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The paper studies the control design of an exoskeleton robot based on electromyography

(EMG). An EMG-based motion detection method is proposed to trigger the rehabilita-

tion assistance according to user intension. An adaptive control scheme that compensates
for the exoskeleton’s dynamics is employed, and it is able to provide assistance tailored

to the human user, who is suppoed to participate actively in the training processs. Anal-

ysis of the experiment results verify the effectiveness of the control method developed in
this paper.

Keywords: Human-like learning control; EMG motion detection; SVM-based classifica-

tion.

1. Introduction

Most of the developed countries are facing various social problems caused by the

aging population, and novel solutions are urgently required to address the decreased

motor functionalities in the increasing population of elders as well as patients sub-

ject to motor injuries. In this context, many kinds of assistive exoskeleton robots

have been developed to support rehabilitation training and/or daily life motions

for physically weak people including disabled individuals 1,2,3,4,5. In recent years,

the potential of robots to complement traditional one-on-one rehabilitation exer-

cises with a human therapist and help restoring the motor function after stroke

was demonstrated in several studies 6,7,8,9,10,42,43,44. We have developed a 5 joints

upper limb exoskeleton robot for rehabilitation training purpose as reported in 45,
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and have performed preliminary studies on muscle electromyography (EMG) signals

based control design on it.

This paper develops a motion detection based robot controller for the exoskele-

ton robot, motivated by three issues to be discussed below. The first issue is that

subjects affected by neurological diseases, e.g., subacute poststroke patients, often

cannot move their arm freely. A robot could be used to support these patients doing

practice, however it is critical for the robot supports to follow accurately the hu-

man users’ motion intention, such that the therapy’s success could be achieved11. It

could be difficult to obtain physical signals reflecting his/her motion intension when

a patient is not able to move the limb, while physiological signals such as EMG may

be used to detect motion intention, because muscular contraction can be observed

on EMG, which directly reflects the level of muscle activity in real-time13, and can

be captured using surface electrodes. It is noted that EMG is highly variable, so

that repeated movements of same task may not produce same muscle activation

patterns. In addition, different subjects may use different muscles to achieve the

same movement. Moreover, muscles often span over several joints, making it hard

to distinguish the contribution of each muscle to different joint rotational movement.

Following our previous work13, in this paper we employ a support vector machine

(SVM) classifier to detect motion intention from the EMG signals, in order to solve

the above mentioned problems.

The second issue is about how to properly control the the exoskeleton robot

to allow user to move freely without resistance. It is thus necessary to compensate

for the exoskeleton’s dynamics, especially gravity compensation. Using a precise

dynamics compensation, low-feedback gains can be used along with a feedforward

model to accurately follow a desired movement. Our home-built exoskeleton robot

uses harmonic drive systems that provide backdrivable actuation and accurate po-

sitioning with negligible backlash. Modeling of harmonic drive systems has been

extensively studied14,15. However, consider the fact that torque sensors are usually

directly mounted on the transmission components for force control task16, we in-

corporate the nonlinearities of harmonic drive systems into the dynamics of the

exoskeleton robot, in addition to friction, kinematic error, and nonlinear stiffness

behavior.

The third issue is that passive movement of the patient driven by the rehabilita-

tion robot is insufficient to promote motor recovery. In contrast, active participation

of the patient is required to ensure a successful therapy17,18. Therefore, in order to

promote learning, the trainee should be supported in a way that assistance is de-

creased when s/he performs well. Remarkably, this matches the characteristics of a

model of human motor learning that minimizes both movement error and effort19,20,

which we have recently developed as an extended nonlinear adaptive robot controller
21. Therefore, an idea to provide assistance as needed to promote maximal recovery

consists of tuning force23 and impedance assistance provided by the robot according

to the adaptive controller of24.



October 20, 2016 21:17 WSPC/INSTRUCTION FILE 20102016

3

This paper describes the control of an arm exoskeleton based on these princi-

ples. Section 2 first describes the compact exoskeleton with five degrees-of-freedom

(DOF) that we have developed with harmonic drives. The human-like adaptive

controller to identify the exoskeleton’s dynamics and tune its assistance is then

described in Section 3. Section 4 presents the algorithm for EMG-based motion de-

tection, and Section 5 the experimental results to validate the novel EMG control

and adaptive dynamic compensation.

2. Development of Upper Limb Exoskeleton

Out human arm generally has seven DOFs: abduction/ adduction and flex-

ion/extension of the shoulder, rotation of the upper arm, flexion/extension of the

elbow, forearm rotation, also called pronation/supination the forearm, and ra-

dial/ulnar deviation and flexion/extension of the wrist. It is desirable that the

developed exoskeleton is compatible with the natural arm motion and workspace

of the operator. Our developed exoskeleton robot architecture is shown in Fig.1a,

which demonstrates anthropomorphic features of human arm with properly selected

five rotary DOF: 2 DOF in the shoulder, elbow flexion/extension, forearm rotation

and wrist flexion/extension. The axis of rotation for the elbow joint is placed in

the line between the two epicondyles. The axis of rotation for the wrist joint is lo-

cated in the line between the capitate and lunate bones of the carpus, which allows

ergonomic training of natural arm movements.

(a) Mechanical design of the exoskeleton
robot.

(b) Final set up with a human subject

Fig. 1. Illustration of the upper limb exoskeleton with 5 DOFs: 2 DOFs on shoulder, flex-
ion/extension of the elbow, pronation/supination of the forearm and wrist flexion/extension.

Maxon DC flat brushless motor EC45 was selected to satisfy the speed and

torque requirements, together with a harmonic transmission drive (model SHD-17-

100-2SH for joints 1 and 2, model SHD-14-100-2SH for joints 3 and 4, and CSF-32-

50-2A-GR for joints 5). This configuration, based on flat DC motors and pancake

transmissions, is able to provide a maximum torque of 8Nm, nevertheless the max-
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imum torque was electronically limited to 3Nm in order to guarantee the safety of

the user. High resolution encoders (2048 pulse/cycle) and Hall effect sensor are used

to measure the angle between the joints, providing a sufficiently large bandwidth

to measure movements effectively.

Due to the use of a simple design and compact actuators, the total weight of

the final upper arm exoskeleton is approximately 3.0 kg. High resolution encoders

(2048 pulse/cycle) and Hall effect sensor are used to measure the angle between the

joints, providing a sufficiently large bandwidth to measure movements effectively

A protocol for testing the system was performed to evaluate the usability and

the range of workspace allowed to a normal user. The system was used in the

laboratory to perform a wide variety of manoeuvres in free mode, demonstrating

correct operation of the system which does not affect the normal range of motion

of the user.

Fig. 2. Block diagram of controller.

3. Human-like Adaptive Control of Exoskeleton

3.1. Novel control principles

As it is impossible to model the human limb and the exoskeleton robot exactly, we

propose to adapt feedforward force and impedance using a control scheme similar as

observed in human motor learning21. The idea is that the robot will provide as much
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force and impedance that is needed to guide the subject’s movement successfully,

but will tend to relax, so that a well performing subject would let the controller

relax completely and thus perform the movement on his own effort.

To enable the subject start the movement when needed, thus enabling him/her

natural control of the arm with the exoskeleton, EMG is used to detect motion

intention. This is carried out using a classifier to detect between the two states of

go or no go, and described in next section.

As in the rehabilitation training, subjects are usually supposed to repeat a cer-

tain movement a number of time. Therefore, in this paper we assume a periodic

reference trajectory qd:

qd(t) = qd(t− T ) <∞ , T > 0 (1)

Consider an n DOF exoskeleton robot with dynamics

M(q)q̈ + C(q, q̇)q̇ + F (q̇) +G(q) = τν(t) +B(q)τu + τI(t) (2)

where q = [q1, . . . , qn]T ∈ Rn denote the generalized coordinates; M(q) ∈ Rn×n

is the symmetric bounded positive definite inertia matrix including the human arm

and the robot; C(q, q̇)q̇ ∈ Rn denotes the centripetal and Coriolis torques for the

human and robot; F (q̇) ∈ Rn is the friction vector; G(q) ∈ Rn is the gravita-

tional torque vector for the human and robot; B(q) ∈ Rn×m is a full rank input

transformation matrix and is assumed to be known because it is a function of fixed

geometry of the system; τν(t) is bounded external noise with τν ≤ ν <∞; τI is the

interaction torque; and τu is the control input vector.

Let e = q(t)− qd(t) be the position error and ė = q̇(t)− q̇d(t) the velocity error,

and define s = ė + κe, then q̇r = q̇d(t) − Λe with the positive constant Λ, and

q̇ = q̇r + s. We employ the controller depicted in Fig. 2 which is defined as follows:

B(q)τu(t) = −τ(t)−K(t)e(t)−D(t)ė(t)− P (t)s(t) + τr(t) (3)

where −τ(t) denotes the learned feedforward and −K(t)e(t) −D(t)ė(t) represents

the feedback which depends on stiffness K(t) and damping D(t) learned from en-

vironment interaction. All signals in the controller (3) are initialized with zeros,

−P (t)s(t) is the proportional control term, and P (t) is symmetric positive-definite

with minimal eigenvalues

λmin(P (t)) ≥ λP > 0 (4)

that provides stable motion control. To compensate for the robot and arm dynamics

and bounded noise, define

τr(t) = M(q)q̈r + C(q, q̇)q̇r + F (q̇) +G(q) (5)

In the above equation, M(q), C(q, q̇), F (q̇) and G(q) are functions of physical pa-

rameters like links masses, links lengths, moments of inertial and so on. The precise

values of these parameters need to be acquired such that we can implement (5) in

the control. In this paper, the inertia parameters are identified during motion. The
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details of the robot link inertia and joint motor inertia and gravity parameters are

listed in Table. 1.

Table 1. Inertia and Gravity Parameters

joint/link Mi Mlink−i mi li lci
[kg/mm2] [kg/mm2] [kg] [mm] [mm]

1 13.5 336 0.731 100 71.9

2 13.5 3807 0.701 250 193.0

3 3.5 972 0.670 40 27.9

4 4.8 60 0.120 230 158.0

5 3.5 122 0.427 30 27.8

Friction F (q̇) in (5) is modelled as in 27 with a Stribeck term and identified

as follows: Torque is measured with velocity in all joints from 0.02 rad/s to 0.1

rad/s in intervals of 0.02 rad/s, and to 0.4 rad/s in intervals of 0.1 rad/s. 5 trials

for each positive and negative directions of each velocity yield (using a least-square

minimisation) the Stribeck curve

F (q̇) = FOsgn(q̇) + FV q̇ + FS(1− e−
q̇

VC ) (6)

where FO, FV , FS and VC are the coefficients of Stribeck curve (refer to Table

2 for the identified values. As motors in joints 1 and 2 are identical, parameters of

joint 2 motor are simply set equal to the estimated parameters of joint 1), and q̇

is the joint velocity of the joint. On the other hand, the feedforward torque τ(t) in

(3) to move the patient can be adapted through 21

δτ(t) = τ(t)− τ(t− T ) = Qτs (7)

τ(t) = 0[n,1], t ∈ [0, T )

Table 2. coefficients of Stribeck Curve

joint [+] FO FV FS VC
1& 2 0.2512 -2.1214 2.2157 0.9661

3 0.1576 0.1290 0.0488 0.1147

4 0.0477 0.1818 0.0990 1.7047

5 0.0287 0.0389 0.0091 0.0181

joint [-] FO FV FS VC
1&2 0.2366 0.0658 -0.3855 -0.2791

3 0.1573 0.1360 -0.0413 -0.0721

4 0.0359 0.0177 -0.0262 -0.2492

5 0.0347 0.0362 -0.0066 -0.0361
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where Qτ is a symmetric positive-definite constant matrix. The stiffness and damp-

ing matrices are also adapted through 21

δK(t) = QKs(t) e
T (t), δD(t) = QDs(t)ė

T (t) (8)

where K(t) = 0[n,n] and D(t) = 0[n,n], t ∈ [0, T ), where QK and QD are symmet-

ric positive-definite constant matrices. The stability and convergence of the above

controller defined in (3), (5), (8) and (8) can be established as below. A Lyapunov

function candidate as follows can employed to analyze the stability

V =
1

2
sT (t)M(q)s(t) (9)

Consider the smooth interaction force can be linearized along the reference trajec-

toryas below:

τI(t) = τI0 +KI(t)e+DI(t)ė (10)

and follow a similar procedure as that proposed in 21, we can obtain

V̇ (t) ≤ −sTQts− sTQkseT e− sTQDseT e− sTPs
≤ 0 (11)

thus s converges to 0 as t→∞.

4. EMG based motion detection

4.1. Data Collection

Before collection, the skin of the upper limb is cleaned with 70% alcohol swab

to remove any oil or dust from the skin surface. The EMG signal amplifier used

is provided by CNNATION company, Shanghai, China. Seven channels of EMG

signals are collected from the biceps brachii, triceps longus, pronator teres, extensor

carpi ulnaris, extensor carpi ulnaris, flexor digitorum superficialis and abductor

pollicis longus, when a certain subject undergoing seven distinct limb motions: elbow

flexion, elbow extension, supination, pronation, wrist flexion, wrist extension, and

rest. The signals are sampled at 1 kHz and are band-pass filtered between 10-500

Hz using a fourth order Butterworth filter, after which a notch filtered is used to

attenuate the power line frequency at 50 Hz.

Within each trial, the subject are asked to repeat a single motion nine times, with

a duration of 7s each time and a 3s rest in between motions. The data collected from

the first six times are used as training data and the data from the last three times

are used as test data. To analyze the data collected, the data is first segmented with

each segment consisting of data collection in 256ms following the same technqiues in
25, and there are 128ms overlap for training data and 32ms overlap for testing data.

The data processing time is less than 20ms and therefore, in this work, real-time

constraints enforce a time delay of less than 300 ms between the onset of muscle

contraction made by a participant and a corresponding motion in the controlled

device 26. It is noted that generally a delay that is less then 300 ms is acceptable for

myoelectric control 25, as this delay would not be perceivable by human subjects.
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Fig. 3. Mean Feature of each dimension, where y label is MeanFeature/MeanFeatureMax,

MeanFeatureMax is the maximum value of the feature of the dimension in 7 motions.

4.2. Data Processing

As mentioned above, the motion intension detection task is to detect 7 states,

namely, rest, wrist flexion, wrist extension, forearm pronation, forearm supination,

elbow flexion and elbow extension. To achieve this goal, data will be processed in two

main phases including feature extraction and classification. In addition, there are

also pre-processing (e.g. amplification, filtering) and post-processing (e.g. smooth-

ing). Five features are extracted from each 256 ms segment of EMG signal measure

from every muscle, namely, (i) root mean square, (ii) mean absolute value, (iii)

integrated absolute value, (iv)zero crossings, and (v) slope sign changes. All the

features from seven muscles are combined into a 35× 1 feature vector. The features

vectors of each state are calculated, and the mean values of these features are shown

in Fig. 3.

The Support Vector Machine (SVM) method was used to classify EMG signals,

which is a kernel-based approach that has recently been successfully applied to EMG

classification applications 32. The basic idea of SVM is to map the data to a higher

dimensional feature space H via a nonlinear mapping φ, and then carry out a linear

regression in this space. Given a training set of l samples (x1, y1), . . . , (xl, yl) ∈
Rn × R, we introduce a nonlinear mapping φ(·) : Rn −→ H ∈ Rh which maps

the training samples to a new data set (φ1(x), y1), . . . , (φl(x), yl). In ε-insensitive

Support Vector Regression, the goal is to estimate the following function

f̂(x) =< w,φ(x) > + b; ω ∈ Rh, b ∈ R (12)

where w and b are the coefficients, which are estimated by the risk function

R = min
w,b,E

{
1

2
|w|2 +

c

2

l∑
i=1

E2i

}
, s.t. yi − f̂(xi) = Ei (13)

where l is the number of the training samples and the constant c > 0 measure the

trade-off between complexity and losses.
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We construct a Lagrangian to solve the optimization problem of equation below:

maxa minw,b

{
L =

1

2
wTw +

1

2
c

l∑
i=1

E2i

−
l∑
i=1

ai{yi − [wTφ(xi) + b]− Ei}

}
(14)

According to Karush-Kuhn-Tucker optimization condition, we can seek the optimal

solution and transform this optimization problem into a matrix equation:
0 1 . . . 1

1 K(x1, x1) + 1
c . . . K(x1, xl)

...
...

. . .
...

1 K(xl, x1) . . . K(xl, xl) + 1
c



b

a1
...

al


=
[

0 y1 . . . yl
]T

where K(xi, xj) = φ(xi)
Tφ(xj), i, j = 1, . . . , l, it is a kernel function, which satisfies

the Mercer’s theorem. In this paper, we select the polynomial kernel as follows:

K(xi, xj) = (r × xi · xTj + c)d; (15)

where r, c and d are the three parameters to be adjusted.

4.3. Trajectory Generator

Since the outputs of SVM classifier are discrete motion, while the desired motion

of exoskeleton needs amplitude and placement to generate the desired trajectory.

We choose the desired joint trajectory as qd = A(1− cos(πt)), where A is the user

specified amplitude which is carefully predefined based on the joint position limit of

the subject. For example, if the SVM classifier gives the result of elbow flexion, then

elbow link moves from 0 to A rad along the sinusoidal curve. When the link reaches

A rad, the elbow motor waits for elbow extension result from SVM classifier.

5. Experimental Results

For the assistive exercise, the exoskeleton robot assists the motion of the subject’s

arm to track a desired trajectory generated by detecting the subject’s intension. By

using EMG signals, the proposed control system could detect the subject’s motion

intension even though the subject is not able to move well. The desired trajectory

generated by using user’s motion tension is then sent to the controller, which enables

the robot to s the subject’s movement.

5.1. EMG recognition

In order to find the best parameters of the polynomial kernel of the SVM, we set

different parameters and obtain the corresponding recognition accuracy as shown



October 20, 2016 21:17 WSPC/INSTRUCTION FILE 20102016

10

(a) d (b) r

(c) c

Fig. 4. Parameters adjustment

in Fig. 4. Firstly, we keep the other parameters as constants and only adjust d,

(See Fig. 4(a)). Considering the trend of the Fig. 4(a), we choose d = 3.0, and then

we compare different values of r . Finally, we select the default value r = 1.0 and

c = 2.0 in Fig. 4(b).

In the experiment, , as mentioned in Subsection 4.1, within each round, the

EMG signals with length of 7 seconds for each motion are collected. Thus, repeated

9 times totally. The signals from the first 6 times are used as training data, and the

rest 3 as the testing data. Therefore, for each motion, we have the signals with total

length of 42 seconds as training data. For each motion, the length of the signals

of the testing set is 21 seconds. With the steps of 32ms, 672 pieces of signals for

each motions are tested to verify the proposed motion detector. The accuracy of

recognition of each motion is shown in Table. 3. The proposed classifier can serve

high accuracy.
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Table 3. The recognition accuracy

States Accuracy(%)

Rest 98.8

Wrist flexion 100

Wrist extension 100

Forearm pronation 96.9

Forearm supination 100

Elbow flexion 95.3

Elbow extension 97.7

5.2. Trajectory Control from EMG Signal

EMG recognition results give estimated human arm motion modes, and decide

the joint No. and its direction, for simplification we assume the desired motion

amplitude as 0.314 rad for the joint limit, and choose the desired trajectory as

qd = 0.314(1 − cos(πt)), t ∈ [0, 20]. In the experiments with the human wearing

the robot, we assume that the center of human limb mass coincides with the center

of robot link mass with 0.7kg forearm and 0.65kg upperarm as the parameters of

subject. The initial position of both shoulder joint is vertical to the horizontal plane,

and elbow with 0.26 rad flexion. The initial positions of elbow rotating and wrist

are with palm down, κ = 2, and the parameters of controller are listed in Table. 4.

Table 4. Parameters of each joint controller

joint P Qτ QK QD
1 0.18 1.5 1 0.7

2 0.18 1.5 1 0.7

3 0.035 0.5 0.3 0.3

4 0.02 0.3 0.2 0.2

5 0.02 0.3 0.2 0.2

Fig. 5 shows the experiment results for one representative joint of the shoulder

(joint 1 in Fig.1a) and one from the elbow joint (joint 3 in Fig.1a). The shoulder

joint parameters are learned quickly and the control is stable during the experiment.

The elbow joint exhibits good performance and the tracking error converges quickly.

6. Discussion

This paper developed a new control framework for the physical training of arm

movements with a robot. It is critical that the robot motion guidance and assistance

be generated corresponding to motion intention, in particular to detect when a
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(a) Performance of shoulder flexion

(b) Performance of elbow flexion

Fig. 5. Learning control tracking error and motor current

subject wants to move, and also to detect motion intention in subjects unable

to move by themselves, but still possessing residual muscle activity. Our system

based on support vector machine could detect one-joint motion intention (as is

probably sufficient for good robot-assisted physical therapy 38). While machine

learning algorithms were used extensively to model joint torque 39,40 or classify

postures 41 using EMG signals, this is, to our knowledge, the first attempt to detect

motion based on EMG.
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This EMG-based motion detection algorithm was used to control a dedicated

compact arm exoskeleton. This paper further developed adaptation of torque and

impedance to i) compensate for the exoskeleton’s dynamics, and ii) assist motion

as is needed to complete the training task successfully while promoting pro-active

motor control. While a complete demonstration of this algorithm will require its

testing on patients with motor impairments, tests demonstrated the capacity of

this new adaptive controller compensate for the exoskeleton’s dynamics and help a

human subject perform accurate arm movements.
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