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Abstract

The human immune system is characterized by enormous cellular and anatom-
ical complexity. Lymph nodes (the key centers of immune reactivity) are
organized into distinct structural and functional modules including the T-
cell zone, fibroblastic reticular cell (FRC) network and the conduit system.
A thorough understanding of the modular organization is a prerequisite for
lymphoid organ tissue-engineering. Because of the inherent complexity, it
requires the development of computational models to capture the lymph
node architecture and functional organization. We present a computational
method to model the geometry of the FRC network. It differs from the text-
colorredblood vascular network image-based reconstruction approaches as it
develops the parameterized geometric model using the real statistics of the
node degree and the edge length distributions.

The FRC network model is then used to analyze the fluid flow through the
network. A first observation is that the pressure gradient is approximately
linear, which suggests homogeneity of the network. Furthermore, calculated
permeability values (≈ 0.0033 µm2) show the generated network is isotropic,
while investigating random variations of pipe radii (with a given mean and
STD) shows a significant effect on the permeability. This framework can
now be further explored to systematically correlate fundamental character-
istics of the FRC conduit system to more global material properties such as
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permeability.

Keywords: Lymph node engineering, fibroblastic reticular cell, conduit
system, complex vascular network, artificial networks, fluid flow

1. Introduction

The human immune system is characterized by enormous cellular and
anatomical complexity that is required from a systems point of view to pro-
vide a robust protection against a broad range of pathogens and tumors.
Models based on immune system principles have been increasingly developed
and applied in the fields of science and engineering [9].

The immune system is a subject of great research interest because it per-
forms powerful information processing in a highly parallel and distributed
fashion resulting in its ability of recognition, learning, feature extraction, dis-
tributed detection, dynamic protection, etc. One of the key issues underlying
the above properties is the transport of the information bearing molecules
(e.g., antigens, cytokines, chemokines) or cells from the infected tissues to the
organs of the immune system with lymph flow. The transport processes can
be subdivided into two categories: the lymph flow from interstitial tissues
to the draining lymph nodes (LNs) via the collecting network of lymphatic
capillaries, lymphangions and vessels to thoracic duct and the lymph trans-
port through lymph nodes in which the information processing governing the
immune responses takes place. As it was shown recently, about 90 % of the
lymph entering the lymph node takes a peripheral path to leave the node via
efferent lymphatic vessels. The remaining 10 % of the lymph gains entry to
the internal part of the lymph node, which is densely packed with immune
cells of various types, e.g. antigen presenting cells (APCs), T-cells, B-cells.
This occurs via the reticular network, which comprises reticular fibers, re-
lated extracellular matrix components, and associated fibroblastic reticular
cells (FRCs) constituting a conduit system for bulk flow delivery of soluble
molecules to distinct sites in the paracortex, particularly the high endothe-
lial venules [11, 12, 30]. This network is a multifunctional three-dimensional
infrastructure that facilitates encounters of cells with other cells and factors
necessary for effective and efficient immune surveillance. Given the impor-
tance of biological mediators in regulating immune responses, it is essential
to understand the quantitative parameters of the lymph flow through the
conduit system in health and disease as this directly impacts the spatial and
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temporal aspects of information delivery to the reactive parts of the lymph
node. The mathematical modelling of the conduit system and the fluid flow
through the network will serve to replace a descriptive characterization of
the transport system with a quantitative framework.

LNs are the key centers of immune reactivity. Some pathologies are asso-
ciated with the destruction of lymphoid tissue organization, e.g. the infection
with human immunodeficiency virus [14] or melanoma [31]. One plausible
approach to reconstitution of the LN functionality is based on activation
of the natural remodelling processes, including the lymphoid tissue inducer
(LTi) cells [20]. Another possibility is based on bio-engineering of an artificial
LN [6, 25]. Both present a formidable challenge due to the high level of com-
plexity resulting from the highly organized stromal and lymphoid structures.
LNs are compartmentalized into distinct structural and functional modules
such as the subcapsular sinus, trabecular- and medullar sinuses, B-cell folli-
cles, medulla, blood vasculature including high endothelial venules (HEVs),
T-cell zone, fibroblastic reticular cell (FRC) network and the conduit sys-
tem [21, 30, 27]. A thorough understanding of the modular organization is
a prerequisite for lymphoid organ tissue-engineering. Because of inherent
complexity, the development of computational models capable of capturing
the LN architecture and functional organization is required. The LN scaffold
and lymph transport through the conduit system ensheathed by the FRC
network appear to be most difficult to describe computationally. Indeed,
the latest studies of the fluid flow in LNs [13, 7] do not consider the FRC
network.

The computational reconstruction of 3D morphology of lymphoid tissues
is based on a direct use of the imaging data generated by various techniques
ranging in their resolution. The broad availability of various imaging tech-
niques has enabled the spatial characterization of LN structures [24, 32]. A
mesoscopic imaging represented by selective plane illumination microscopy
(SPIM) and optical projection tomography (OPT) [22] allow visualization of
major LN structures, such as B-cell follicles, HEVs and the subcapsular sinus.
However, more complex LN structures, such as the FRC network enwrapping
the conduit system, require application of higher resolution techniques, e.g.,
confocal microscopy, to generate information on the structural properties of
the FRC network [15]. Existing approaches for generation of LN vascular net-
works can be subdivided into two major categories: the reconstruction- [10]
and the modelling-based algorithms [29]. Because of an extremely variable
appearance of the FRC network, the reconstruction-based algorithms are not
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applicable yet. Therefore, the geometric modelling approach is currently the
only feasible solution to develop computational models of the FRC network
in parameterized forms suitable for further application studies of transport
phenomena in the LN.

In the following parts of Section 1 we provide an overview of existing
approaches to model vascular networks and give the relevant details of the
experimental data generation. Then we present an efficient computational
algorithm to to generate 3D network model using experimental data on the
statistics of the node degree- and edge length distributions the FRCs network
both as an idealized topological structure and as real solid object model in
Sections 2 and 3. The generated FRC network is finally used to study the
fluid flow through lymph node conduits in Section 4.

1.1. Approaches to vascular branching networ generation

Numerous existing approaches to the generation of vascular networks deal
with the blood vasculature. Most of the approaches consider degree one
(endpoints) and degree-three nodes (bifurcations) of the vessels to build up
a graph representation of the networks. Three different methodologies are
employed in these studies: (i) a skeleton-based graph reconstruction from
vascular segmentations [4, 8]; (ii) a biophysical modelling of the morpho-
genesis with convection-reaction-diffusion systems [23] [29], and (iii) using
ad hoc assumptions about the optimality of the network topology with re-
spect to some potential energy of the interactions between the nodes [16].
Whereas theoretically it is possible to adapt the above approaches for the
FRC network generation, currently to our knowledge no algorithms for mod-
elling the FRC network from real spatial data exist. In this study we propose
such an algorithm to model the FRC network topology and geometry based
on direct use of quantitative real data on the node degree- and edge length
distributions.

Computational modelling algorithms aim to generate blood vascular net-
works using the information on the degree- and the edge length distribution
as well as the spatial embedding of the network. The modelling algorithms
can be based on fractal trees, i.e. a binary tree approximating the vascular
network structure. An example is provided by a binary tree approximat-
ing the brain vascular network [2]. A more elaborate algorithm considers
the fractal tree constructed using the level set distance function [3]. Other
examples of the fractal tree network construction are reviewed in [28]. A spe-
cific approach based on spring embedders and force directed graph drawing
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algorithms was formulated in [16]. The graph is represented as a network
of connected vertices, positioned according to the action of springs, itera-
tively pulling the nodes to attain an optimal configuration corresponding to
the potential energy minimum of the system. The major advantage of the
network graph generation using the fractal tree approach is due to the sim-
plicity of its implementation and analysis. However, the fractal approach is
not efficient in the case of the FRC network because of its high degree of con-
nectivity. The algorithm based on spring embedders is potentially applicable
for usage in FRC network generation but is likely to be computationally very
demanding. In comparison to the force-directed methods, the FRC network
modelling algorithm presented in this paper, allows one to move nodes and
connections (edges) to achieve the target distances between them and to split
the connections and curve edges for allocating the positions of vessels in a
way which does not necessarily lead to a symmetry.

1.2. Data generation for the algorithm

The computational algorithm for the generation of the FRC network data
has been previously developed [15]. Briefly, Ccl19−CrexR26−eyfp reporter
mice [17] were used to target FRCs specifically in murine inguinal LNs. Z-
stack images (approximately 300x300x30 µm) of the T cell zone FRC network
were acquired by confocal microscopy and quantitative morphological anal-
ysis [18] was performed on single FRCs in Imaris (Bitplane). The number
of protrusions were calculated per FRC indicated as the number of edges
per node in Figure 1. The lengths of the protrusion segments (edge length
in Figure 1) were calculated using Filament Tracer in Imaris. The imaging-
based real geometry FRC statistics were implemented in the computational
algorithm for the FRC network construction, which is described in detail
in the next section. Animal experiments were performed in accordance with
federal and cantonal guidelines (Tierschutzgesetz) under the permission num-
bers SG13/05 and SG13/04 following review and approval by the Veterinary
Office of the Canton of St. Gallen.

Figure 1 below presents the spatially realistic FRC network data (A) on
edge length and (B) node degree distributions, , respectively.
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Figure 1: Real geometry FRC network statistics: A) the distribution of the edge lengths
and B) the distribution of the number of links per node, Mean ND is the average number
of links per node (degree). Data represent topological analyses of the T cell zone FRC
network data sampled from 3 mice.

2. FRC network generating algorithm

2.1. Description of the algorithm

Two 1D arrays, {dn} and {Le}, are generated of random values dis-
tributed in accordance with the experimental FRC histograms of nodal in-
dices (node degree) and conduits lengths, respectively. An N ×N ×N grid
of nodes is generated with N = 11 and the grid step h = 5 µm. A nodal
index chosen randomly from the {dn} array is assigned to every node in the
grid.

Considering one-by-one every node n, the possibility is checked to estab-
lish a new link between node n and another node randomly taken from its
26-neighbouring. A link can be established if the current nodal indices of
both nodes are less than the respective assigned nodal indices. In this case
the link is stored as a graph edge, and a target length is assigned to it by
randomly taking a value from the {Le} array. At the end of this stage (re-
quiring O(Nn = N3) operations) we obtain a graph with nodes located on a
regular rectangular grid with appropriately distributed nodal indices. Note
that the edge lengths in this graph will be h,

√
2h or

√
3h, which generally

does not coincide with the assigned edge lengths.
Hence, the next stage is to perturb the nodes without changing the graph

topology such that the edge lengths become as close as possible to the length
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values previously assigned from {Le}. The total number of operations in such
an algorithm is estimated to be O(N2

n). To make it faster, i.e. O(Nn), we
split the total domain by a set of S×S×S cubic subdomains with S = 10 µm
and associate every node with the subdomain containing that node. Then
we compose the attraction/repulsion forces moving the contiguous nodes to
the target distance whilst introducing repulsive forces between node n and
all the non-contiguous nodes belonging to the same or adjacent subdomains.

The second stage is implemented via the following iterations. For every
node n with physical coordinates Pn = {xn, yn, zn} from a given subdomain
find the set of all contiguous nodes Nn and a set of all the nodes belonging to
this or adjacent subdomain Kn (excluding node n). Then the new position
of node n is calculated as

Pnew
n = Pn + ∆Pn where ∆Pn =

∑
m∈Nn

∆Pnm +
∑

k∈Kn\Nn

∆Pnk

∆Pnm =
Pm −Pn

2Lnm

(Lnm − Lt
nm)

∆Pnk =
Pk −Pn

2Lnk

(Lnk − LK) if Lnk < LK otherwise 0.

Here Lnm = ‖Pm−Pn‖ is the current Euclidian distance between the nodes,
Lt
nm is the target distance between them (i.e. assigned from {Le} to the given

edge) and LK is the minimal allowed distance for non-contiguous nodes. Our
numerical simulation shows that LK = 6.5 µm is a good choice for obtaining
a realistic graph.

After updating the position of the nodes, every node is again associated
with a subdomain (typically it is the same subdomain or an adjacent one).
This algorithm is repeated until the maximal displacement max

n
|∆Pn| < ε

where ε is a prescribed value which determines the accuracy of targeting the
edge lengths. We take ε = 0.1 in our simulation.

2.2. Pseudocode representation

Below the algorithm is specified as pseudocode.
Input: Regular cube with N3 nodes array node. NodeIndex is an array

with randomly distributed nodal indexes generated using the exper-
imental data. EdgeTarget is an array with randomly distributed
lengths of edges generated using the experimental data. CONST1
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and CONST2 are some constants specifying a minimal distance be-
tween the unconnected nodes and the upper bound on the difference
between the total edge lengths of the real and model networks, re-
spectively.

Output: The model FRC network.
for i = 1 to N3 do

for j = all neighbors of node [i] do
if ( NodeIndex [i] == free ) and ( NodeIndex [j] == free ) then

setline( NodeIndex [i], NodeIndex [j], random (EdgeTarget) )
end

end

end
RepeatLabel :

ε = 0;
for i = 1 to N3 do

OffsetVector = (0,0,0);
for j = 1 to N3 do

// Function nodes() indicates connective relations between nodes
if nodes ( NodeIndex [i], NodeIndex [j] ) are connected then

// Function move() returns offset of the Node [i]
OffsetVector = OffsetVector + move( node with NodeIndex [i],
(EdgeReal( NodeIndex [i], NodeIndex [j] ) - EdgeTarget( NodeIn-
dex[i], NodeIndex[j] )) / 2 )

end
if nodes ( NodeIndex [i], NodeIndex [j] ) are not connected and

EdgeReal( NodeIndex [i], NodeIndex [j] ) < CONST1 then
OffsetVector = OffsetVector + move( node with NodeIndex [i],

(EdgeReal( NodeIndex [i], NodeIndex [j] ) - CONST1) / 2 )
end

end
ε = ε + length(OffsetVector);

end
if ε > CONST2 then

goto RepeatLabel
end
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2.3. Implementation of the algorithm

The algorithm was written in C++ and compiled with MSVS2012. Net-
work graph generation was performed on a Windows 10 workstation with
16 Gbytes of RAM and Intel Xeon CPUs (E3 − 1241 v3 @ 3.5 GHz). The
network with 1330 nodes was generated in 114 sec. It required 740 iterations
which resulted in the relative error ε of the edge lengths displacement re-
duction to 0.1. The computational time scales linearly with the order of the
network graph. The source code is available upon request to the first author.

3. Examples of networks generated according to specified charac-
teristics

The network graph for the real FRC network generated using the above
algorithm is shown in Figure 2 A. The degree- and length distributions of the
model network are shown in Figure 4 A-B) and are comparable to the real
image-based FRC network data. The convergence of the algorithm in terms
of the edge lengths displacement εt as a function of the number of iterations
required to get the length correct is shown in Figure 2 B.

A) B)

Figure 2: Performance of the algorithm A) The model FRC network. The number of
nodes is 1330, the number of edges is 2736. The network statistics is shown in Figure 4
A − B). The colorbar represents the edge lengths. B) The convergence of the algorithm
in terms of the relative edge lengths displacement error ε.

The algorithm was validated by generating other types of model networks
that might be relevant under various pathophysiological conditions [18], e.g.,
the scale-free network with a power law- and the network following a uniform
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degree distribution, respectively, as shown in Figure 4 C-D) and E-F). The
scale-free network is set to follow the degree distribution P (k) ∼ 28−k, k ∈
[2, 8]. The network with a uniform degree distribution is given by the pdf
P (k) ∼ 1/7, k ∈ [2, 8]. The scale-free and the uniform degree distribution
networks generated by the algorithm are shown in Figure 3 A-B). One can
see in increase in the abundance of the short edges in the scale-free network
versus the uniform degree distribution network.

Figure 3: The FRC networks corresponding to scale-free A) and the uniform degree B)
distribution generated using the same mean nodal degree and the real data distribution of
the edge length. The network statistics are shown in Figure 4 C-D and E-F). The colorbars
represent the edge lengths.

The edge length distribution for the generated three networks are shown
in Figure 5 A-C). The difference of about 25% in the mean value of the edge
lengths of the model network versus the real data (see Figure 1 A) is due to a
relatively small size of the constructed FRC network. A ten-fold increase in
the number of nodes reduces the difference from the real data average length
to practically zero. At the moment there are no other algorithms available
for comparing the quality of capturing a real FRC network features for the
developed algorithm.
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Figure 4: Characteristics of target (left column, A,C,E) and model (algorithm generated)
approximation networks (right column, B,D,F): number of edges per node (node degree),
ND is the mean number of links per node. A − B) Real FRC network data model dis-
tribution of edges per node and the model approximation. C − D) Target network of a
Scale-free type with a power law distribution of the number of links per node and the
model approximation; E − F ) target network with a Uniform distribution of edges per
node and the model approximation. Normalized histograms are shown.

4. Application to study the fluid flow through lymph node conduits

4.1. The Flow Model
A steady-state flow solver was developed in MATLAB R© to investigate the

overall resistance and permeability of the network. The momentum balance
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Figure 5: Characteristics of the model approximation of the real data and ideal target
networks: edge length distribution, Mean EL is the mean edge length of the networks.
A). The model approximation of the real data FRC network. The model approximation
of B) the Scale-free network and C) the network with a Uniform distribution of edges per
node. EL stands for the edge lengths. The median values are 11.1, 10.2 and 11.9 µm for
the different target networks, respectively.

for every 1D segment consisted of a linear relation between flow, Q, and
pressure drop along each segment, ∆p, with local pipe resistance, Rp, as the
proportionality constant. Mass conservation was imposed on all the nodes in
the network. The initial mesh was approximately cuboid, but nodes near the
boundaries did not lie in a plane, which would be convenient for imposing
boundary conditions. Hence, points within two mean element lengths of the
two boundaries normal to x were made co-planar in the y − z plane and a
pressure drop of 500Pa was then prescribed in the x-direction (Figure 6) as
boundary conditions. It should be noted that this might lead to some edges
lying in the boundary, which results in zero flow for those edges and will affect
the edge length distribution slightly. However, this effect was found to be
insignificant. A system matrix was built and static condensation was applied
to reduce the system and solve for only pressure p. The code was vectorised
to improve performance while a direct solver was used for problems up to
200k nodes and a stabilised biconjugate gradient method was employed for
larger problems. All cases were executed on a standard macbook pro (2.9
GHz Intel Core i7, 8Gb 1600 MHz DDR3). In the flow studies presented
the radii of all channels were assumed to have a constant value of 1µm,
while a viscosity of 1.5cP was chosen (unless stated otherwise). The velocity
profile in the channels was approximated as a Hagen-Poiseuille pipe flow.
The inflow and outflow are tested to be equal for all simulations suggesting
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Figure 6: The 3D flow domain with the pipes shown in blue. A pressure of 500Pa is
prescribed in the red nodes and 0Pa is prescribed in the green nodes.

a perfect conservation of mass. A network of 24519 edges and 12161 nodes
was considered for the flow studies. The inflow boundary consisted of 495
nodes and the outlet consisted of 443 nodes. A zero flow was observed in 4%
of the edges, caused by the generation of the boundaries.

4.2. Results

Similarity between the microscale behaviour of the individual pipes and
the macroscale behaviours of the network can be seen from the pressure
gradient in Figure 7. Homogenisation theory would suggest a linear pressure
gradient across the domain, a slight deviation from this can be observed at
the boundaries of the network. This is highlighted by the cyan cubic line
fitted through the pressure-distance graph. It can be hypothesised that this
is due to long pipes spanning large sections of the network. This hypothesis
seems justified through the red cubic fit in Figure 7, where a small decreased
deviation from linearity can be achieved by removing edges whose length
exceeds twice the mean.
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Figure 7: Pressure per node against its coordinate in the direction of the prescribed
pressure gradient. Note the deviation from the linearity near the boundaries. A cubic is
fitted and can be compared to a cubic fitted to the network with larger pipes removed.
Note the reduced inflection.

Through flow simulations in other directions, the network was also found
to be reasonably isotropic with intrinsic permeabilities of 0.0034, 0.0033 and
0.0033 µm2 in the x, y and z directions, respectively, for a pipe radius of
1µm. Swartz and Fleury [33] note the use of Carmen-Kozeny correlations in
estimating the permeability of tissues. The relation given is as follows with κ
being the permeability; ε, the void volume fraction; rH , the hydraulic radius
and b, the Kozeny factor - in this case 8:

κ =
εr2H
b

(1)

This relationship gives an estimated permeability of 0.0168 µm2. Indicating
factors other than porosity and hydraulic radius play a role in the perme-
ability of such networks. From the constitutive law it is known that for a
universal pipe radius the permeability will rise quartically with pipe radius.
A range of values from 1.5cP to 2.2cP were found for lymph viscosity in liter-
ature [33] also channel radii in the range between 200nm and 3µm have been
observed [26]. Table 1 shows the apparent velocities found for the network
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at the extremes of these ranges for pipe radius and viscosity. The apparent
velocity is the total flow-rate divided by the cross-sectional area bounding
the domain. If the network is imagined within a rectangular cuboid of tissue
the apparent velocity is the velocity fluid would appear to have as it seeped
through the tissue. This illustrates the significance of pipe radius on the
resistance in the network as was expected from the Hagen-Poiseuille profile.

case 1 case 2 case 3 case 4
Pipe Radius (µm) 0.2 3 1 1
Viscosity (cP) 1.5 1.5 1.5 2

Apparent Velocity(µms−1) 480.0 9.480× 10−3 5.926 4.040

Table 1: Apparent velocities, i.e. the observed velocity of fluid travelling through a cuboid
of tissue containing the network, for extremes of observed values of viscosity and pipe
radius

Although the results presented in Table 1 gives some insight, the radial
value of all pipes in the network is typically not constant, but distributed
across a defined range. This distribution can have a large effect on the
resistance of the network. To investigate this further, normal distributions
truncated between the bounds 200nm and 3µm with three different means,
i.e. 0.9, 1.6 and 2.1 and a variety of standard deviations, were generated.
Each pipe was given a radius with a different value drawn from a distribution.
This process was repeated a hundred times for each distribution. Shown in
Figure 8 is the effect of the distribution on the mean permeability with error
bars of length twice the standard deviation. As can be seen the nature of
the distribution has a profound effect on the permeability. However, overlap
exists between the values found computationally for permeability and those
found experimentally within LNs; which range from 102 to 10−2 µm2 [7].
Future work should consider the sensitivity of these type of network problems
not only to the radii used, but also their probability distribution.
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Figure 8: Effect of randomly drawing from widening distributions of radii. Each case was
run 100 times and the mean permeability plotted, with error bars at twice the standard
deviation.

5. Discussion and future work

We present a computational method to model the geometry of the FRC
network. It differs from the vascular network image-based reconstruction
approaches as it develops the parameterized geometric model using the real
statistics of the nodal degrees and the edges length distributions. Therefore,
it can be used to generate various networks to study the impact of the topo-
logical properties on the transport and scaffold function of the FRC/conduit
network of the LN.

The constructed FRC network model has been used to analyze the fluid
flow through the network. It is the first study in which fundamental char-
acteristics of the conduit system such as the dependence of permeability on
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the network parameters have been examined. A first observation is that
the pressure gradient is approximately linear, which suggests homogeneity of
the artificially generated network. Calculated permeability values show the
network is also isotropic. A range of typical pipe radii and viscosity were
found in the literature, the effect of which on the apparent velocity in the
network is quantified and shows a large variability. Finally, a large set of
networks is generated for various mean values for the pipe radii, which are
then randomly perturbed using a truncated normal distribution with a given
STD. These calculations show a significant effect on the permeability and
the trends found through this approach will be quite valuable for a further
analysis of different networks with varying stochastic properties.

This is a first study in which (1) a computational algorithm for the gener-
ation of complex FRC network models (relevant for the LN conduit system)
from real data has been proposed and (2) the characteristics of the fluid flow
through the network has been explored. The results provide a firm basis
for further analysis of this complex information distribution system in LNs
under various conditions ranging from its destruction in the course of in-
fections (such as HIV) to remodelling in response to inflammatory stimuli.
Understanding the properties of the FRC network is essential for a rational
engineering of artificial LNs and the identification of the criteria for therapeu-
tic control of its restoration. Indeed, the FRCs in the LN have been recently
shown to directly regulate various components of immune cell function rang-
ing from activation to suppression of T-lymphocytes [1]. Many persistent
human infections such as HIV, hepatitis C virus are characterized by colla-
gen deposition and fibrosis. Both processes leading to the reduction of the
LN and liver function are the consequences of alterations in the performance
of FRCs. The FRC mediated regulation of T cell immunity should depend
on the presence of various signaling molecules including those delivered by
the lymph flow via the conduit system. Understanding of the information
flow through the conduit system in normal conditions and during infections
will allow researchers to better determine the impact of specific drugs and
medication via a mechanistic modelling of the pharmacokinetics in lymphoid
organs. Another area of great interest to quantitative studies of the orga-
nization in LN vascular networks, including the blood vascular system, and
their role in the performance of lymphoid organs is biomaterials engineering.
It has been pointed out that organs of broad interest where its architectural,
cellular, and molecular complexity has prevented progress in ex vivo engi-
neering are the secondary lymphoid organs and so far, no immune organ
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has been developed with an ability to control the rate of immune reaction
through tunable design parameter [25]. The authors engineered a B cell
follicle organoid made of nanocomposite biomaterials, which recapitulates
the anatomical micro-environment of a lymphoid tissue. The major com-
ponent of the organoid was the extracellular matrix. Obviously, our ability
to synthesize the conduit network according to its role in the real LN is an
important step in rational engineering of artificial LNs and identification of
the criteria for therapeutic control of its restoration. The micro-scale reg-
ulation of multiple extracellular/intracellular molecular dynamics in such a
complicated tissue as LNs is still largely unclear. Mathematical models of
LN structures will serve as a key rational tool for understanding and trans-
lating the design principles of the immune system into biomaterials- or 3D
printing-based artificial immune organs.
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