conidia 112 

on solid substrates (15 days) such as rice (Jackson 1997). Conidia are hydrophobic and need 113 

a surfactant to suspend them in water, while blastospores are hydrophilic and readily 114 

suspend in water (Holder and Keyhani 2005, Holder et al. 2007). EPF can be applied using a 115 

range of delivery systems. Furthermore, they can be deployed in cryptic breeding habitats 116 
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including hollows in trees and epiphytic plants (e.g. bromeliads) that retain pockets of water 117 

(Berti et al. 2014).   118 

Since control programmes will require extensive fungal applications, often in countries 119 

where resources are limited, it is important to develop the most virulent yet least expensive 120 

product.  The current study focuses on a strain of Metarhizium brunneum (ARSEF 4556) 121 

which meets these criteria. Firstly, ARSEF 4556 has been shown to be high yielding as 122 

regards conidia and blastospores (Ansari and Butt 2011, Riaz et al. 2013, Greenfield et al. 123 

2015). Secondly, conidia of this strain are virulent against Aedes, Anopheles and Culex larvae 124 

and other disease vectors such as midges and ticks (Ansari et al. 2010, Ansari et al. 2011, 125 

Butt et al. 2016). However, there is much controversy about which form of inoculum is more 126 

efficient for mosquito control.  Some studies have shown blastospores to be slightly more 127 

virulent than conidia, whilst others show no difference or even lower virulence against 128 

mosquito larvae (Soarés Jr 1982, Riba et al. 1986, Miranpuri and Khachatourians 1990, 129 

Nadeau and Boisvert 1994) . Since  studies often targeted different mosquito species and 130 

different larval stages, it is difficult to draw conclusions as to which formulation is more 131 

appropriate for mosquito larval control.  This study compared blastospores and two 132 

formulations of conidia of M. brunneum ARSEF 4556 against three mosquito species. Both 133 

blastospores and conidia were virulent against the three mosquito species investigated here 134 

but differences in mosquito survival were seen between species and type of inoculum used.  135 

The implications of these findings as regards use of fungi for larval mosquito control are 136 

discussed.  137 

 138 

Methods 139 
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Mosquitoes 140 

Aedes aegypti, Culex quinquefasciatus, and Anopheles stephensi eggs were obtained from 141 

the London School of Hygiene and Tropical Medicine, UK. All eggs were hatched in tap water 142 

and incubated at room temperature (25±2°C). The larvae were fed on rabbit food (Burgess®) 143 

except Anopheles larvae where were fed on fish food (Tetra pro®). 144 

Fungal production 145 

Aerial conidia of Metarhizium brunneum isolate ARSEF 4556 were produced in Sabouraud 146 

dextrose agar (SDA) and incubated in the dark at 27±1 °C for 15 days, whilst blastospores 147 

were produced in Adamek’s medium which was inoculated with 1×107 conidia ml-1 and 148 

incubated in a rotary shaker at 130 rev min-1 at 27±1 °C FOR 72 hr (Adamek 1963). The 149 

viability of conidia and blastospores was over 95%. An improved Neubauer haemocytometer 150 

was used to quantify conidial and blastospore concentrations.  151 

Pathogenicity of M. brunneum blastospores and conidia 152 

Experiments were performed to assess fungal virulence against larvae by investigating three 153 

factors; 1) fungal formulation [blastospores; wet conidia; dry conidia], 2) spore 154 

concentrations, and 3) mosquito species. Experiments were carried out on Ae. aegypti, Cx. 155 

quinquefasciatus and An. stephensi  larvae . Three replicate groups of ten 3rd or 4th instar 156 

larvae (n=30) of each species were exposed to the fungal concentrations of 106, 107, 108 157 

propagules ml-1 in plastic cups containing 100 ml of water. The conidia were applied either 158 

as wet-formulation following suspension in 0.03% aqueous Tween 80 or as dry conidia (dry 159 

weights equivalent to the above aqueous suspensions) by dusting onto the surface of the 160 

water. The blastospores were suspended in distilled water. In the control treatment, the 161 
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larvae were treated with either distilled water or 0.03% aqueous Tween 80.  Mortality was 162 

recorded daily for 7 days. In total, 900 insects were used in this study: 3 mosquito species x 163 

3 fungal formulations x 3 spore concentrations x 10 insects x 3 replicates (= 810) + controls 164 

of 10 insects x 3 replicates for each mosquito species (= 90). 165 

Statistical Analysis  166 

The proportion of batches of ten insects surviving for up to seven days post infection were 167 

visualised using Kaplan-Meier plots. Any insects surviving beyond this time were regarded as 168 

‘censored’. Hazard ratios (HR) were calculated to evaluate differences in mortality rate 169 

probability between fungal spore concentrations and formulations (Bukhari et al. 2010, 170 

Greenfield et al. 2015), with pairwise comparisons carried out using Log-rank tests (Butt et 171 

al. 2013). The median lethal time to death, LT50, was estimated using parametric survival 172 

regression for combinations of fungal formulation, spore concentration, and mosquito 173 

species (Crawley 2012). Preliminary analysis showed that the best fitting parametric survival 174 

function was conditional on the specific mosquito species and spore formulation 175 

(exponential, Rayleigh, Weibull and lognormal were compared). In all cases, either Weibull 176 

or lognormal were optimal, consistent with the expected sigmoidal survival curve. 177 

Therefore, survival regression was performed separately for each mosquito x formulation 178 

combination. In each case, fungal concentration was fitted as a categorical fixed effect, with 179 

replicate sets of mosquitoes included as random effects. This type of mixed-effect model 180 

has been shown to be appropriate for survival analysis of replicated insect bioassays 181 

previously (Bull et al. 2012). 182 

All statistical analyses were carried out using SPSS v22.0 (Morgan et al. 2012) and R Version 183 

3.3.1 (RCore 2012). 184 
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Results 185 

This study shows that the larvae of all three mosquito species were susceptible to infection 186 

by both conidia and blastopores of M. brunneum (ARSEF 4556). ). Overall mortality for 187 

Aedes aegypti is shown in Figure 1, Culex quinquefasciatus in Figure 2, and Anopheles 188 

stephensi in Figure 3. Responses to different propagule concentrations were conditional on 189 

specific combinations of mosquito species and fungal formulation. Median lethal times, LT50, 190 

are shown in Table 1. 191 

The effects of fungal spore concentration are reported in Table 2. Kaplan Meier Log-rank 192 

pair-wise comparisons of survival curves showed that M. brunneum (ARESF 4556), at all 193 

concentrations independent of formulation, caused significantly higher mortalities than the 194 

controls (P < 0.001) and mortality was dose dependent (Table 2). In Ae. aegypti, mortality 195 

increased between 106 and 107 propagules ml-1 for all fungal formulations. However, this 196 

response plateaued at higher doses, especially when treated with blastospores (Figure 1). 197 

This plateau pattern was only observed for Cx. quinquefasciatus when exposed to dry 198 

conidia at higher doses (107 and 108 conidia, Table 2, Figure 2). In, An. stephensi larvae had 199 

similar mortality rates at all conidia concentations (106, 107, and 108 conidia) and at the 200 

higher doses of blastospores (107 and 108 blastospores) (Table 2, Figure 3).  201 

Differences in mortality between formulations of fungal spores are reported in Table 3. 202 

Significant differences in hazard ratios were seen when comparing between blastospores 203 

and conidia but the nature of these differences was conditional on the mosquito species. 204 

Generally, larvae of Ae. aegypti were significantly more susceptible to infection by 205 

blastospores (BS) than by wet or dry conidia (BS vs. Wet conidia: HR = 0.154, P < 0.001 ; BS 206 

vs. Dry conidia: HR = 0.134, P < 0.001). Hazard Ratio’s in Table 3 show that  Aedes larvae 207 
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exposed to wet or dry conidia of M. brunneum had a lower mortality rate as compared to 208 

those exposed to blastospores (reference formulation) at all concentrations (P < 0.001). This 209 

pattern was also observed for An. stephensi (BS vs. Wet conidia: HR = 0.197, P < 0.001; BS 210 

vs. Dry conidia: HR = 0.202, P < 0.001).  However, in the case of An. stephensi larvae this was 211 

apparent only at the highest concentrations (Table 3, 107 and 108 spores ml-1). At the lowest 212 

dose of 106 spores ml-1 no significant differences between blastospores and conidia were 213 

observed (Table 3; BS vs. Wet conidia: HR = 0.872, P = 0.597; BS vs. Dry conidia: HR = 0.725, 214 

P = 0.215). In contrast, Cx. quinquefasciatus larvae have been found to be highly susceptible 215 

to conidial infection when compared with blastospores (BS vs. Wet conidia: HR = 5.143, P < 216 

0.001; BS vs. Dry conidia: HR = 2.054, P = 0.007). The hazard ratios of wet and dry 217 

formulations of conidia were significantly higher than blastospores at all concentrations (P < 218 

0.001), with the exception of dry conidia at concentration 106 spores ml-1 where the hazard 219 

ratio was similar to that of blastospores (HR = 0.941, P = 0.817).  220 

   221 

  222 

 223 

 224 

 225 

 226 

 227 

 228 
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Table 1. Median lethal time (LT50) in days of three mosquito species treated with different 229 
formulations of M. brunneum ARSEF 4556 (106, 107, and 108 spores ml-1). Median lethal 230 
time (LT50) of different formulations versus species. The 95% confidence intervals are given 231 
in parenthesis. 232 

Concentration Formulation 
Mosquito species 

Ae. aegypti Cu. 
quinquefaciatus An. stephensi 

106 

Wet conidia 3.33 (2.89-3.76) 1.92 (1.72-2.12) 1.90 (1.76-2.04) 

Dry conidia 6.17 (5.56-6.79) 4.35 (3.96-4.74) 2.12 (1.97-2.28) 

Blastospores 1.28 (1.11-1.45) 3.24 (2.80-3.68) 2.01 (1.88-2.13) 

107 

Wet conidia 2.83 (2.46-3.20) 1.81 (1.61-2.00) 1.86 (1.73-2.00) 

Dry conidia 3.58 (3.26-3.89) 2.10 (1.92-2.27) 1.97 (1.83-2.11) 

Blastospores 1.05 (0.95-1.16) 3.02 (2.69-3.35) 1.00 (0.94-1.06) 

108 

Wet conidia 2.90 (2.55-3.25) 1.09 (0.98-1.20) 2.10 (1.94-2.25) 

Dry conidia 3.43 (3.13-3.73) 1.92 (1.76-2.08) 2.15 (1.99-2.31) 

Blastospores 1.13 (1.01-1.26) 2.38 (2.12-2.64) 1.00 (0.94-1.06) 

 233 

 234 
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Table. 2 Kaplan Meier Log-rank pairwise comparisons of survival curves of three mosquito 235 
species (Ae. aegypti, Cx. quinquefasciatus and An. stephensi) exposed to different 236 
concentrations of conidia (wet & dry) and blastospores (1x106, 1x107 and 1x108  ml-1) of M. 237 
brunneum ARSEF 4556 for 7 days. P < 0.01 shown in bold. 238 

Mosquito 
species 

Fungal 
formulation 

 
Dose (spore ml-1) 

106 107 108 

Ae
. a

eg
yp

ti 

W
et

 C
on

id
ia

 Control 
X2 = 58.893 
P < 0.001 

X2 = 65.530 
P < 0.001 

X2 = 64.335 
P < 0.001 

106 - 
X2 = 4.173 
P = 0.041 

X2 = 5.171 
P = 0.023 

107 - - 
X2 = 0.192 
P = 0.661 

D
ry

 C
on

id
ia

 control 
X2 = 34.597 
P < 0.001 

X2 = 64.168 
P < 0.001 

X2 = 64.091 
P < 0.001 

106 
- 
 

X2 = 29.426 
P < 0.001 

X2 = 32.715 
P < 0.001 

107 - 
 

- 
X2 = 0.452 
P = 0.501 

Bl
as

to
sp

or
es

 control 
X2 = 67.078 
P < 0.001 

X2 = 66.264 
P < 0.001 

X2 = 64.893 
P < 0.001 

106 
- 
 

X2 = 6.501 
P = 0.011 

X2 = 2.538 
P = 0.111 

107 - 
 

- 
X2 = 1.639 
P = 0.200 

Cx
. q

ui
nq

ue
fa

sc
ia

tu
s 

W
et

 C
on

id
ia

 control 
X2 = 63.271 
P < 0.001 

X2 = 61.393 
P < 0.001 

X2 = 66.053 
P < 0.001 

106 
- 
 

X2 = 0.861 
P = 0.353 

X2 = 21.890 
P < 0.001 

107 - 
 

- 
X2 =17.239 
P < 0.001 

D
ry

 C
on

id
ia

 control 
X2 = 57.535 
P < 0.001 

X2 = 62.129 
P < 0.001 

X2 = 56.497 
P < 0.001 

106 
- 
 

X2 = 42.246 
P < 0.001 

X2 = 47.070 
P < 0.001 

107 - 
 

- 
X2 = 1.708 
P = 0.191 

Bl
as

to
sp

or
es

 control 
X2 = 62.137 
P < 0.001 

X2 = 57.676 
P < 0.001 

X2 = 63.094 
P <0.001 

106 
- 
 

X2 = 0 .999 
P = 0.318 

X2 = 12.777 
P < 0.001 

107 - 
 

- 
X2 = 10.864 
P = 0.001 

An
. s

te
ph

en
si 

W
et

 C
on

id
ia

 control 
X2 = 56.478 
P < 0.001 

X2 = 56.840 
P < 0.001 

X2 = 61.466 
P < 0.001 

106 
- 
 

X2 = 0.335 
P = 0.563 

X2 = 1.309 
P = 0.253 

107 - 
 

- 
X2 = 2.640 
P = 0.104 

D
ry

 C
on

id
ia

 control 
X2 = 62.129 
P < 0.001 

X2 = 57.467 
P < 0.001 

X2 = 62.560 
P < 0.001 

106 
- 
 

X2 = 0.162 
P = 0.687 

X2 = 0.519 
P = 0.471 

107 - 
 

- 
X2 = 0 .274 
P = 0.601 

Bl
as

to
sp

or
es

 control 
X2 = 60.689 
P < 0.001 

X2 = 59.000 
P < 0.001 

X2 = 59.000 
P < 0.001 

106 
- 
 

X2 = 25.286 
P < 0.001 

X2 = 25.286 
P < 0.001 

107 - 
 

- 
X2 = 0.000 
P = 1.000 
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Table 3. Hazard ratios (95% CI) of mosquito larvae (Ae. aegypti, Cx. quinquefasciatus, and An. stephensi) treated with different formulations 239 
(wet or dry conidia and blastospores) and different concentrations (106, 107,  and 108 spores ml-1) of M. brunneum ARSEF 4556. 240 
 241 

  [HR, (lower , upper 95% C.I.),Z,P value] 

  Ae. aegypti Cx. quinquefasciatus An. stephensi 

106 

BS-DRY C [0.077, (0.038, 0.156), -7.081, P<0.001] [0.941, (0.561, 1.578), -0.232, P=0.817] [0.725, (0.436, 1.205), -1.241, P=0.215] 

BS-WET C [0.181, (0.097, 0.337), -5.394, P<0.001] [3.833, (2.115, 6.947), 4.429, P<0.001] [0.872,( 0.524, 1.450), -0.529, P=0.597] 

107 

BS-DRY C [0.096, (0.046, 0.203), -6.163, P<0.001] [3.065, (1.673, 5.613), 3.627, P<0.001] [0.162,( 0.077, 0.342), -4.780, P<0.001] 

BS-WET C [0.110, (0.053, 0.229), -5.921, P<0.001] [3.549, (1.946, 6.474), 4.131, P<0.001] [0.205,( 0.099, 0.423), -4.280, P<0.001] 

108 

BS-DRY C [0.094, (0.044, 0.198), -6.198, P<0.001] [2.028, (1.118, 3.677), 2.328, P=0.020] [0.203, (0.099, 0.414), -4.378, P<0.001] 

BS-WET C [0.109, (0.052, 0.228), -5.889, P<0.001] [4.680, (2.514, 8.714), 4.867, P<0.001] [0.197, (0.096, 0.404), -4.436, P<0.001] 

 242 
HR: the hazard ratio for wet and dry conidia versus blastospores. If the ratio is above 1, the risk of the event occurring with wet or dry conidia 243 
is higher than for blastospores. Z: calculated by dividing the coefficient by its standard error. BS: Blastospores; C: Conidia 244 
 245 
 246 
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Discussion 247 

This study shows that both conidia (wet and dry) and blastospores of Metarhizium 248 

brunneum ARSEF 4556 are pathogenic to larvae of Ae. aegypti, Cx. quinquefasciatus, and An. 249 

stephensi. However, there are significant differences in their respective larvicidal efficacy or 250 

virulence, with mosquito species, fungal concentration and formulation, which are 251 

important factors when considering potential for biological control.  252 

The differential susceptibility of mosquito species to conidia of the same strain of 253 

entomopathogenic fungus has previously been observed (Geetha and Balaraman 1999, 254 

Greenfield et al. 2015) but the current study shows that this is also the case for 255 

blastospores. One of the most important findings of this study was the high susceptibility of 256 

Ae. aegypti larvae to infection by blastospores of M. brunneum, when compared to conidia 257 

of the same fungus, with over 90% mortality being achieved within 24 hrs when using 258 

blastospores, compared to conidia, which caused similar rates of mortality only after 3-5 259 

days. The blastospores continued to be highly efficacious even when used at 10 fold and 100 260 

fold lower concentrations than conidia, offering substantial cost reductions when 261 

considering field applications. This phenomenon was not observed for Cx. quinquefasciatus, 262 

with conidia being more virulent than blastospores. However, An. stephensi appeared to be 263 

equally susceptible to conidia or blastospores, except at the higher doses where 264 

blastospores were seen to be more virulent. There are very few studies comparing the 265 

efficacy of blastospores and conidia with most reporting the former to be more virulent. For 266 

example, blastospores of Beauveria bassiana, Beauveria tenella and Tolypocladium 267 

cylindrosporum, were more virulent than conidia against a range of mosquito species 268 

including Ae. aegypti, Aedes sierrensis, Ae. triseriatus and Culex taraslis (Soarés Jr 1982, Riba 269 

et al. 1986, Miranpuri and Khachatourians 1990, Nadeau and Boisvert 1994). Interestingly, 270 
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Riba et al. (1986) found conidia of M. anisopliae to be more virulent than blastospores 271 

against Ae. aegypti. These observations suggest that factors, such as fungal strain/isolate, 272 

inoculum dose and culture conditions need to be taken into account (Daoust and Roberts 273 

1983, Maldonado-Blanco et al. 2014, Greenfield et al. 2015). Most studies show that Aedes 274 

species are generally more tolerant of conidia than other mosquito species, independent of 275 

fungal species or strain (Clark et al. 1968, Geetha and Balaraman 1999, Greenfield et al. 276 

2015). However, C. tarsalis was less susceptible to conidia of T. cylindrosporum than Ae. 277 

sierrensis but both species were rapidly killed by blastospores of this fungus (Soarés Jr 278 

1982). 279 

It is advantageous in biological control programs for the fungus to infect and kill mosquito 280 

larvae rapidly. Virulent isolates with fast kill times are an important consideration when 281 

choosing candidates for field trials. A faster kill rate may not allow the mosquitoes’ immune 282 

system to be activated in time to stave off the attack (Alkhaibari et al. 2016). Another 283 

important factor to consider here is the possibility that the host could free itself from the 284 

invading fungal inoculum when shedding the exuvia during the moulting process. Larvae 285 

surviving  fungal infection to reach the pupal stage do not necessarily develop into adults. 286 

Following infection of Ae. aegypti larvae with M. anisopliae, Pereira et al. (2009) found that 287 

of the larvae that survived to form pupae, 20% did not become adults. 288 

 Alkhaibari and co-workers (2016) studied the pathogenicity processes leading to the higher 289 

virulence of blastospores when compared to conidia against Ae. aegypti. Their findings 290 

showed that blastospores can infect larvae through the integument and gut. . Higher 291 

virulence of bastospores v. conidia has also been reported for different EPF species 292 

attacking disparate terrestrial insects (Hall 1979, Hegedus et al. 1992, Nadeau and Boisvert 293 
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1994, Jackson et al. 1997, Vandenberg et al. 1998, Holder et al. 2007, Wang et al. 2013). 294 

Vega and colleagues (1999) suggested that blastospores possess pathogenicity attributes 295 

absent or less pronounced in conidia such as rapid germination. 296 

In the case of aquatic mosquito larvae exposed to conidial suspensions, it was found that 297 

mortality was caused not by a “normal” infection process involving propagule adhesion, 298 

germination, penetration and colonization of the host, as Ae. aegypti larvae were killed by 299 

protease-induced stress following ingestion of huge quantities of conidia (Butt et al. 2013). 300 

Conidia neither adhere to Ae. aegypti larval cuticle nor germinate inside the gut lumen 301 

following ingestion (Butt et al. 2013, Greenfield et al. 2014). In contrast, blastospores rapidly 302 

adhere to and penetrate the cuticle and also penetrate the gut lumen, the multiple entry 303 

routes accelerating death (Alkhaibari et al. 2016).  What is unclear in the current study is 304 

why blastospores were less effective against Cx. quinquefasciatus.  It is tempting to 305 

speculate that differences in susceptibility are linked with feeding behaviour since  306 

“collector-filterer” Culex and Anopheles larvae feed within the water column whereas 307 

“collector-gatherer” Aedes larvae obtain resources from organic compounds on surfaces 308 

and sediments (Merritt et al. 1992). Yee et al. (2004) found that Culex tend to remain at the 309 

top of water containers, where hydrophobic conidia would be located, whereas Aedes 310 

spend more time in the middle or at the bottom of water containers, where blastospores 311 

would be mostly located.  However, other factors could be involved in the susceptibility of 312 

larvae to different inoculum types, especially when comparing Aedes or Anopheles to Culex. 313 

Insect defence responses could be different between species, although we can only 314 

ascertain that blastospores and conidia elicit similar defence responses in Aedes, and that 315 

these responses especially in the case of blastospores were not able to slow down the rapid 316 

infection process (Alkhaibari et al. 2016). We are currently studying the infection process of 317 
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blastospores when attacking Culex larvae and hope this will shed some light on the 318 

differential virulence between species.   319 

What has been made clear by this study is that in niches where Ae. aegypti and An. 320 

stephensi predominate, blastospores could provide rapid control of larvae. However, where 321 

Cx. quinquefasciatus is abundant, then conidia would be a better control option.  From a 322 

commercial perspective, strain ARSEF4556 has considerable potential because of high 323 

conidia and blastospore yields in solid and liquid production systems, respectively (Ansari 324 

and Butt 2011, Riaz et al. 2013). The use of blastospores against Ae. aegypti larvae is not 325 

only interesting in respect of the high virulence shown by this form of inoculum, but also for 326 

the potential in field applications. This mosquito species lays its eggs in a variety of water 327 

containers, normally with relatively low volumes, to which formulated blastospores could be 328 

applied. This behaviour is different to that of Culex, which can lay eggs in large bodies of 329 

water, making any type of control strategy against Culex larvae more complicated. 330 
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Figure 1. Aedes aegypti larvae survival when exposed to three different formulations and 
three concentrations of Metarhizium brunneum propagules. Kaplan-Meier step functions 
after treatment with 106, 107, or 108 propagules ml-1 are shown in grey (including uninfected 
controls). Fitted survival curves are shown in black, with 95% confidence intervals shown as 
dotted lines. 
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Figure 2. Culex quinquefaciatus larvae survival when exposed to three different 
formulations and three concentrations of Metarhizium brunneum propagules. Kaplan-
Meier step functions after treatment with 106, 107, or 108 propagules ml-1 are shown in grey 
(including uninfected controls). Fitted survival curves are shown in black, with 95% 
confidence intervals shown as dotted lines. 
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Figure 3. Anopheles stephensi larvae survival when exposed to three different 
formulations and three concentrations of Metarhizium brunneum propagules. Kaplan-
Meier step functions after treatment with 106, 107, or 108 propagules ml-1 are shown in grey 
(including uninfected controls). Fitted survival curves are shown in black, with 95% 
confidence intervals shown as dotted lines. 
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