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Abstract 

This paper presents a three-dimensional coupled bonded particle and lattice Boltzmann 

method (BPLBM) with an immersed moving boundary scheme for the fluid-solid interaction. 

It is then applied to investigate the erosion process of soil particles in granular filters placed 

within earth dams. The microscopic migration of soil particles can be clearly visualised as the 

movement of particles can be directly recorded. Three granular filters with different 

representative size ratios are simulated and the numerical results are seen to match the 

empirical criteria. In addition, the effect of the representative size ratio of granular filters, 

hydraulic loading and erosion time are discussed.  
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1. Introduction

Internal erosion of soil particles induced by the hydraulic forces in a dam and its foundations 

is one of the most common causes of failure of levees, slopes and earth dams. The onset of 

soil erosion remains un-noticed within an earth structure until it has progressed enough to be 
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detected during periodic field inspections. Providing a granular filter at an appropriate 

location is one of the effective ways to eliminate this risk of seepage induced erosion 

occurring in dams and embankments. It has been adopted in engineering practice for hundred 

years. However, the performance of granular filters is still not well understood and the 

designing of granular filters are mainly made according to the empirical criteria derived from 

experiments. 

There has been much progress in the field of physical modelling of the transport of fines in 

granular filters (Terzaghi and Peck, 1948, Wan and Fell, 2004, Bendahmane et al., 2008, 

Xiao and Shwiyhat, 2012, Okeke and Wang, 2016). It should be acknowledged the physical 

experiment is the principal method even now in this research field. The widespread filter 

design criteria are based on the statistical correlations of experimental observations (Terzaghi 

and Peck, 1948). These criteria are empirical and constantly revised as long as new 

experimental data becomes available (Fell et al., 2005, Indraratna et al., 2007, Das and 

Sobhan, 2013). Due to the complexity of soil erosion, emerging at the microscopic pore/grain 

level, the experimental methods have limitations in understanding such a complicated issue 

from the macroscopic viewpoint.  

To overcome the problems aforementioned, a few numerical techniques were proposed or 

applied to the investigation of internal erosion from time to time. Zou et al. (2013) first 

applied the coupled discrete element method and computational fluid dynamics (DEMCFD) 

(Tsuji et al., 1993, Xu and Yu, 1997, Wu and Guo, 2012) technique to simulate the transient 

transport of eroded base-soil particles into a filter. The distributions of the eroded base-soil 

particles in different filters were traced and analysed. It was found that the eroded mass and 

intruding depth of the base-soil particles into the filter are related to the representative 

particle size ratio of the base soil to the filter, hydraulic gradient and erosion time. Then, the 

migration mechanism of the base soil through granular filters was studied by the same 

method (Huang et al., 2014). The total eroded base soil mass, the distribution of the eroded 

particles within the filter and the porosity were observed.  

Cui et al. (2014) introduced a two-dimensional coupled discrete element method and lattice 

Boltzmann method (DEMLBM) (Feng et al., 2007, Cook et al., 2004) to the study of soil 

erosion induced by local leakage from a buried pipe. The influence factors including flow 

rates and initial bed heights were considered, and the excess pore pressure distribution and 

the soil transport due to a localised leak were compared with existing experimental findings. 



This coupled two-dimensional technique was also applied to particle detachment and 

transport in piping erosion (Sibille et al., 2015). Numerical experiments showed that the 

erosion rate is linearly related to the hydraulic shear stress and the erosion threshold depends 

on the cohesion of the granular assembly.  

Although the DEMLBM has been proven to be promising for internal erosion issues, two 

potential problems lie in the two-dimensional simulation of fluid-particle systems. First, it is 

hard to obtain the realistic flow channels in two-dimensional modelling, because the flow 

paths of fluid are always blocked up by contacted spheres. Attempts to resolve this problem 

can be seen in the reference (Boutt et al., 2007). The other is that the cohesive force in 

geomaterials may be considered by the Johnson-Kendall-Roberts (JKR) model (Johnson et al., 

1971) or Derjaguin-Muller-Toporov (DMT) model (Derjaguin et al., 1975) in discrete 

element method (DEM). It should be noticed that these adhesion models are mainly proposed 

to account for the influence of adhesion, like Van der Waals forces, between fine particles 

with very small size and low stiffness. To deal with the cohesion forces in a general way in 

DEMLBM, a two-dimensional bonded particle and lattice Boltzmann method (BPLBM) was 

proposed (Wang et al., 2016a, Wang et al., 2016b) and its feasibility was well demonstrated.  

The main objective of this study is to develop a three-dimensional bonded particle and lattice 

Boltzmann method and use it to investigate the internal erosion process of soil particles in 

granular filters. This coupled method can directly deal with the fluid-particle interaction 

using an immersed moving boundary (IMB) method. Furthermore, the three-dimensional 

modelling of the migration of soil particles within the skeleton of granular filters by BPLBM 

gives insights into the microscopic erosion process. For the sake of consistency, a brief 

description of the coupled BPLBM is given in section 2. However, for further details of 

theory and computational aspects, readers should refer to Wang et al., 2016a and Wang et al., 

2016b. In Section 3, a numerical example of transport of finer particles into a layer of coarser 

filter is presented.  Influence of various parameters such as hydraulic gradient and the 

representative size ratio are presented. Section 4 gives conclusions and recommendations for 

future work.  

 

2. Computational Methodology  

2.1 Bonded particle method 



The bonded particle method (BPM), an extension of DEM, is a combination of discrete 

element method and lattice method (Schlangen and Garboczi, 1997). In BPM, the treatment 

of interactions between particles is similar to that in the discrete element method (Cundall 

and Strack, 1978, Cundall and Strack, 1979) in which particle-particle interactions are treated 

as a transient problem where an equilibrium state is reached when the internal forces are 

balanced. Newton’s second law is utilised to determine the translation and rotation of each 

particle arising from the contact forces, e.g., externally applied forces and body forces as well 

as cohesive forces, whilst the force-displacement law is used to update the contact forces that 

keep changing due to the relative motion of particles at each contact.  

The Newton’s second law governing the motion of a particle is given by 

gFFva fc mcm                                                     (1)  

fc TTI                                                                   (2)  

where m and I are respectively the mass and the moment of inertia of particles, c is a damping 

coefficient, a  and   are acceleration and angular acceleration, cF  and cT  are, respectively, 

contact forces and corresponding torques, fF  and fT  are hydrodynamic forces and 

corresponding torques. It should be emphasized that cF  can be either particle-particle contact 

forces for granular particles or cohesion forces bF existing between bonded particles. 

2.1.1 The particle-particle contact model 

The particle-particle contact force cF  has two components, the normal contact force and the 

tangential contact force, and they are, respectively, given by 

Normal interaction laws:  

m
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Coulomb friction model:  
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where nK  and tK  are normal stiffness and tangential stiffness, t  and tδ
  correspond to 

accumulated tangential sliding and sliding velocity, δ  is the overlap of two particles. The 

coefficient m  can be 1 and 3/2, the former is for the linear contact and the latter is for the 

Hertz contact model (Oda and Iwashita, 1999). The normal stiffness in Hertz contact model is 

defined as 
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where [A] , [B] are, respectively the Poisson’s ratios of particle A and B. 
[A]R ,

[A]E ,
[B]R  and 

[B]E  are the radii and Young’s moduli of particle A and B. 

An alternative of the Coulomb friction model is the commonly used Mindlin-Deresiewicz 

model (Thornton and Yin, 1991, Oda and Iwashita, 1999, Vu-Quoc et al., 2004). In this 

model, the tangential force is dependent on both loading history and the magnitude of the 

normal force.  

 

2.1.2 Bond models    

The initial bond model proposed is referred to as the ‘contact bond model’ (Itasca Consulting 

Group Inc, 2002, Potyondy and Cundall, 2004). It approximates the physical behaviour of a 

vanishingly small cemented-like substance joining the two bonded particles. It can be 

envisioned as a pair of elastic springs (or a point of glue) with constant and shear stiffness 

acting at the contact point. These two springs have specified shear and tensile strengths. The 

existence of a contact bond precludes the possibility of slip.  

2.1.2.1 Contact bond model 

The two components of the contact bond model can be described as follows:  

Normal component:  
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Tangential component:  
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where b

nK  and b

tK  are the normal stiffness and tangential stiffness for the cement, bnF  is the 

critical tensile force and btF  is the critical shear strength.  



When the tensile contact force equals or exceeds the normal contact bond strength, the bond 

breaks. Both normal and shear bond forces are set to be zero. In contrast to this, when the 

shear contact force is equal or greater than the shear contact bond strength, the bond breaks, 

but only tangential bond force becomes zero. 

 

2.1.2.2 Advanced bond model 

This widely accepted contact bond model accounts for forces acting at the contact point, but 

it is unable to describe the real history-dependent friction behaviour of the bond. It has been 

reported that more advanced bond models can reproduce more complicated mechanical 

behaviours (Delenne et al., 2004, Jiang et al., 2012). 

An advanced contact bond model which includes a normal bond considering softening effect 

and a history dependent Coulomb friction model was proposed recently (Wang, 2016), and 

this proposed bond model is used in this research. It is found that this advanced normal bond 

model delineated in Figure 1 can capture the macroscopic softening process and alleviate the 

problem emerging in spring bond models. 
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Tangential component:  
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where sfK  , 1δ  and 2δ are the stiffness for softening period, overlap corresponding to critical 

bond strength and overlap corresponding to bond breakage, respectively. 

 

 

2.2 Lattice Boltzmann method   

The lattice Boltzmann method (LBM) (Chen et al., 1991) emerged as an alternative of 

traditional computational fluid dynamics (CFD). It has been attracting more and more 

researchers' interest. The primary variables of LBM are fluid density distribution functions 



instead of pressure and velocity considered in the conventional CFD. In LBM, the fluid 

domain is divided into regular lattices and the fluid is simplified as a group of mesoscopic 

particle packages rest at lattice nodes. Each particle package includes several fluid particles 

which are allowed to move to the adjacent lattice nodes or stay at rest. During each discrete 

time step, fluid particles at individual lattice nodes move to their immediate neighbouring 

lattice nodes along the given directions. Thus, at each node, collision occurs between the 

fluid particles from the neighbouring nodes. The macro fluid behaviour can be described 

through the statistics of the motion of fluid particles. Unlike the traditional CFD methods, 

which solve the conservation (Navier-Stokes) equations of macroscopic properties (i.e., mass, 

momentum, and energy) numerically, LBM models the fluid flow though resolving the 

propagation and collision processes of fluid particles, which are governed by the lattice 

Boltzmann equation. In particular, the Navier-Stokes equations can be recovered from the 

lattice Boltzmann equation under the condition of low Mach numbers (Chen et al., 1992). 

2.2.1 Bhatnagar-Gross-Krook (BGK) model 

Due to the high computational efficiency and ease in programming, the widely used BGK 

model is adopted in this work. It can be characterised by the following lattice Boltzmann 

equation: 

 )()( t,fΔttΔt,f iii xex                                      (11) 

where if  is the primary variables (so-called fluid density distribution functions), and   is the 

collision operator. In the BGK Model,   is characterised by a relaxation time   and the 

equilibrium distribution function ),( txf eqi . 
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The D3Q15 model is the most popular 3D one and it uses a cubic lattice with 15 discrete 

velocity directions. The fluid particles at each lattice node move to their 14 neighbouring 

nodes with discrete velocities ei, (i =1-14). A proportion of the particles, with velocity e0, 

remain at the node. With reference to the numbering system in Figure 2, the 15 discrete 

velocity vectors correspond to the column vectors of the following matrix in lattice unit: 



























111111111100000

111111110011000

111111110000110

E  

 

The corresponding equilibrium distribution function can be defined as 

0,...,15)(i)
2C

3
)(

2C

9

C

3
ρ(1ωf

2

2

42i

eq

i  vvveve ii
           (13) 

Its weighting factors are defined as: 
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In LBM, the macroscopic fluid density and velocity can be calculated from the distribution 

functions 
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The fluid pressure is given by  

2SCP                                                            (16) 

where SC is termed the fluid speed of sound and is related to the lattice speed C 

3/CC S                                                          (17) 

The relaxation parameter,  , used in our program is implicitly determined by  
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The kinematic viscosity, υ , of the fluid under consideration is constant during the whole 

simulation. 

 

2.2.2 Body force 

 Many efforts have been made to consider the body force in the framework of LBM in past 

twenty years (He et al., 1997, Buick and Greated, 2000, Guo et al., 2002, Mohamad and 

Kuzmin, 2010, Silva and Semiao, 2011). In this work the extensively used Guo’s method  

(Guo et al., 2002) is adopted.  



The body force density F (for gravity gF ρ ) was first considered by modifying the 

equilibrium density distribution functions. 
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where 
*v is the equilibrium velocity which is given by 

F.ρvρvρu * 50                                                        (20) 

Then, an additional term was added to the collision operator 
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2.3 The fluid-solid coupling 

Much work on the fluid-solid coupling schemes in the framework of LBM has been made 

(Ladd, 1994, Noble and Torczynski, 1998, Lallemand and Luo, 2003, Wu and Shu, 2009). 

Amongst them, the immersed moving boundary method receives the most attention in the 

coupled DEMLBM technique due to its good stability and accuracy. 

2.3.1 Immersed moving boundary method 

The immersed moving boundary scheme was proposed by Noble and Torczynski (1998) to 

overcome fluctuations of hydrodynamic forces calculated by the modified bounce back 

technique. In this method, the solid particle is represented by solid nodes, the solid boundary 

nodes and interior solid nodes. The fluid nodes near solid boundary nodes are defined as fluid 

boundary nodes. To facilitate the illustration of the 3D IMB scheme, a cross-section through 

the centre of a sphere is given in Figure 3. Four sorts of nodes, solid boundary nodes, interior 

solid nodes, fluid boundary nodes and normal fluid nodes, are, respectively, marked in red, 

yellow, green and blue. In order to retain the advantages of LBM, namely the locality of the 

collision operator and the simple linear streaming operator, an additional collision term, S
i , 

for nodes covered partially or fully by the solid is introduced to the standard collision 



operator of LBM. The modified collision operator for resolving the fluid-solid interaction is 

given by 

S
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where B is a weighting function that depends on the local solid ratio  , defined as the 

fraction of the nodal volume; 
iF  is the body force term.  

)5.0()1(

)5.0(









B                                          (24) 

NS VV /                                                     (25) 

SV  is the nodal volume occupied by the solid particle and NV  is the whole nodal volume. 

The additional collision term is based on the bounce-rule for non-equilibrium part of the 

particle distribution and is given by 
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where 
SU  is the velocity of the solid node and u  is the velocity of the fluid part at the node. 

The velocity of the solid node considering the effect of particle rotation is described by 
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PU  and    are the velocity and angular velocity of the solid particle. 

The resultant hydrodynamic force in Eq. 1 and torque in Eq. 2 exerted on the solid can be 

calculated by 
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3. Numerical Tests 

3.1 Empirical criteria for granular filter design 

In engineering practice, the grain-size distribution of the filter should be properly managed to 

avoid the danger of erosion or piping. The aim is to allow fluid (water) to pass through the 



soil medium without erosion of the protected base material, and if some material does pass 

through, it should not clog the filter. Generally speaking, two conditions should be satisfied: 

a) The size of the voids in the filter material should be small enough to hold the larger 

particles of the protected material in place. 

b) The filter material should have a high hydraulic conductivity to prevent build-up of 

large seepage forces and hydrostatic pressures in the filters. 

To be specific, the effective diameter of the pore spaces in the filter should be less than D85 of 

the soil to be protected and the effective pore diameter is about 0.2 D15 to 0.25D15 of the filter. 

Based on this idea, Terzaghi and Peck (1948) proposed the following design criteria (Zou et 

al., 2013, Huang et al., 2014): 
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where D15(F) - diameter through which 15% of filter material will pass; 

           D15(S) - diameter through which 15% of soil to be protected will pass; 

           D85(S) - diameter through which 85% of soil to be protected will pass. 

3.2 Numerical model 

Here, we solve a simple one dimensional problem where it would be possible to verify the 

complex three dimensional problem. A base soil-filter system (Figure 4 in lattice unit) is 

modelled by a cubic sample (0.1 m×0.1 m×0.2 m). The lateral boundaries are fixed walls. A 

stationary wall, only effective for solid particles, is used to support the base soils and the 

granular filter, whilst the upper surface of the granular filter is fixed. The simulations in this 

section are carried out using our in-house program (BPLBM3D) on the personal computer 

(Intel Core i5-3450 CPU@3.10GHz).   

The base soil, so-called the protected soil, is comprised of 1500 various-sized spherical 

particles. In engineering practice, the slightly cohesive force exists between natural sands. In 

this work, the cohesion is considered through the aforementioned advanced bond model in 

BPM. In order to demonstrate the feasibility and accuracy of the proposed method, three 

filters, with different size ratios R1=2.29, 3.43 and 4.29, are constructed. Two of them comply 



with the empirical criterion (Equations 30 and 31) and one filter disobeys it. During the 

whole simulation, a constant hydraulic pressure is applied at the bottom. The lattice space 

adopted is 1.0 mm, thus the problem domain is divided into 100×200 grids. The time step 

used is 1.667×10
-5 

s. Specific parameters for the numerical model are given in Table 1. The 

particle size distribution curves of the protected soil and filters are shown in Figure 5. 

In addition, to investigate the effect of hydraulic gradient on the migration of soil particles in 

granular filters, simulations with different hydraulic loads are carried out on the soil-filter 

system with R1=4.29.  

 

3.3 Results and discussions 

a) Migration process of fine particles in filters  

In this paper, the base soil and granular filter are represented in colours regarding to their 

particle sizes. Figure 6 shows snapshots of the performance of the coarse filter (R1=4.29) at 

different time instants. It can be found that the particles of the base soils gradually intrude 

into the granular filter under the hydraulic loading at t = 0.6668 s. With the progress of 

simulation, some fine and coarse particles of the protected soil start to penetrate the coarse 

filter. Finally, considerable base soils, almost 10%, are washed away at the end of simulation 

(t=1.667 s).  

Figure 7 gives the distribution curves of the number of soil particles versus the vertical 

location at different time instants. Therefore, the migration of soil particles at each stage in 

the filter can be recorded. We find that with the progress of simulation soil particles will 

invade to further depth, and more soil particles can be washed out of the filter. 

b) Comparison of filters with different size ratios 

To examine the effect of the size ratio on the performance of granular filters, three filters with 

different size ratios are simulated and compared with regard to the migration of base soils in 

filters and soil erosion ratios. During the whole simulation of the performance of granular 

filters, the transport of base soils and the evolution of hydraulic pressures can be successfully 

investigated. To observe the distribution of soil particles in the filter more clearly, the 

snapshots for three models at the end of simulations are given in Figure 8. It can be found 

that both fine and coarse particles of the protected soil pass through the coarse filter with 

R1=4.29. While, only part of fine particles can pass through the intermediate filter with 



R1=3.43 and few soil particles are eroded in the fine filter R1=2.29. Thus the intermediate and 

fine filters, which comply with the empirical criteria, can effectively alleviate or eliminate the 

appearance of particle erosions. 

In order to better understand the progress of soil erosion process, a quantitative ratio is 

introduced and it is defined as the percentage of the mass of eroded particles over the total 

mass of the base soil (see Equation 32). The soil particles whose vertical position exceeds a 

certain distance Z, e.g. 0.17 m in this model, from the bottom are treated as eroded particles. 
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where 1
N  and N  are respectively the numbers of eroded particles and the total number of the 

base soil, ir  is the radius of the particle under consideration. 

Figure 9 gives the final distribution curves (at t= 1.667 s) of the number of eroded particles 

versus the invasion depth. These curves show that with the increase of size ratios more soil 

particles can be washed away to a height over 0.17 m. Based on other related parameters, 

such as radius and number, of eroded particles, the corresponding erosion ratio can be 

computed using Equation 32.  

From Figure 10, it can be observed at the earlier stage of simulations soil particles transport 

at a low speed and no eroded particles can be detected. A certain time later, the erosion ratio 

of protected soils increases rapidly. The final erosion ratios are 10.0% for the coarse filter, 

0.5% for the intermediate filter and 0.0% for the fine filter, respectively. 

 

c)  Effect of hydraulic gradient on erosion 

To investigate the effect of hydraulic gradient on soil erosion, five hydraulic loadings, i.e. 

17361.11 Pa, 15625.0 Pa, 13020.83 Pa, 11284.72 Pa and 8680.56 Pa, are applied to the 

bottom boundary of the filter with size ratio R1=4.29. The corresponding hydraulic gradient 

can be calculated using the following equation 

ρgH

P
i                                                        (33) 



 where P is the applied pressure difference; ρ and H are respectively the fluid density and the 

vertical height of the model. 

Figure 11 shows the final distribution of soil particles under different gradients. The variation 

of eroded particles undergoing different hydraulic gradients are traced and compared in 

Figure 12, and the relationship of the erosion ratio of base soil and the elapsed time are 

shown in Figure 13. It can be found that with the increase of hydraulic loading more particles 

can pass through this filter, which leads to a higher erosion ratio. When hydraulic gradient is 

4.43, the number of eroded particles is 47. The eroded particles increase to 146 when the 

hydraulic gradient increases to 8.86. 

The coupled BPLBM technique has been well demonstrated from the above numerical tests. 

The BPM successfully simulates the natural sand with cohesion and the microscopic transport 

of particles in the granular filter; whist the LBM and IMB coupling scheme can better resolve 

the pore fluid flow and fluid-particle interactions at the grain level. Compared to the existing 

continuum methods, the BPLBM could capture the fluid flow and fluid-solid interactions at 

the microscopic scale. In addition, this coupled technique could directly approach the fluid-

particle interaction without introducing the averaging technique for the fluid-particle 

interactions in DEMCFD. It is demonstrated that the coupled BPLBM can investigate the 

particle erosion issue in granular filter from a different point of view. The microscopic 

particle transportation and pore fluid flow further an engineer’s understanding of such 

complex fluid-particle systems. 

The three-dimensional simulation in this research is a carried out using a personal computer 

(Intel Core i5-3450 CPU@3.10GHz). For each simulation, it takes about 48 hours 57 minutes. 

The application to larger-sized problem seems to be impossible at the present stage. 

Therefore, parallelization of the proposed technique will be our next work in the near future.   

 

4. Conclusions 

In this paper, a three-dimensional bonded particle and lattice Boltzmann method is introduced 

and used to investigate the internal erosion process of soil particles in granular filters. 

Different to the treatment in DEMCFD where the empirical equations are required for the 

computing of drag forces, the fluid-solid coupling is achieved by directly solving the collision 

between the fluid particles and solid nodes in the framework of lattice Boltzmann method. 



Three granular filters with different size ratios are simulated and the numerical results are 

compared with the empirical design criteria. The microscopic migration of soil particles 

within granular filters can be readily observed through BPLBM and the eroded particles can 

be traced. It is found that with the increase of representative size ratio R1 of granular filters 

the erosion percentage of soil particles gradually grows. When the size ratio R1 is increased 

to a value greater than 4.0 which is the critical value obtained by the empirical criteria, coarse 

particles of the protected soil will pass through the filter. These results match the empirical 

design criteria very well. In addition, more particles can penetrate a granular filter under a 

higher hydraulic loading, which leads to a higher erosion ratio. Therefore, it is well 

demonstrated the coupled BPLBM approach gains a deeper insight into the internal erosion 

process in dams.  

It should be mentioned that only spheres are used to simulate soil particles at the initial stage. 

Non-spherical particles are supposed to be more fruitful. The implementation of irregular 

particles into BPLBM will be carried out in the following stage.   
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Table 1 Parameters for the filter-soil system  

Parameter Value Parameter Value 

Particle density /kg/m
3
 2750 Fluid density /kg/m

3
 1000 

Friction coefficient 0.3 kinematic viscosity υ 1.0×10
-6

 

Particle contact stiffness /N/m 5.0×10
7
 Bond normal stiffness /N/m 5.0×10

5
 

Bond strength /N 10 Bond shear stiffness /N/m 1.0×10
5
 

Contact damping ratio ξ 0.5 Smagorinsky constant Sc 0.1 

 

 

Table 1



Figures list 

 

Figure 1 Advanced bond model: a. Normal bond model with strain softening  

                                                      b. History dependent Coulomb friction model 

Figure 2 D3Q15 model 

Figure 3 IMB scheme 

Figure 4 Setup of the soil-filter system 

Figure 5 Particle size distribution curves 

Figure 6 Snapshots of the performance of coarse filter (R1=4.29) 

Figure 7 Distribution of soil particles in vertical direction (R1=4.29) 

Figure 8 Distribution of soil particles at the end in three filters 

Figure 9 Distribution of soil particles in vertical direction 

Figure 10 Evolution of erosion ratio in three filters 

Figure 11 Final distribution of soil particles under different gradients 

Figure 12 Variation of eroded particles under different hydraulic gradients 

Figure 13 Variation of erosion ratio under different gradients 

 

 

 

 

 

 

 

 

 

Figure list



Figure 1a
Click here to download high resolution image



Figure 1b
Click here to download high resolution image



Figure 2
Click here to download high resolution image



Figure 3
Click here to download high resolution image



Figure 4
Click here to download high resolution image



0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0.1 1 10 100 

C
u

m
u

la
ti

v
e

 p
e

rc
e

n
ta

g
e
 /
%

 

Diameter /mm 

Base soil 

Fine filter (R1=2.29) 

Intermediate (R1=3.43) 

Coarse filter (R1=4.29) 

Figure 5



Figure 6
Click here to download high resolution image



0 

200 

400 

600 

800 

1000 

1200 

50 100 150 200 250 300 

N
u

m
b

e
r 

o
f 

p
a

rt
ic

le
s

  

Invasion depth /mm 

t = 0.417 s 

t = 0.833 s 

t = 1.250 s 

t = 1.667 s 

Figure 7



Figure 8
Click here to download high resolution image



0 

200 

400 

600 

800 

1000 

1200 

1400 

50 100 150 200 250 300 

N
u

m
b

e
r 

o
f 

p
a

rt
ic

le
s

  

Invasion depth /mm 

filter (R1=4.29) 

filter (R1=3.43) 

filter (R1=2.29) 

Figure 9



0 

2 

4 

6 

8 

10 

12 

0 0.5 1 1.5 2 

E
ro

s
io

n
 r

a
ti

o
 /
%

 

Time t/s 

filter(R1=4.29) 

filter(R1=3.43) 

filter(R1=2.29) 

Figure 10



Figure 11
Click here to download high resolution image



0 

20 

40 

60 

80 

100 

120 

140 

160 

0 0.5 1 1.5 2 

N
u

m
b

e
r 

o
f 

e
ro

d
e

d
 p

a
rt

ic
le

s
  

Elapsed time /s 

i=8.86 

i=7.97 

i=6.64 

i=5.76 

i=4.43 

Figure 12



0 

2 

4 

6 

8 

10 

12 

0 0.5 1 1.5 2 

E
ro

s
io

n
 r

a
ti

o
 /
%

 

Time t/s 

i=8.86 

i=7.97 

i=6.64 

i=5.76 

i=4.43 

Figure 13


