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Adaptive Neural Network Based Variable Stiffness
Control of Uncertain Robotic Systems Using
Disturbance Observer

Longbin Zhang, Zhijun Li, Senior Member, IEEE, and Chenguang Yang, Senior Member, IEEE

Abstract—The variable stiffness actuator (VSA) has been e-
quipped on many new generation of robots because of its superior
performance in terms of safety, robustness and flexibility. How-
ever, the control of robots with joints driven by variable stiffness
actuators is challenging due to the inherited highly nonlinear
dynamics. In this paper, a novel disturbance observer based
adaptive neural network control is developed for robotic systems
with variable stiffness joints and subject to model uncertainties.
By utilizing a high dimensional integral-type Lyapunov function,
adaptive neural network control is designed to approximate the
model uncertainties, and a disturbance observer is integrated
to compensate for the nonlinear VSA dynamics, as well as the
neural network approximation errors and external disturbance.
The semiglobally uniformly ultimately boundness of the closed-
loop control system has been theoretically established. Simulation
and extensive experimental studies have also been performed to
verify the effectiveness of the proposed approach.

Index Terms—Variable stiffness actuator; Adaptive neural
network; High dimensional integral Lyapunov; Disturbance Ob-
server

I. INTRODUCTION

ESPITE advances of automation technologies in the
D recent decades, most robots nowadays still underperform
in comparison to our humans in tasks that require dexterity,
safety and efficiency. In the scenarios when robots need to
physically interact with environment or people, instability may
occur during the interaction if the actuators are too stiff. This
would further lead to possible damage of robot or even injuries
of staff. While our humans could perform these interactive
tasks well, even in an unstructured or unknown environment,
by properly adjusting muscle stiffness of our joints to a level
appropriate for the task and the environment. Consider that
human-like performance would enable robots to perform better
for interactive tasks such as medical operation [1], search
[2], rescue [3], and social events. It is therefore desired
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to employ human muscle like variable stiffness actuator to
concurrently guarantee both safety and performance. It brings
in a mechanical compliance that can be adjusted via control
action in the joint actuation. There are a number of significant
work devoted to the development of variable stiffness actuated
mechanical systems [4]-[8]. In [6], a concept design of an
energy-efficient variable stiffness actuator was presented and
implemented. In [7], a hybrid variable stiffness actuator was
proposed, and by controlling the relative motion of gears in
the hybrid control module, position and stiffness of a joint
can be simultaneously controlled. A thorough discussion on
the details influencing the stiffness properties was provided in
[8] for a variable stiffness mechanism.

As aforementioned, variable joint elasticity is deliberately
introduced in the variable stiffness actuator, such that we are
provided the means to adjust the flexibility of a robot to be
adapted to a certain task at mechanical level. However, there
are great challenges associated with the control of variable
stiffness robot joints due to nonlinearities, e.g., the input
nonlinearity, which could lead to the increasing of undesirable
inaccuracy or oscillations, so that robot system performance
could be severely limited, and even become unstable.

To effectively reduce or eliminate the side effect of variable
stiffness on system performance, several methods have been
proposed in the recent decades [9]-[17]. In [9], a sensor-
less force control approach for the robot-assisted motion of
the human arm was presented. A twin direct-drive motor
system with a wire rope had been developed to provide a
precise force sensation and safety for human-robot interaction,
by considering the stiffness in human arm movements, this
method increases the efficiency of the force control system
and realizes comfortable force for human-robot interaction. In
[11], an approach to a variable stiffness actuator with tunable
resonant frequencies was presented, a cellular artificial muscle
actuator based on piezoelectric stack actuators achieves both
variable stiffness and variable resonance functions. In [12], a
new design of actuator with adjustable stiffness was presented.
The proposed actuator design regulates the joint stiffness in a
large range with minimum energy consumption by means of a
small motor. In [13], a variable stiffness joint (VSJ) for a robot
manipulator was designed, and a singular perturbation model
was employed in the nonlinear control design to establish
closed-loop system stability.

The control design in this work takes into account both
robot dynamics and actuator dynamics. As demonstrated in
[18], the actuator dynamics in fact constitute an important part



of the complete robotic dynamics. Typically, the non-smooth
nonlinear characteristics such as variable stiffness, dead zone,
backlash, and hysteresis are the most common nonlinearities
exist in actuators. It is infeasible to obtain precise knowledge
of robot dynamics, and it is also difficult to model the variable
stiffness actuators. Therefore, in this work we employ neural
networks (NNs) technique to compensate for the unknown
nonlinearities and unknown dynamics involved in the robotics
systems, since they are capable of dealing with unknown
dynamics systems and unstructured uncertainties [19], [20],
[21], [22] and [23]. It is well known that NNs are particularly
useful to guarantee stability, robustness, and overall perfor-
mance when controlling uncertain robotic systems.

It is noted that there are few work carried out for uncertain
robotic systems with variable stiffness, while most control
designs for robot equipped with variable stiffness joints are
based on known robot models [10]-[16], and these methods
cannot be applied on uncertain robotic systems directly. In
this paper, we aims to develop new control techniques for
uncertain robot with VSA driven joints. First, we propose
a high dimensional integral Lyapunov function to construct
a Lyapunov-based adaptive control structure, and then use
adaptive neural network to approximate the unknown nonlinear
functions in order to achieve desired tracking performance. A
disturbance observer is also employed to deal with VSA non-
linearity, the neural network approximation errors, and external
disturbance. The proposed high dimensional integral Lyapunov
function enables control design without controller singularity
problem. In comparison to the previous work [10], [14] and
[15], we avoid to use projection method or the traditional
backstepping method [16] which generally involve repeatedly
computation of the time derivatives of virtual control laws.
Our developed new control guarantees semiglobally uniformly
ultimately boundness stability, such that all the signals in the
closed-loop control system are bounded and the tracking errors
converge to the origin. Both simulation and experiment results
demonstrate the effectiveness of the proposed control.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider variable stiffness joints in which an elastic element
is mounted in between the motor and the link, the dynamic
model of robot manipulator as below [16]

M(q)G+ C(q,4)q + G(q) + fais = u (1)
Ad+u=r1 )

where ¢ € R™ is the vector of joint angles, M (q) € R™*™ is
the inertial matrix, C'(¢, ¢) € R™*™ is centripetal and Coriolis
torque, G(q) € R™ is gravitational force, fz;; € R™ is the
external disturbance, and u is the input nonlinearity caused
by the elastic joints, and 6, 7 € R™, and A € R™*™ are
the motor coordinate, the motor torque, and the motor inertia,
repectively. In this work, it is assumed that M(q), C(q,q),
G(q) and fg4s are all unknown.
The above robot manipulator dynamics can be formulated

into the following form

X1 = X2,

% = B7H(x) [F(x) +d(t) + ] 3)

y=x1

where x1 = [q1,q2,---,¢m]"s X2 = [41,G2,---,dm]",
B(x) = M(q), F(x) = —C(q,4)¢ — G(q), d(t) = —fais
and u = [uy,...,u,;,)T € R™ denotes the input nonlinearity
caused by the elastic joints.

The elastic joint characteristics with a nonlinear and variable
stiffness torque function can be described by [25]

u=f(p,0) “4)

where u is the joint torque, ¢ is the joint deflection, o is
the stiffness variation parameter, and ¢ = 6 — ¢ is the joint
deflection. In general, the torque deflection curve can be an
arbitrary shape, and the characteristic that a linearly variable
stiffness profile u = k(o) is most commonly applied, where
k(o) is the stiffness. The coordinate o represents an additional
input, which is used for stiffness variation. The stiffness
characteristics can be described as k = 2k r?(2cos? p — 1) =
2k, (520)?(2cos? ¢ — 1) [26], where k; is the spring rate,
is the lever arm and p is the pitch of the ball screw drive.

In this work, no dynamics is assumed and o is treated as
quasi-static, and the considered variable stiffness is expressed
as the following continuous-time dynamic model [16]:

du : )
T k6 — kq (5)
where k is the stiffness.

Notations: Given vector a € R"™ and matrix B € R™*™,
|al|? = a’a and |B||?> = tr(BTB).

In this work, wour objective is to design a controller to
ensure the output of the system track the desired curves y, €
R™ with satisfactory accuracy under input nonlinearity and
model uncertainty. And meanwhile all the signals in the control
system are bounded.

Let By(x) € R™*™ be a diagonal matrix with diagonal
elements bg4;;(X,%;) # 0 € R™(Xx = x1,1 = 1,2,...,m),
then B(x) can be divided into two parts:

B(x) = By(x) + A, (6)
where matrix Ag is unknown. Therefore, we obtain
B(x)x2 = F(x) +d(t) + u. @)
Substituting (6) into (8), we have
(Bd(x) + AB)XQ = F(X) + d(t) + u. (8)
Considering (2), we can obtain
(By(x) + Ap)ks = F(x) + d(t) + 7 — Af 9)
then, we have
By(x)x = (I-AB '(x))F(x) - AgB ' (x)r
+(I — AgB7H(x)d(t) + T
—(I — ApB7}(x))A60
= F(x)+7+g(1)+r(d)+nb), (10)

where F(x) = (I — ApB71(x))F(x) € R™r(d) = (I —
AgB7l(x))d(t) € R™ and g(7) = —ApB~!(x)7r € R™
and () = —(I — ApB~!(x))Af € R™ are column vectors.

Remark 2.1: In various robotic and mechanical systems,
input saturation and actuator saturation always exist [27], [28].
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Therefore, from the actual implementation, the motor torque
of robotic systems assume to be with bounded saturation
constraints, then, g(7) = —AgB~!(x)7 is bounded.

Lemma 2.1: Given a differentiable continuous function
U(t), YVt € [to,t1] satisfying 01 < ||U(t)| < do with
the positive constants d; and J,. Its derivative W(t) is also
bounded.

Proof: According to the Mean Value Theorem, it is
obtained that W(t) — W(0) = (&)t with £ € (to,t1). Due
to 61 < ||\If(f)H < b, 01 — 03 < \I/(t) - \1/(0) < §p — 07 is
bounded, it is obviously that the derivative ¥(¢) is bounded.

|

Assumption 2.1: For Vt € R, the unknown external dis-
turbance d(t) : R™ — R™ of the system is bounded. That
is to say there exists an unknown positive constant that the
inequality ||d(¢)|| < das is satisfied.

Assumption 2.2: For the uncertain robotic system (10),
there exist unknown positive constant «; such that |[7(6)| <
aq.

We define the following filtered tracking error s; describing
the desired dynamics of the error system as

éi + /\ie,»

yi_ydivizla"'ama

(1)
(12)

S; =

e, =

where A1, Ao, ..., A\, are positive design parameters. We will
obtain a set of linear differential equations whose solutions
e;(i = 1,2,...,m) converges to zero when s; = 0 in (11).
Furthermore, €; — 0 as t — oo. From (11), we have

5 = By'(x)[Fx() +7+g(r)

+r(d) +n(0)] + v, (13)
where s = [s1,...,8,]7 and v = [v1,...,v,]T with
vi=—y P+ Neii=1,...,m. (14)

III. CONTROL SYSTEM DESIGN AND STABILITY ANALYSIS
A. Integral Lyapunov Analysis

The control design objective is to synthesize a controller
which is able to track the desired trajectories with guaranteed
stability and be attenuate the effect caused by nonlinearity of
the variable stiffness actuation.

The following integral Lyapunov function candidate is con-

sidered in order to facilitate the control design:
V, =sTBys, (15)

where

1 1
By = / UB,d¥ = diag |:/ ’lgBaii()_Q Js; + Vz)d’l9:| , (16)
0 0

with B, = By(x,vs; + vi)a = diag[bg;(X,9s; +
Vi)Qiilmxm,t =1,2,...,m, X = X1, and matrix « € R™*™,
For easy analysis, we choose a11 = ... = Q. V=Yg — &

where ¢ = [51,62,...,£m]T € R™ with § = \e;,i =
1,2,...,m. Constants \; are design coefficients to be selected
appropriately such that e — 0 as v — 0, and ¢ is a scalar
and independent of s and v. we choose suitable B;(x) and
«, such that bg;;a; > 0.

According (16), (15) can be rewritten as

m

1
Vi=Y st [ 0ol s+ v
i=1 0

Then, we derive a new high dimensional Lyapunov function
candidate which is proposed for the robotic mechanical system
and could effectively deal with the so-called control singularity
problem of robotic nonlinear system that usually occurs in
adaptive feedback linearization control as detailed later.

From the definition of B, there exist the minimum and
maximum eigenvalues Apin (B ) and Apax(Be) of By, such
that

0 < Amin(Ba)s™s <s"Bus < Apax(Ba)s”'s. (17)

Noting that 1) is a scalar and independent of s, X and v
and integrating both sides of above equation with ¢}, one can
obtain

1 1
0<s? </ 19Bad19> s < (/ mmx(Ba)dﬂ) sTs, (18)
0 0

such that we always have V; > 0.
Differentiating (15) with the time ¢ and considering that B,,
and By are symmetric, we have
9By S)s
Js

V1 = 28"TBys+sT <

+sT a@i s+s” aﬂv s, (19)
ox ov
with

0By . . ! 0B .

=d ) idU | 20
s S iag [/0 ds, S } (20)
aBﬂ; BT ! i aBaii;
gxfdlag /019; 0%, x;dv |, 2n
0By .

1 ..
——v = diag / ﬁaBa” vidd|,i=1,...,m22)

According to the equality below

OBy _ ' OBaii _ [ 20Ba
Ws—dlag [/0 ¥ Bs. szdﬁ} _/0 ¥ 59 dd. (23)

we can further derive

OBy 1 ! .
ST( s s>s = ST([192BQHO—2/O 19Bad1‘}>s

= sTB,s — 2s"Bys. (24)

Noting that ¥ is a scalar and independent of v, since o =
8(%9 s = diag [fol 1978?‘71_” Sidﬁ} = fol 196(%‘” dd

and ¥ = —v. We can have
1
0B
- 9=—=av
(/0 B i) v

OBy
T YU
S ( aV V) S
1
= —STBaV+sT/ B,vdd. (25)
0

UJs;, we have




Considering (24) and (25), we can rewrite (19) as

V, = s"B,s—s"B.v
+s7 KaBﬁ )s+/ Baudﬁ} (26)
ox
Using (13), we have
Vi = s"B.B;'(x)[F(x)+ 7+ g(7) +r(d)

1
+n(0)] +sT K“ﬂ%) s+ / Baydﬁ} 27)
ox 0

Since By, a and By« are symmetric, we have

B,B;'(x) = By(x)aB;'(x) = a. (28)
Then, we can rewrite (27) as
Vi = sTa[F(x)+ 71+ g(7) +r(d) + n(8)]
+s7 KBB" ) s + / Baudﬁ} (29)
ox

Using (16), we can obtain

Vi = sTa[F(x)+71+g(r)+r(d) +n(0)]

+sT U ] (82(“ ) sd19+/ Baz/dﬁ} .(30)
0

Considering B,

= Bja, we have

vV, = sTa[Fx)+®+71
+9(7) +r(d) +n(0)] 3D
where
1
<I>:/ ﬂ(aB >sd19+/ Byvdy, (32)
% 0
87 Z bd“*- —1,...,m. (33)

B. Model Based Controller

Let us define D = r(d) + g(7) + n(0), and then we can
express (10) as

Bu(x)%e = F(x) + 7+ D. (34)

Then, considering Lemma 2.1, Assumption 2.1 and As-
sumption 2.2, we can obtain

D]l < p, (35)

with p > 0 being an unknown constant.
We define an auxiliary variable z to facilitate the design of
a nonlinear disturbance observer. Its definition is

z=D — Kxg, (36)

where K = KT > 0 is a matrix to be specified. According
to (34), (36), and B,(x) is a diagonal matrix with diagonal
elements, the derivative of z with respect to time is

i = D-KBJ'x)[(F(x)+7+D] (37)
To achieve the estimate of system disturbance D, we

must firstly obtain the estimate of intermediate variable z;

Therefore, based on (35) and (37), the following equation is
proposed,

= KB '(x)[(F(x) + 71+ D], (38)

where D is the estimate of D.
Motivated by (36), we can obtain the estimate of disturbance
D as following

D =3+ Kx. (39)

R The estimation error of disturbance is defined as D = D —
D. Taking into account (36) and (39), we have

=2-%2=D-D=D. (40)

I 3

Taking the derivative of (40) with regard to time ¢, then
considering (37) and (38), we obtain

D=%:=:-:=D-KB;'(x)D, (41)
Then, the model based controller can be designed as:
T=—®—Kias — D — F(x) (42)

where constant matrices K; = K{ > 0 will be chosen
appropriately.

Let us consider the following Lyapunov function candidate

1 mn

Vo=V, + 5DTD (43)

Considering (31), the derivative of Vo with regard to time
can be derived as

Vo = sTa[F(x)+r(d) +g(r) +1(0) +  +7)

+DTD (44)

Considering (34), D = r(d) + g(7) +7(0) and applying the
control law (42), we have

V, =sTalD — K as] + DTD, 45)
Considering (35), (41) and the following facts
- DTD
sTaD < 5 aas + ) (46)
2 2
DTD |D|?
prp< 22 1D , (47)
2 2
we obtain
, . slaas  ~p = p?
Vo, < —s aKjas+ + D D+?
~-DTKB;'D
2
< —sTa(Ky — 051, xm)as + 5
~DT(KB;' — Lnxm)D. (48)

When we choose positive definite matrix K; and K to

make Amin (K1 = 0.5Lnxm)@) > [ 9Amax(Ba)dd, and
K B;l — Iuxm > 0, the following inequality can be estab-
lished

Vy, < —kVy+C,

2
- Ime)a 1}’ C = %

(49)
where x = min{ A\, (KB;!



We can obtain the following inequality, by multiplying e**
and then integrating both sides of the above inequality with
respect to time:

C C C
Vo < (Va(0) = —)em™ 4+ — < V5(0) + —. (50)

Since V3 is ultimately bounded as ¢ — oo as can be seen
the above inequality. Thus, s and D are also bounded. This
completes the proof.

C. Adaptive Neural Network Controller

However, the controller we proposed in (42) may not be
realizable since it is hardly to obtain complete and accurate
information about the robotic system. In this case, we may not
know F(x) exactly. The model based controller we proposed
can hardly be implemented without knowing exact values of
F(x). To overcome the practical issue faced by this controller,
the RBFNN is used to estimate the parameters related to the
model.

In our control design, radial basis function neural network
(RBENN) is chosen to approximate the unknown functions
in robot dynamics. In general, RBFNN can smoothly approx-
imate any continuous function H(Z) over the compact set
Q. € R? to any arbitrary accuracy as

H(Z)=W*TS(Z) + pu,

where S;(Z) fori =1,2,..
as below

(51

., 1 is Gaussian function defined

7(2 — Ci)T(Z — Cz)]
b2 ’

Si(Z) = exp] (52)
and ¢; = [¢i1, 2, - - -, Cig] 1s the center of receptive field, b; is
the width of the Gaussian function. From its definition, we see
that there exists a positive constant § such that [|S(Z)] < ¢
with § > 0. W* is the optimal constant weight, and u
is the smallest approximation error of RBFNN. According
the RBFNN approximation theory, it is apparent that the
approximation error has an upper bound p*, ie., |p| < p*,
with a positive constant u* > 0.

We can further employ RBFNN to approximate the un-
known function vector F(x) as

Flx) = -WTS(Z)—¢, (53)

where W* := blockdiag[W/],i = 1,2,...,1 are the op-
timal NN weights, S(Z) = [ST(Z2),53(Z),...,SF(2)"
is the Radial Basis Function, Z = [x],xI]?, and ¢ =
[€1,€2,...,6m]T. Itis easy to show that there exists a constant
€* > 0 such that ||e|| < &*.

In (10), the unknown nonlinear function vector F(x) is

approximated by RBFNN. Considering (53), we have

Bu(x)Xy =7+ g(7) = W*TS(Z) — e +n(0) +r(d). (54)

To efficiently tackle the problem of unknown approximation
error £, we can treat it as a part of the system external
disturbance. Let us define D = r(d) + g(7) + n(#) — ¢, and
then (54) can be expressed as

Ba(x)%y =7+ D — W*TS(2). (55)

Then, according to the approximation theory of the radial
basis function neural network, the unknown approximation
error ¢ satisfies ||| < p;1 , where p; is an unknown positive
constant. Thus, similar to (35), we also have

D]l < p, (56)

with p > 0 being an unknown constant.
We define an auxiliary variable z to facilitate the design of

a nonlinear disturbance observer. Its definition is
z=D — Kxg, &)

where K = K7 > 0 is a matrix to be designed.
Considering (55), the derivative of z with respect to time is

: = D-Kx,
= D-KB;'X)[r+D-W*TS(Z)] (58
To achieve the estimate of system disturbance D, we

need to firstly obtain the estimate of intermediate variable z;
Therefore, based on (56) and (58), the following equation is
proposed,

(= -KBj'(x)[r+D-W7's(z)), (59)

where D is the estimate of D, and W = blockdiag[W;],i =
1,2,...,m is the estimate of W*.

Motivated by (57), we can obtain the estimate of disturbance
D as following

D=2+ Kxo. (60)

The estimate error of disturbance is defined as D = D — D.
Taking into account (57) and (60), we have

=z—2=D—-D=0D. 61)

[S3

Taking the derivative of (61) with regard to time ¢, then
considering (58) and (59), we obtain

D = z=z2-2

= D-KB;'x)[D+W7'Ss(2), (62)

where W = W — W*.
Based on RBFNN, we propose the following RBFNN
control law:

r = WT'S(Z)—-®— Kias—D (63)

where constant matrix K; =
appropriately.

The adaptive neural network updating law can be designed
as

K¥ > 0 will be chosen

W =
where I'; € R™(i = 1,2,...,m) is a symmetric positive
definite constant matrix; ¢ is positive constants.

Theorem 3.1: Consider the nonlinear robot system (3) sub-
ject to unknown external disturbance, model uncertainty, and
variable stiffness. All closed-loop system signals are semiglob-
ally uniformly bounded with the disturbance observer based
RBFNN control designed in (63) and the the RBFNN weight
adaptation law (64) under Assumption 2.1.

=T [S:(2)auisi + §Wz] (64)



Proof: Reconsider the following Lyapunov function can-
didate

Leps 1 5 Tp—17%

Vy=Vi+ oD D+§§Wi LW, (65)

Let us combine (31) and (53). Then, the derivative of Vo
with regard to time can be derived as

Vo = sTa[-W*TS(Z) —e+ g(r) + f(d) + n(h)
+® + 7]+ DTD + > WIT- W,
i=1
Considering (55), D = f(d)+g(7) +n(#) — ¢ and applying
the control law (63), we have

Vo, = sTa[WS(Z)+ D — Kas)

(66)

+D"D + Y WIT; W,
i=1
Considering (56), (62), (64), ||S(Z)| < 4, and the following
facts

(67)

5 5 (68)

Srp < DTD 1D
— 2 2 )

Z WZTSZ(Z)SZOl” = STCUI/T/TS(Z)7 (70)
i=1

(69)

we obtain
. p2
Vy, < —STOZ(Kl — 0.5Im><m)OzS + 5
sllw?

~DT(KB;' — 2L,%m)D + 5

— KB ' N s
_gidZWiTWi.

5 (71)

i=1

where we use the following facts: DTKB;'WTS(Z) <
= 1 z 2 - “ ~

HDQH + KB, S(ZZ)HW” , and *§WiTWi — 7§HW73H2 o
T T * IWall? | <Iwrl?

WIWy < —Will® | WEIE

2
When we choose positive definite matrix K; and K and

positive constant ¢ to make Amin ((K7 — 051 xm)a) >
) 9max(Ba)dd, KBy —2L,5,m > 0 and s — KB 16 > 0,
the following inequality can be established

Vy, < —kVa+C, (72)
where
)\mzn(KBgl - 2Im><m)
K = min <—KBJ's 1 ,
Amaz (27, T 1)
(73)
w1 | p?

C = —— 4. 74
5 + 5 (74)

We can obtain the following inequality, by multiplying e**
and then integrating both side of the above inequality with
respect to time:

V, <

(Va(0) = D)e e+

< V,y(0) + C as
K K

Since V3 is ultimately bounded as ¢ — oo as can be seen
the above inequality. Thus, s, D and W are also bounded.
This completes the proof. [ ]

IV. SIMULATION AND EXPERIMENT
A. Simulation Studies

In this section, simulation results are presented to demon-
strate the effectiveness of the proposed method. Let us consider
a 2-DOF robotic manipulator system, and according to the
dynamic models (1), (2) and (3), we define

| My Mo
N _ | Cin Cra _| &
cai=| ot o2 |ew=| g ] an

where My = mql?, +ma(13 + 125 + 2l1leac0sqe) + I + I,
Mis = mo(% + lileacosqe) + I, My = mo(l%, +
lileacosqa)+ 1o, Mag = malZy+Io; Ci1 = —malileaasings,
Ci2 = —malilea(d1 + Go)singa, Cor = malileagisings,
Caz = 0; Gy = (malez +mali)geosqr +maleageos(qr + q2),
Go = maleageos(qr + g2). We choose parameters as m; =
2kg, ms = 0.85kg, [y = 0.35m, I = 0.31m, g = 9.81m/52,
Il = %mll2, I2 = %mglg

We consider B; = diag[0.05(0.5cosqz + 1),0.1(1 +
0.5sinq;)], A = diag[0.0001,0.0001], ks = 200, and define
the desired trajectory as yg = [sint,sint]T. We choose 16
nodes neural network to approximate the unknown functions
in the robotic system. Let W;(0) = [0,...,0]” be the initial
values of the adaptive law (64). The design parameters are
set to o = Iaxo, K = diag[8.0,3.0], K; = diag[5.0,5.0],
)\1 = 12, )\2 = 10.5, Fl = 0.3IT><T, FQ = 0.3IT><T, g1 = 2,
and ¢, = 4.

Remark 4.1: The choices of parameters are based on the
experience of designer accumulated from trial and error in
simulation studies. As a matter of fact, there is no criteria
for the selection of control parameters for nonlinear control
system in the literature. The influence on the system behavior
can only be evaluated by trial and error through experimental
tests.

The simulation results are shown in Figs. 1-6. Figs. 1 and 2
show the tracking performance of the given trajectories. Fig. 3
shows the tracking errors. Figs. 4 shows the controller output
of the joints with variable stiffness effect. The norm of chosen
RBFNN weights is shown in Fig. 5. The estimate trajectories
of disturbance D are presented in Fig. 6.

B. System Description of Baxter Robot

In order to verify the proposed control techniques, we
carry out experiment on a Baxter robot, which is a semi-
humanoid robot consisting of two 7DOF (degree of freedom)
arms installed on left/right arm mounts respectively and a
torso based on a movable pedestal, as illustrated in Fig. 7.
In Baxter robot, instead of connecting the motor shaft directly
to the joint (usually through a gear box), the elastic springer
is employ to reduce the impact of possible collision when
interacting with environment. This allows Baxter robot reduce
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the impact when its arm hits an obstacle. In each joint of the
Baxter robot arm, each motor is coupled to the joint through a
spring, so that the torque generated by twist of spring, rather
than the torque from the motor directly drives the link. This
enables the robot to behave in a human-like elastic manner.
Due to the elastic property of the spring, improved shock
tolerance and reduced danger in cases of collision could be
achieved. In addition, the Baxter robot is able to sense a
collision at a very early time instant, before it hits badly onto
a subject. The internal control system for Baxter robot runs
on Robot Operating System (ROS). The joint positions and
velocities are published by ROS at 100 Hz.

C. Experiment Studies

We utilize two joints of the Baxter robot with elastic joints
driven joint to verify the effectiveness of the established
controllers. The two rotation joints are utilized in the exper-
iments, in which we choose B; = diag[0.05(0.5cosqa +
1),0.1(1 + 0.5singqy)], and define the desired trajectory as
ya = [sint,sint]7. We use 16 nodes neural network to
approximate the unknown functions in the robotic system.
Let W;(0) = [0,...,0]7 be the initial values of the adaptive
law (64). The design parameters’ values are set to o = Ioxo,
K = diag[0.2,0.5], K1 = diag[1.6,1.2], \y = 12, Ay = 10.5,
I't = 0.3Lxr, I'e = 0.31,%r, 1 = 10, and g3 = 12. The
experimental results with Baxter robot joints in Figs. 8-
13. Figs. 8 and 9 show the tracking performance of the
given trajectories. Fig. 10 shows the tracking errors. Figs. 11
shows the controller output of the joints with variable stiffness
effect. The norm of chosen RBFNN weights is shown in

Norm of Wi (solid) and Wa(dashed).

1(s)

Fig. 6. Disturbance estimate trajectories of Dy

(solid) and Dy (dashed).

M Gear Link
otor Ratio inl

Fig. 7. Baxter robot profile: Baxter robot has 7 joints with each arm and
each joint is constructed as an elastic actuator.

Fig. 12. The trajectories of estimate of disturbance D are
presented in Fig. 13. The experiment results show that the
trajectory errors tend to the zeros, such that the theoretical
performance of the control law as described in 3.1 is verified.
For the comparison, we also conduct the model based control.
The control parameters chosen are the same as the above
experiment. Fig. 14 and 15 show the tracking performance.
Figs. 16 shows the tracking errors. From the Figs, we see
clearly that the control performance is not satisfactory at all,
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the main reason is that it is hardly to obtain perfect and com-
plete information about the robotic system. For example, we
may not know F(x) exactly, and the model based controller
are dependent on the exact values of F(x). Therefore, the
performance model based would lead to be worse. The good
performance can be achieved using the “adaptive” mechanism,
and the experimental results demonstrate the effectiveness of
the proposed adaptive neural network control.

V. CONCLUSIONS

In this paper, we have designed a novel adaptive neural
network control based on the nonlinear disturbance observer
to handle viarable stiffness of a uncertain robotic systems. By
employing the Lyapunov’s direct method, the boundness of
the closed loop system has been established. Both simulation
and experiment results presented have also shown that the

Desired(solid) and actual (dashed) tra- Fig. 16.
jectories of joint 2 under model based control.

0.4

t(sec)

Tracking errors ej(solid line) and
ea(dashed line) using the model based control.

proposed controllers are with satisfactory performance. More
importantly, the effect caused by viarable stiffness is shown
to be suppressed with our controller.
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