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Compensated Convexity Methods

for Approximations and Interpolations

of Sampled Functions in Euclidean Spaces:

Theoretical Foundations

Kewei Zhang∗, Elaine Crooks† and Antonio Orlando‡

Abstract

We introduce Lipschitz continuous and C1,1 geometric approximation and interpolation
methods for sampled bounded uniformly continuous functions over compact sets and over com-
plements of bounded open sets in Rn by using compensated convex transforms. Error estimates
are provided for the approximations of bounded uniformly continuous functions, of Lipschitz
functions, and of C1,1 functions. We also prove that our approximation methods, which are
differentiation and integration free and not sensitive to sample type, are stable with respect to
the Hausdorff distance between samples.
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1 Introduction

In this paper we apply compensated convex transforms [47, 48, 49, 50] to define Lipschitz continuous
and smooth (C1,1) geometric approximations and interpolations for bounded real-valued functions
sampled from either a compact set K in Rn or the complement K = Rn \ Ω of a bounded open
set Ω. The former is motivated by approximating or interpolating sparse data or contour lines
and the latter by the so-called inpainting problem in image processing [17], where some parts
of the image content are missing and the aim is to use other parts of the image to repair or
reconstruct the missing parts. We first define two one-sided approximations, called upper and lower
approximations, from above and below the graph of the sampled function respectively, and then an
average approximation. By using mixed compensated convex transforms [47], we will also define a
smooth (C1,1) average approximation. Our central aim here is to develop a mathematical theory
for these average approximations. Applications of this theory to level-set reconstruction, scattered
data interpolation and inpainting will be presented, together with some prototype examples, in a
follow-on paper [51].
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Before relating our results to previous work on approximations and interpolations of sampled func-
tions, we first recall the notions of quadratic compensated convex transforms of bounded functions
and present our definitions of upper, lower and average approximations (note that compensated
convex transforms can be defined under more general growth conditions than those given here [47]).

Suppose f : Rn 7→ R is bounded. The quadratic lower and upper compensated convex transform
[47] (lower and upper transforms for short) are defined for each λ > 0 by

C lλ(f)(x) = co[λ|·|2 +f ](x)−λ|x|2, resp. Cuλ(f)(x) = λ|x|2−co[λ|·|2−f ](x), x ∈ Rn, (1.1)

where |x| is the standard Euclidean norm of x ∈ Rn and co[g] denotes the convex envelope [27, 37]
of a function g : Rn 7→ R that is bounded below. For given λ > 0 and τ > 0, two quadratic
mixed compensated convex transforms [47] (mixed transforms for short) are defined, respectively,
by Cuτ (C lλ(f)) and C lτ (Cuλ(f)).

One key property of the compensated convex transforms, established in [47], is that C lλ(f) (re-
spectively, Cuλ(f)) realises a ‘tight’ approximation of f from below (respectively, from above), in
the sense that if f is C1,1 in a neighbourhood of some x0, then there is a finite Λ > 0, such that
f(x0) = C lλ(f)(x0) (respectively, f(x0) = Cuλ(f)(x0)) whenever λ ≥ Λ. A second important prop-
erty is that of locality. Since the definitions(1.1) involve the evaluation of the convex envelope of
functions [27, 37], one might think that these notions are global in nature, that is, the values of
these transforms at a given point might involve values of the original function far away from the
point. However, the locality property for compensated convex transforms [48, Theorem 3.10] states
that if f is bounded, i.e., |f(x)| ≤ M in Rn for some M > 0, then the values of C lλ(f)(x0) and
Cuλ(f)(x0) depend only on the values of f in the closed ball B̄(x0; R) with R = 2

√
2
√
M/λ. As a

result, these apparently global transforms are, in fact, local.

In this paper, we mainly consider two types of data sets in Rn, given that the typical applications
we have in mind are approximation of sparse data and of contour lines, and inpainting of damaged
images. We therefore assume in the following that, unless otherwise specified, K ⊂ Rn is either a
compact set or the complement of a bounded open set Ω ⊂ Rn, i.e. K = Rn \ Ω. We denote by
f : Rn 7→ R the underlying function to be approximated. The function fK : K ⊂ Rn 7→ R is our
sampled function defined by fK(x) = f(x) for x ∈ K, and ΓfK := {(x, fK(x)), x ∈ K} is its graph.

Let K ⊂ Rn be a non-empty closed set and suppose that for some constant A0 > 0, |fK(x)| ≤ A0

for all x ∈ K. Given M > 0, we define two functions extending fK to Rn \K, namely

f−MK (x) = f(x)χK(x)−MχRn\K =

{
fK(x), x ∈ K,

−M, x ∈ Rn \K ;

fMK (x) = f(x)χK(x) +MχRn\K =

{
fK(x), x ∈ K,

M, x ∈ Rn \K ,

(1.2)

where χG denotes the characteristic function of a set G.

Definition 1.1. For M > 0, the upper compensated convex approximation with scale λ > 0
for the sampled function fK : K → R is defined by

UMλ (fK)(x) = Cuλ(f−MK )(x), x ∈ Rn . (1.3)

The lower compensated convex approximation with scale λ > 0 for the sampled function
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fK : K → R is defined by
LMλ (fK)(x) = C lλ(fMK )(x), x ∈ Rn . (1.4)

The average compensated convex approximation with scale λ > 0 for the sampled function
fK : K → R is defined by

AMλ (fK)(x) =
1

2

(
C lλ(fMK )(x) + Cuλ(f−MK )(x)

)
, x ∈ Rn. (1.5)

The mixed average compensated convex approximation with scales λ > 0 and τ > 0 for the
sampled function fK : K → R is defined by

(SA)Mτ,λ(fK)(x) =
1

2
(Cuτ (C lλ(fMK ))(x) + C lτ (Cuλ(f−MK ))(x) , x ∈ Rn . (1.6)

In the following, we refer to the approximations in Definition 1.1, for short, as the upper, lower,
average and mixed approximations.

Note that since the mixed compensated convex transforms are C1,1 functions [47, Theorem 2.1(iv)
and Theorem 4.1(ii)], the mixed average approximation (SA)Mτ,λ is a smooth version of our average
approximation. Also, for a bounded function f : Rn 7→ R, satisfying |f(x)| ≤ M , x ∈ Rn for some
constant M > 0, we have the following estimates [48, Theorem 3.13]

0 ≤ Cuτ (C lλ(f))(x)− C lλ(f)(x) ≤ 16Mλ

τ
, 0 ≤ Cuλ(f)(x)− C lτ (Cuλ(f))(x) ≤ 16Mλ

τ

for all x ∈ Rn, λ > 0 and τ > 0, and hence can easily show that for any closed set K ⊂ Rn,

|(SA)Mτ,λ(fK)(x)−AMλ (fK)(x)| ≤ 16Mλ

τ
, x ∈ Rn .

This implies that for given λ > 0 and M > 0, the mixed approximation (SA)Mτ,λ(fK) converges

to the basic average approximation AMλ (fK) uniformly in Rn as τ → ∞, with rate of convergence
16Mλ/τ .

Remark 1.2. We can additionally consider the families of average approximations

AMλ,s(fK)(x) = sC lλ(fMK )(x) + (1− s)Cuλ(f−MK )(x), s ∈ [0, 1]

and
(SA)Mτ,λ,s(fK)(x) = sCuτ (C lλ(fMK ))(x) + (1− s)C lτ (Cuλ(f−MK ))(x), s ∈ [0, 1] .

These more general average approximations give some flexibility when dealing with sets which are
not graphs of single-valued functions. For instance, suppose X ⊂ Rn × R is a finite set. Let
K = PRn(X) := {x1, . . . , xn} be the orthogonal projection of X to Rn, and for x ∈ K, define

f̌K(x) = inf{v, (x, v) ∈ X}, f̂K(x) = sup{v, (x, v) ∈ X} .

Then f̌K(x) ≤ f̂K(x) and f̌K , f̂K are both single-valued functions. We can then define

AMλ,s(X)(x) := sC lλ(f̌MK )(x) + (1− s)Cuλ(f̂−MK )(x) (1.7)

for suitable M , and optimise AMλ,s(X) with respect to s ∈ [0, 1] to find a good approximation of
the set X by a single-valued function. For example, we may consider the following nonlinear least
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square approximation of the data set by the family of functions AMλ,s(X),

inf
s∈[0, 1]

n∑
i=1

max
{
|AMλ,s(X)(xi)− v|2, (xi, v) ∈ X

}
.

However, we do not explore this further here, instead focussing on our basic average approximation
AMλ (fK) and the mixed approximation (SA)Mτ,λ.

If we consider the special case where K is a finite set, the average approximation AMλ (fK) defines
an approximation for the scattered data ΓfK = {(x, fK(x)), x ∈ K}. Moreover, although our
extended functions are defined in the whole space Rn, when K is compact we are interested only in
the values of our average approximation AMλ (fK)(x) for x in the convex hull co[K] of the sampled
set K. If K is the complement of a bounded open set Ω ⊂ Rn, we will consider the values of
AMλ (fK)(x) for x in the whole space Rn or in a large domain containing Ω̄.

Theoretically, we may also set M = +∞ and consider the following functions, which are commonly
used in convex analysis, in place of (1.2):

f−∞K (x) =

{
f(x), x ∈ K,
−∞, x ∈ Rn \K;

f+∞
K (x) =

{
f(x), x ∈ K,
+∞, x ∈ Rn \K. (1.8)

This method of extension can help to establish better approximation results than those obtained us-
ing f−MK and fMK (compare Theorem 3.6 with Theorem 3.7). Note, however, that the corresponding
average approximation,

A∞λ (fK)(x) :=
1

2

(
C lλ(f+∞

K )(x) + Cuλ(f−∞K )(x)
)
, x ∈ Rn,

is not Hausdorff stable with respect to sample sets in the sense introduced in Section 4, in contrast
to the basic average approximation AMλ (fK).

We turn now to some background and motivation. Selected recent developments on approximation
and interpolation methods are discussed in [30]. The literature on approximation and interpolation
theory for sampled functions over the real line R by polynomials and other functions is quite rich
[44, 18]. When n ≥ 2, however, many methods for R no longer apply directly to Rn. In particular,
there is no direct construction of interpolations for randomly placed sample functions based on one-
dimensional interpolation methods. For scattered data, Delaunay triangulation-based direct spline
designs have been widely used in computational geometry [35, 21]. Thin plate spline methods,
variational methods, which are related to radial basis function methods, and more general kernel
methods, have been used extensively in applications [45, 14, 30], and morphological reconstruction
methods based on level sets using geodesic distance [43, see Ch.6.4 and Ch.7.1.2] have also been
developed. Nonlinear partial differential equations and variational methods using various total
variation (TV) based models [40] have been used for image reconstruction problems, salt & pepper
noise reduction [16] and image inpainting [10, 17]. Although there is a well-developed mathemat-
ical theory on the existence and uniqueness of their weak solutions [22, 2, 3, 8], the quantitative
effectiveness of such methods is mostly assessed on the basis of numerical experiments.

Note that many methods are sensitive to the type of data to be interpolated or approximated,
that is, to the sample type. The spline function interpolation and finite element based methods
design interpolations require precise knowledge of the sample locations. In this case, Delaunay
triangulation or other types of decomposition typically must be constructed first [35]. The radial
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basis function method relies on solving systems of linear equations [45]. In order to apply any
of these methods to interpolate or approximate data sets, one has to assume that the data set is
scattered, that is, the set is finite and the points are isolated. If the data set is given by contour
lines (or by level sets), further discretisation is required before such methods can be used.

Our approach, on the other hand, is not sensitive to data types. We only assume the underlying
function to be bounded and uniformly continuous, and the sample sets to be compact or to be the
complement of a bounded open set. In the digital setting, the data are always finite sets, and in
a ‘point cloud’, a line can be formed by discrete points next to each other, which, by definition,
should not be thought of as scattered data. Therefore further down sampling might be needed in
order to apply spline or radial basis function methods. But our average approximation AMλ (fK),
on the contrary, applies directly to these data sets. In addition, collected data are bounded in a
given window, and thus the assumption of boundedness of the underlying functions covers most
situations in applications. It should be noted that the idea of using averages for approximations is
natural and has also been used before by several authors, for example [7, 6, 5] introduce the notion
of proximal average, a parametrized convex function that provides a continuous transformation of
a convex function into another. In [25] this transformation has also been applied to non-convex
functions and with non-quadratic weights by exploiting its relationship with the Moreau envelopes,
and has been used as a fundamental tool to justify the application of parallel proximal algorithms
in nonsmooth optimization [46, 36].

The exact form of an interpolation is of interest but is often not known. An advantage of Delaunay
triangulation-based spline interpolation methods is that for simple geometric examples, one can
describe precisely what the interpolation is, in contrast to, for instance, radial basis function and
partial differential equation based methods. Although we do not deliberately design the form of
our interpolations, it can be shown that our average approximation AMλ (fK) produces particular
forms for us automatically. For example, if K is finite and λ > 0, M > 0 are large, we will prove
in a follow-on paper [51] that AMλ (fK)(x) is a piecewise affine interpolation from K to co[K]. We
can also give explicit calculations of our approximations in some other simple geometric cases.

A further natural and practical question in data approximation and interpolation is the stability of a
given method. For approximations and interpolations of sampled functions, we would like to know,
for two sample sets which are ‘close’ to each other, say, under the Hausdorff distance [1], whether
the corresponding approximations are close to each other. It is easy to see that differentiation and
integration based approximation methods are not Hausdorff stable because continuous functions
can be sampled over a finite dense set. One of the advantages of our method is that for a bounded
uniformly continuous function f , and for fixed M > 0 and λ > 0, the mapping K 7→ AMλ (fK)(x) is
continuous with respect to the Hausdorff distance for compact sets K, and the continuity is uniform
with respect to x ∈ Rn. This means that if another sampled subset E ⊂ Rn (finite or compact) is
close to K, then the output AMλ (fE)(x) is close to AMλ (fK)(x) uniformly with respect to x ∈ Rn.
As far as we know, not many known interpolation/approximation methods share such a property.

To shed further light on the theory we develop, it is worth observing the connection between the
compensated convex transforms and our proposed average approximation on the one hand, and the
critical mixed Moreau envelopes and mathematical morphology on the other hand. The lower and
upper transforms can be viewed as ‘one-step’ morphological opening and closing, respectively [48].
They in fact coincide with the critical mixed Moreau envelopes, that is,

C lλ(f)(x) = Mλ(Mλ(f))(x) and Cuλ(f)(x) = Mλ(Mλ(f))(x) , (1.9)
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where

Mλ(f)(x) = inf{f(y) + λ|x− y|2, y ∈ Rn} and Mλ(f)(x) = sup{f(y)− λ|x− y|2, y ∈ Rn}

are the lower and upper Moreau envelopes [33, 34, 31, 4, 15], respectively. If we denote by bλ(x) =
−λ|x|2 the quadratic structuring function, introduced for the first time in [28, 11, 12, 29], then with
the notation of [41, 43], we have1

Mλ(f)(x) = inf{f(y)− bλ(x− y), y ∈ Rn} = f 	 bλ ,

Mλ(f)(x) = sup{f(y) + bλ(x− y), y ∈ Rn} = f ⊕ bλ

that is, the Moreau lower and upper envelopes can be viewed as ‘greyscale’ erosion and dilation
with quadratic structuring function, respectively [11, 32]. Compared with (1.9), we thus have

C lλ(f) = (f 	 bλ)⊕ bλ and Cuλ(f) = (f ⊕ bλ)	 bλ ,

and hence, using the definition of AMλ (fK), it follows that

AMλ (fK) =
1

2

(
(f−MK ⊕ bλ)	 bλ + (fMK 	 bλ)⊕ bλ

)
.

Given such an interpretation for AMλ (fK), the properties of AMλ (fK) could therefore also be analysed
by tools from the theory of morphological filtering [42, 24].

The plan of the rest of this paper is as follows. In Section 2, we introduce notation and recall
some useful results from convex analysis and compensated convexity theory. Our main sources of
references for convex analysis are [27, 37, 39] whereas for the properties of compensated convex
transforms we refer to [47, 48, 49, 50]. In Section 3 we state our general approximation/interpolation
theorems for a compact sample set K ⊂ Rn (Theorem 3.6) and for K = Rn \ Ω with Ω a bounded
open set (Theorem 3.7). We consider uniformly continuous, Lipschitz and C1,1 functions f : Rn 7→ R
as the underlying functions to be approximated. We show that when M > 0 is sufficiently large,
AMλ (fK) approaches fK in K as λ → ∞. If f is a C1,1 function, we also show that AMλ (fK) is
an interpolation of f in the convex hull co[K] of K when λ > 0 is large enough. For points x in
co[K] \K, we introduce the notion of convex density radius rc(x) which is the smallest radius of
a closed ball B̄(x; rc(x)) such that x is in the convex hull of K ∩ B̄(x; rc(x)). We use rc(x) to
bound the errors of our approximations |A∞λ (fK)(x)− f(x)|. For a finite M > 0 and for a compact
sample set K, we extend fK to be a constant c0 outside a large ball B(0; R) containing K and
define KR = K∪Bc(0; R). We then prove similar error estimates to those obtained for A∞λ (fK)−f
(Corollary 3.9). For example, for a bounded uniformly continuous function f ,

|AMλ (fKR)(x)− f(x)| ≤ ω(rc(x) + a/λ+
√

2b/λ), x ∈ Rn ,

where ω : [0, +∞) 7→ [0, +∞) is the least concave majorant of the modulus of continuity of the
function f [20] which satisfies ω(t) ≤ at+ b for t ≥ 0 and some constants a > 0 and b ≥ 0. Better
estimates are also established for Lipschitz functions and for C1,1 functions.

1In convex analysis, the infimal convolution of f with g is denoted in [37] as f�g and is defined as (f�g)(x) =
inf
y
{f(y)+g(x−y)}, whereas in [26] the deconvolution of f with g is denoted as f	g and, under the condition that for

some x0 ∈ Rn and r ∈ R, we have f(x) ≤ g(x−x0)+ r for all x ∈ Rn, is defined as (f 	g)(x) = sup
y
{f(x−y)−g(y)}.

Thus Mλ(f) is the inf-convolution of f with −bλ whereas Mλ(f) is the deconvolution of f with bλ.
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In Section 4 we state the Hausdorff stability property for the average approximation AMλ (fK) of
bounded uniformly continuous functions, showing that given two non-empty closed sets K and E,
for fixed M > 0 and λ > 0, |AMλ (fK)(x) − AMλ (fE)(x)| is uniformly small in Rn with explicit
estimates whenever K and E are closed. For a bounded Lipschitz function f : Rn 7→ R with
|f(x)| ≤ A0 < M for some constant A0 > 0 and all x ∈ Rn, the mapping K 7→ AMλ (fK)(x)
is Lipschitz continuous with respect to the Hausdorff metric, uniformly with respect to x ∈ Rn.
This result generalises an earlier Hausdorff-Lipschitz continuity result for the upper transform of
characteristic functions K 7→ Cuλ(χK) established in [48, Theorem 5.5]. We conclude Section 4
by proving regularity properties of our approximations. For example, we show that AMλ (fK) is a
globally Lipschitz function in Rn and give an explicit estimate of its Lipschitz constant.

The proofs of our main results are presented in Section 5.

In the follow-on paper [51] we will present some applications of the theory developed here, such as
interpolation and approximation of scattered data and for contour lines. We will also give some
prototype examples with analytical expressions of our approximations, and numerical experiments
on salt-and-pepper denoising, inpainting and contour-line based reconstructions.

2 Notation and Preliminaries

In this section we collect basic results and definitions from convex analysis, referring to [27, 37, 39]
for further references and proofs, and recall the notion of the Hausdorff distance between two
non-empty sets. We then list some selected basic properties of compensated convex transforms
[47, 48, 49, 50] that will be needed in the following.

Proposition 2.1. Let f : Rn 7→ R be coercive in the sense that f(x)/|x| → ∞ as |x| → ∞, and
x0 ∈ Rn. Then

(i) The value co [f ] (x0) of the convex envelope of f at x0 ∈ Rn is given by

co [f ] (x0) = inf
i=1,...,n+1

{
n+1∑
i=1

λif(xi) :
n+1∑
i=1

λi = 1,
n+1∑
i=1

λixi = x0, λi ≥ 0, xi ∈ Rn
}
. (2.1)

If, in addition, f is lower semicontinuous, the infimum is attained by some (λ∗i , x
∗
i ) for i =

1, 2, . . . , n+ 1 with (x∗i , f(x∗i ))’s lying in the intersection of a supporting plane of the epigraph
of f , epi(f), and epi(f) (see [9, Lemma 3.3(ii)], [23, Theorem 2.1], and [39, Corollary 3.47]).
In this case,

co [f ] (x0) =

n+1∑
i=1

λ∗i f(x∗i ) . (2.2)

(ii) The value co [f ] (x0), for f taking only finite values, can also be obtained as follows:

co [f ] (x0) = sup {`(x0) : ` affine and `(y) ≤ f(y) for all y ∈ Rn} (2.3)

with the sup attained by an affine function `∗ ∈ Aff(Rn).

(iii) If f is differentiable at x0 and

f(x) ≥ f(x0) +Df(x0) · (x− x0) for all x ∈ Rn , (2.4)

then co[f ](x0) = f(x0).
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Next we recall the definition of Hausdorff distance between two non-empty sets [1], which mea-
sures how far the sets are from each other. To do so, we first need the notion of δ-neighbourhood
of a set, and also define the diameter of a set.

Definition 2.2. Given a non-empty subset E ⊂ Rn and δ > 0, we define the δ-neighbourhood Eδ

of E by
Eδ = {x ∈ Rn, dist(x; E) < δ} .

where dist(x; E) = inf{|x− y|, y ∈ E}, and the diameter of E by

dE := sup{|x− y|, x, y ∈ E}.

Definition 2.3. Let E, F be non-empty subsets of Rn. The Hausdorff distance between E and F
is defined by

distH(E,F ) = inf
{
δ > 0 : F ⊂ Eδ and E ⊂ F δ

}
. (2.5)

For general closed sets K, G ⊂ Rn, if there is some δ > 0 such that K ⊂ Gδ, G ⊂ Kδ, then
the Hausdorff distance between F and G is finite and is given by (2.5). Otherwise we say that
distH(K,G) = +∞.

We now list some properties of the quadratic compensated convex transforms. Recall first the
following ordering properties [47]:

C lλ(f)(x) ≤ f(x) ≤ Cuλ(f)(x), x ∈ Rn , (2.6)

whereas for f ≤ g in Rn, we have that

C lλ(f)(x) ≤ C lλ(g)(x) and Cuλ(f)(x) ≤ Cuλ(g)(x), x ∈ Rn . (2.7)

Furthermore, the compensated convex transforms are affine invariant [48], that is,

C lλ(f + `) = C lλ(f) + ` and Cuλ(f + `) = Cuλ(f) + ` (2.8)

where ` is any affine function, and we also have [47, Theorem 2.1(iii)]

Cuτ (Cuλ(f)) =

{
Cuλ(f) if τ ≥ λ ,

Cuτ (f) if τ ≤ λ ;
and C lτ (C lλ(f)) =

{
C lλ(f) if τ ≥ λ ,

C lτ (f) if τ ≤ λ .
(2.9)

The following translation-invariance property will often be used in our proofs, since it allows us to
refer our arguments to the point x0 = 0 without loss of generality.

Proposition 2.4. (Translation-invariance property) For any f : Rn 7→ R bounded below and for
any affine function ` : Rn 7→ R, co[f + `] = co[f ] + `. Consequently, both Cuλ(f) and C lλ(f) are
translation invariant against the weight function, that is:

C lλ(f)(x) = co
[
λ|(·)− x0|2 + f

]
(x)− λ|x− x0|2 ,

Cuλ(f)(x) = λ|x− x0|2 − co
[
λ|(·)− x0|2 − f

]
(x)
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for all x ∈ Rn and for every fixed x0. Hence, at x0,

C lλ(f)(x0) = co[λ|(·)− x0|2 + f ](x0) , Cuλ(f)(x0) = − co[λ|(·)− x0|2 − f ](x0) .

For some theoretical developments and proofs, it can be convenient to view the lower and upper
compensated convex transforms as parametrized semiconvex and semiconcave envelopes, respec-
tively. We recall the following definition from [15, 19].

Definition 2.5. A function f : Rn 7→ R is called 2λ-semiconvex (respectively, 2λ-semiconcave) if
x 7→ f(x) + λ|x|2 (respectively, if x 7→ −f(x) + λ|x|2) is convex.

Remark 2.6. In convex analysis, the semiconvexity property as given by Definition 2.5 is some-
times also referred to as the uniform lower-C2 property; compare Definition 2.5 with that of lower-C2

in [13, page 228]. Such functions enjoy local regularity properties; note, for instance, the character-
ization of the locally Lipschitz functions as locally lower-C2 - see [38, Theorem 6] and [15, Theorem
2.1.7].

In our approximation theorems for bounded and uniformly continuous functions f , we make use of
the modulus of continuity of f , which is defined as follows [20].

Definition 2.7. Let f : Rn 7→ R be a bounded and uniformly continuous function in Rn. Then,

ωf : t ∈ [0, ∞) 7→ ωf (t) = sup
{
|f(x)− f(y)| : x, y ∈ Rn and |x− y| ≤ t

}
(2.10)

is called the modulus of continuity of f .

The modulus of continuity of f has the following properties.

Proposition 2.8. Let f : Rn 7→ R be a bounded and uniformly continuous function in Rn. Then
the modulus of continuity ωf of f satisfies the following properties:

(i) ωf (t)→ ωf (0) = 0, as t→ 0;

(ii) ωf is non-negative and non-decreasing continuous function on [0,∞);

(iii) ωf is subadditive: ωf (t1 + t2) ≤ ωf (t1) + ωf (t2) for all t1, t2 ≥ 0 .

(2.11)

Any function ω defined on [0, ∞) and satisfying (2.11)(i), (ii), (iii) is called a modulus of continuity.
A modulus of continuity ω can be bounded from above by an affine function (see [20, Lemma 6.1]),
that is, there exist constants a > 0 and b ≥ 0 such that

ω(t) ≤ at+ b (for all t ≥ 0). (2.12)

As a result, given ωf , one can define the least concave majorant of ωf , which we denote by ω, which
is also a modulus of continuity with the property (see [20])

1

2
ω(t) ≤ ωf (t) ≤ ω(t) (for all t ∈ [0, ∞)) . (2.13)

3 Approximations and Interpolations

In this section we consider the general theory of our interpolation and approximation problem when
either K ⊂ Rn is compact or K = Rn \ Ω where Ω ⊂ Rn is a bounded open set.
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Let f : Rn 7→ R be a bounded function and denote by fK : K ⊂ Rn 7→ R the restriction of f to K.
A function g : co[K] ⊂ Rn 7→ R is said to be an interpolation of fK if g = f in K, while for λ > 0,
a family of functions gλ : co[K] ⊂ Rn 7→ R is said to approximate f if lim

λ→+∞
gλ = f uniformly in

K.

We will see that the precise approximation and interpolation properties of fK depend on the
smoothness of the function f under consideration.

The following is a first simple observation.

Proposition 3.1. Let f : Rn 7→ R be a bounded 2λ-semiconvex (respectively, 2λ-semiconcave)
function and K ⊂ Rn a non-empty closed set. If |f(x)| < M for all x ∈ Rn, then for any τ ≥ λ,
C lτ (fMK ) (respectively, Cuτ (f−MK )) is an interpolation of fK , that is,

C lτ (fMK )(x) = f(x) (respectively, Cuτ (f−MK )(x) = f(x)), x ∈ K.

In general, if we are given sample values only in a closed set without any knowledge of the underlying
function, we do not know whether or not our transforms are approximations of the original function.
However, for any bounded function f : Rn 7→ R, we have [48, Prop. 3.1]

C lλ(f)(x) = C lλ(f)(x), and Cuλ(f)(x) = Cuλ(f)(x) (3.1)

for all x ∈ Rn, where f and f are the upper and lower semicontinuous closures of f , respectively,
and

lim
λ→∞

Cuλ(f)(x) = f(x), lim
λ→∞

C lλ(f)(x) = f(x) (3.2)

for all x ∈ Rn. As a result, we have the following general approximation theorem.

Theorem 3.2. Let f : Rn 7→ R be bounded, such that |f(x)| < M for all x ∈ Rn, and let K ⊂ Rn
be non-empty compact set. Then for all x ∈ Rn,

lim
λ→+∞

Cuλ(f−MK )(x) = f−MK (x), lim
λ→+∞

C lλ(fMK )(x) = fMK (x) ,

lim
λ→+∞

AMλ (fK)(x) =
1

2
(fMK (x) + f−MK (x)),

(3.3)

and if f : Rn 7→ R is continuous, then for all x ∈ K,

lim
λ→+∞

Cuλ(f−MK )(x) = f(x), lim
λ→+∞

C lλ(fMK )(x) = f(x),

lim
λ→+∞

AMλ (fK)(x) = f(x),
(3.4)

and the convergence in (3.4) is uniform on K.

Note that the equalities f−MK =
(
f
)−M
K

and fMK =
(
f
)M
K

do not hold in general. For example,

in R, if we define f(x) = 1 if x is rational, f(x) = −1 if x is irrational and take M = 2, then
we have f ≡ 1 and f ≡ −1. But if we choose K to be a finite set of rational numbers, then

fMK = χK + 2χR\K , whereas
(
f
)M
K

= −χK + 2χR\K .

Note also that Theorem 3.2 suggests that we can apply our approximation methods to data sets
which may not define a function, as discussed in Remark 1.2.

The following proposition provides conditions sufficient to ensure that our average approximation
does not attain the value M or −M .
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Proposition 3.3. Let K ⊂ Rn be a non-empty compact set and denote by dK the diameter of K.
Suppose fK : K ⊂ Rn 7→ R is bounded, with |fK(x)| ≤ A0 for all x ∈ K. Then for λ > 0 and
M > A0 + λd2

K ,

−A0 ≤ C lλ(fMK )(x) < M, −M < Cuλ(f−MK )(x) ≤ A0, −M < AMλ (fK)(x) < M ,

for all x ∈ co[K].

Next we state our weak maximum principle. To make our statement simpler, we assume that
the median of values of fK over K is zero, which in practice can be easily satisfied by a simple
translation of values.

Theorem 3.4. Let K ⊂ Rn be a non-empty compact set. Suppose fK : K 7→ R is bounded and
assume that

m(fK) :=
1

2

(
sup{fK(x), x ∈ K}+ inf{fK(x), x ∈ K}

)
= 0 . (3.5)

Then
inf{fK(y), y ∈ K} ≤ A∞λ (fK)(x) ≤ sup{fK(y), y ∈ K}

for all x ∈ co[K] and λ > 0.

Before stating the error estimates for our approximations, we introduce the notions of density radius
and convex density radius.

Definition 3.5. Suppose K ⊂ Rn is a non-empty closed set, and denote by dist(x; K) the Euclidean
distance of x to K.

(i) For x ∈ co[K], the density radius rd(x) of x with respect to K is just the Euclidean distance
of x to K, i.e. we set rd(x) = dist(x; K), whereas the density radius of K in co[K] is defined
as

rd(K) = sup{rd(x), x ∈ co[K]} .

(ii) For x ∈ co[K], consider the balls B(x; r) such that x ∈ co[B̄(x; r) ∩K]. The convex density
radius of x with respect to K is defined as follows

rc(x) = inf{r ≥ 0, x ∈ co[B̄(x; r) ∩K]} ,

whereas the convex density radius of K in co[K] is defined by

rc(K) = sup{rc(x), x ∈ co[K]} .

From the definition above, we see that if K is compact or Kc is a bounded open set, rc(K) is
finite. The convex density radius is zero if K is convex. If A and B are two compact sets such that
K ⊂ A ⊂ B ⊂ co[K], then rc(A) ≥ rc(B). Also, the smaller rc(K) is, the denser the set K is in
co[K]. In general, if K is compact, rc(K) can be as large as the diameter of K. In this case, in
order to make the convex density radius of K small, we require not only the density radius rd(K)
of K in co[K] to be small but also that K is ‘dense’ in ∂ co[K], the relative boundary of co[K]. If
Kc is bounded, then rc(K) can be as large as the diameter of Kc.

The following is a simple illustrative example for the case K compact. Consider the box D =
{(x, y) ∈ R2, |x| < 1, |y| < 1}. For any δ > 0, let K0 ⊂ D be a finite set with rd(K0) < δ, so that
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D̄ ⊂ Kδ
0 , and let K = K0 ∪{±1,±1}. Then rd(K0) < δ, whereas rc(K) = 1 if we consider, say, the

point (1, 0) ∈ co[K] = D̄.

We now formulate error estimates for our average approximations. Consider first the case when K
is compact and M = +∞. The estimates are expressed in terms of the modulus of continuity of
the underlying uniformly continuous function f and the convex density radius. As special cases,
we also consider bounded Lipschitz functions and C1,1 functions.

Theorem 3.6. Suppose f : Rn 7→ R is a bounded uniformly continuous function satisfying |f(x)| ≤
A0 for some constant A0 > 0 and all x ∈ Rn, and let K ⊂ Rn be a non-empty compact set.

(i) Denote by ω the least concave majorant of the modulus of continuity ωf of f . Let a ≥ 0, b ≥ 0
be such that ω(t) ≤ at+ b for t ≥ 0. Then for all λ > 0 and x ∈ co[K],

|A∞λ (fK)(x)− f(x)| ≤ ω

(
rc(x) +

a

λ
+

√
2b

λ

)
, (3.6)

where rc(x) ≥ 0 is the convex density radius of x with respect to K.

(ii) If we further assume that f is a globally Lipschitz function with Lipschitz constant L > 0,
then for all λ > 0 and x ∈ co[K],

|A∞λ (fK)(x)− f(x)| ≤ Lrc(x) +
L2

λ
. (3.7)

(iii) If we further assume that f is a C1,1 function satisfying |Df(x) − Df(y)| ≤ L|x − y| for
x, y ∈ Rn and for some fixed L > 0, then for all λ > L and x ∈ co[K],

|A∞λ (fK)(x)− f(x)| ≤ L

4

(
λ+ L/2

λ− L/2
+ 1

)
r2
c (x). (3.8)

Furthermore, in case (iii), A∞λ (fK) is an interpolation of f∞K in co[K].

Next we consider the case when Ω ⊂ Rn is a non-empty bounded open set and define K = Ωc :=
Rn \ Ω. Clearly, co[K] = Rn for such K. We then have the following estimate of the average
approximation AMλ (fK).

Theorem 3.7. Suppose f : Rn 7→ R is bounded and uniformly continuous, satisfying |f(x)| ≤ A0

for some constant A0 > 0 and all x ∈ Rn. Let Ω ⊂ Rn be a bounded open set and K = Ωc. Denote
by dΩ the diameter of Ω.

(i) Let ω be the least concave majorant of the modulus of continuity ωf of f . Assume a ≥ 0,
b ≥ 0 are such that ω(t) ≤ at+ b for t ≥ 0. Then for λ > 0, M > A0 + λd2

Ω and all x ∈ Rn,
we have

|AMλ (fK)(x)− f(x)| ≤ ω

(
rc(x) +

a

λ
+

√
2b

λ

)
, (3.9)

where rc(x) ≥ 0 is the convex density radius of x with respect to K.

(ii) If we further assume that f is a globally Lipschitz function with Lipschitz constant L > 0,
then for λ > 0, M > A0 + λd2

Ω and all x ∈ Rn, we have

|AMλ (fK)(x)− f(x)| ≤ Lrc(x) +
L2

λ
. (3.10)
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(iii) If we further assume that f is a C1,1 function such that |Df(x) −Df(y)| ≤ L|x − y| for all
x, y ∈ Rn, where L > 0 is a constant, then for λ > L, M > A0 + λd2

Ω and all x ∈ Rn, we
have

|AMλ (fK)(x)− f(x)| ≤ L

4

(
λ+ L/2

λ− L/2
+ 1

)
r2
c (x) . (3.11)

Furthermore, in case (iii), AMλ (fK) is an interpolation of fK in Rn.

Remark 3.8. Theorem 3.6 can be used for the solution of practical problems such as salt & pepper
noise removal, in which case K is the compact set given by the part of the image which is noise free.
On the other hand, Theorem 3.7 can be applied, for instance, to inpainting of damaged images,
where Ω will be the domain to be inpainted using information about fK , with K = Ωc. We will
discuss these applications of the theory developed here in our follow-on paper [51].

The following corollary of Theorem 3.7 can be thought of as an extension of Theorem 3.6, which
concern A∞λ (fK), to the case of finite M > 0, under an extra restriction.

Corollary 3.9. Suppose f : Rn 7→ R is bounded and uniformly continuous, with |f(x)| ≤ A0 for
some constant A0 > 0 and all x ∈ Rn. Assume that f(x) = c0 for |x| ≥ r > 0, where c0 ∈ R and
r > 0 are constants. Let K ⊂ Rn be a non-empty compact set satisfying K ⊂ B̄(0; r). For R > r,
define KR := K ∪Bc(0; R).

(i) Let ω be the least concave majorant of the modulus of continuity ωf of f . Assume a ≥ 0,
b ≥ 0 are such that ω(t) ≤ at + b for t ≥ 0. Then for λ > 0, M > A0 + λ(R + r)2 and all
x ∈ co[K], we have

|AMλ (fKR)(x)− f(x)| ≤ ω

(
rc(x) +

a

λ
+

√
2b

λ

)
. (3.12)

(ii) If we further assume that f is a globally Lipschitz function with Lipschitz constant L > 0,
then for λ > 0, M > A0 + λ(R+ r)2 and all x ∈ co[K], we have

|AMλ (fKR)(x)− f(x)| ≤ Lrc(x) +
L2

λ
. (3.13)

(iii) If we further assume that f is a C1,1 function such that |Df(x) −Df(y)| ≤ L|x − y| for all
x, y ∈ Rn and L > 0 is a constant, then for λ > L, M > A0 + λ(R + r)2 and all x ∈ co[K],
we have

|AMλ (fKR)(x)− f(x)| ≤ L

4

(
λ+ L/2

λ− L/2
+ 1

)
r2
c (x) . (3.14)

Furthermore, in case (iii), AMλ (fKR) is an interpolation of fK in Rn.

Remark 3.10. Corollary 3.9 can be viewed as an extrapolation result for bounded uniformly con-
tinuous functions and for globally Lipschitz functions defined on a compact set. For example, we
can define f to be zero outside a large ball containing K and then apply Theorem 3.7. Another
reason for such extensions is that if we simply replace +∞ by a finite M > 0 in Theorem 3.6, we
are not able to obtain an error estimate independent of M , particularly near the boundary of co[K].
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4 Hausdorff Stability and Regularity

In this section we establish stability and regularity results for our approximations. The stability
properties will be expressed in terms of a notion of Hausdorff continuity, and we first introduce a
definition of Hausdorff continuity with respect to closed samples for transforms of bounded functions
on Rn.

Definition 4.1. Let B(Rn) be the class of bounded real-valued functions from Rn to R and choose
a fixed f ∈ B(Rn) that is uniformly continuous. A transform T : B(Rn) → B(Rn) is said to
be Hausdorff continuous with respect to closed sample sets at f if the mapping K 7→ T (fχK) is
Hausdorff continuous at each non-empty closed set K0 ⊂ Rn, in the sense that for every ε > 0,
there exists δ > 0 such that

|T (fχK)(x)− T (fχK0)(x)| < ε

for all x ∈ Rn whenever K is a non-empty closed set with distH(K,K0) < δ, and to be uniformly
Hausdorff continuous with respect to closed sample sets at f if δ can be chosen independently of K0.

A transform T : B(Rn) → B(Rn) is said to be Hausdorff-Lipschitz continuous with respect to
closed sample sets at f if the mapping K 7→ T (fχK) is Hausdorff-Lipschitz continuous, in the
sense that there exists L > 0 such that

|T (fχK)(x)− T (fχG)(x)| ≤ LdistH(K,G)

for all x ∈ Rn whenever K, G ⊂ Rn are closed sets with distH(K,G) <∞.

Remark 4.2. It is well known that the Euclidean distance function to a non-empty closed set K,
i.e. the mapping K 7→ dist(·; K), is Hausdorff-Lipschitz continuous in the sense that |dist(x; K)−
dist(x; G)| ≤ distH(K, G) for all x ∈ Rn and non-empty closed sets K,G, and this is, to our
knowledge, the only well-known example of a function satisfying a Hausdorff-Lipschitz property. A
further example, which we will extend here, is given in [48, Theorem 5.5], where it is shown that
the mapping K 7→ Cuλ(χK) is Hausdorff-Lipschitz continuous when K is compact.

Our first objective is to show that the mappings K 7→ LMλ (fK), K 7→ UMλ (fK) and K 7→
AMλ (fK) are uniformly Hausdorff continuous for every bounded uniformly continuous function f
with supx∈Rn |f(x)| < M .

Lemma 4.3. Suppose f : Rn 7→ R is bounded and uniformly continuous, with supRn |f(x)| ≤ A0

for some constant A0 > 0, and let M > A0. Then for any fixed λ > 0 and any non-empty closed
set K ⊂ Rn,

C lλ(fMK ) = M − Cuλ((M − f)χK) and Cuλ(f−MK ) = −M + Cuλ((M + f)χK) .

Now by the assumption that supRn |f(x)| ≤ A0 < M , both M + f and M − f are strictly positive
in Rn. Hence, by Definition 1.1 and Lemma 4.3, the Hausdorff continuity of the mappings K 7→
LMλ (fK), K 7→ UMλ (fK) and K 7→ AMλ (fK) reduces to the Hausdorff continuity of K 7→ Cuλ(gK) for
uniformly continuous functions g : Rn 7→ R satisfying

0 < M −A0 ≤ g(x) < M for all x ∈ Rn. (4.1)

We will thus extend [48, Theorem 5.5], that proved Hausdorff-Lipschitz continuity of K 7→ Cuλ(χK)
corresponding to the special case f ≡ 1 in Definition 4.1, to the general case of any bounded
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uniformly continuous function f . In the terminology of Definition 4.1, we will show that the
upper transform Cuλ is uniformly Hausdorff continuous with respect to closed sample sets at each
bounded uniformly continuous function f , and is Hausdorff-Lipschitz continuous with respect to
closed sample sets at each such f that is also globally Lipschitz continuous.

Motivated by the analysis in [48], we introduce a squared distance-like function D2
λ, f , the upper

transform of which is equal to the upper transform Cuλ(fK) of fK and which proves to be a useful
tool in the following.

Definition 4.4. For f : Rn 7→ R with 0 < f ≤ M , we define the following distance-like functions
for a closed set K ⊂ Rn:

dλ,f (x, K) = inf

{
|y − x| −

√
f(y)

λ
, y ∈ K

}
, x ∈ Rn; (4.2)

and
Dλ,f (x, K) = −

√
λmin{0, dλ,f (x, K)}, x ∈ Rn. (4.3)

Remark 4.5. In the definition of dλ,f (x, K), if f is continuous on Rn and K is closed, the
minimum in (4.2) is attained, that is, for every x ∈ Rn, there exists xK ∈ K such that dλ,f (x, K) =

|xK − x| −
√
f(xK)/λ. Thus if f is continuous, the ‘inf’ in (4.2) can be replaced by ‘min’.

In Theorem 4.10 below, we will follow an indirect approach to proving the Hausdorff continuity
of Cuλ(fK) that exploits the squared function D2

λ,f (x; K). Note that it is also possible to give

a direct proof of Hausdorff continuity, avoiding use of D2
λ,f (x; K), which yields a weaker result,

namely that for every ε > 0, there exists δ > 0 such that |Cuλ(fK)(x))− Cuλ(fE)(x))| < ε whenever
distH(K,E) < δ. Additionally, we can derive a Hausdorff continuity result using the Hausdorff
continuity of the Moreau envelopes, since Cuλ(f) = Mλ(Mλ(f))) [48], and it can be shown that

|Mλ(fK)(x)−Mλ(fE)(x)| ≤ 2λ

(
distH(K,E) +

√
2M

λ

)
distH(K,E) + ω(distH(K,E)),

|Mλ(fK)(x)−Mλ(fE)(x)| ≤ 2λ

(
distH(K,E) +

√
2M

λ

)
distH(K,E) + ω(distH(K,E)) ,

from which a version of Hausdorff continuity of Cuλ(fK) follows.

Note that the function Dλ,f (x; K) defined in (4.3) is a generalisation of Dλ(x; K) for the charac-
teristic function χK introduced in [48, Definition 5.1], since if we take f ≡ 1 in (4.3), we have

Dλ(x; K) = max
{

0, 1−
√
λdist(x; K)

}
= max

{
0,
√
λ

(
1√
λ
− dist(x; K)

)}

=
√
λmax

{
0, −

(
min
y∈K
|y − x| − 1√

λ

)}
= −
√
λmin

{
0, min

y∈K

{
|y − x| − 1/

√
λ
}}

= Dλ,f (x; K) .
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As well as being a tool to investigate the stability of the upper compensated convex transform of
characteristic functions, the geometry-based function Dλ(x; K) has also, for instance, been used
to find geometric features such as interior corners [52]. Hence our generalised function Dλ,f (x, K)
might also have other applications which we will explore elsewhere.

We start by stating a few preliminary lemmas, the proofs of which are given in Section 5.

Lemma 4.6. Suppose f : Rn 7→ R is bounded and uniformly continuous such that for some constant
M > 0, 0 < f(x) ≤ M for all x ∈ Rn. Let ω be the least concave majorant of the modulus of
continuity of

√
f , which is itself a modulus of continuity. Let K, E ⊂ Rn be non-empty closed sets

with distH(K,E) < +∞. Then for all x ∈ Rn,

|dλ,f (x,K)− dλ,f (x,E)| ≤ distH(K,E) +
ω(distH(K,E))√

λ
.

Lemma 4.7. Under the assumptions of Lemma 4.6, we have

|D2
λ,f (x,K)−D2

λ,f (x,E)| ≤ 2
√
λMdistH(K,E) + 2

√
Mω(distH(K,E)), x ∈ Rn. (4.4)

Lemma 4.8. Suppose α > 0 is a constant and x0 ∈ Rn, then for λ > 0,

Cuλ(αχ{x0})(x) =

 λ(|x− x0| −
√
α/λ)2, |x− x0| ≤

√
α/λ,

0, |x− x0| ≥
√
α/λ.

Lemma 4.9. Suppose f satisfies the assumptions of Lemma 4.6 and K ⊂ Rn is closed. Then for
λ > 0 and for all x ∈ Rn,

Cuλ(fχK)(x) = Cuλ(D2
λ,f (· ; K))(x) .

We are now in a position to state our key result on the Hausdorff stability of the upper compensated
convex transform with respect to closed sample sets at a bounded uniformly continuous positive
function f .

Theorem 4.10. Suppose f : Rn 7→ R is bounded and uniformly continuous, with 0 < f(x) ≤ M
for some constant M > 0 and all x ∈ Rn. Let ω be the least concave majorant of the modulus of
continuity of

√
f , which is itself a modulus of continuity. Let K, E ⊂ Rn be non-empty closed sets

with distH(K,E) < +∞. Then for all x ∈ Rn, Cuλ(fχK) is Hausdorff continuous in the sense that

|Cuλ(fχK)(x)− Cuλ(fχE)(x)| ≤ 2
√
λMdistH(K,E) + 2

√
M ω(distH(K,E)) . (4.5)

Corollary 4.11. Under the assumptions of Theorem 4.10, if we further assume that f : Rn 7→ R
is a globally Lipschitz continuous function satisfying |f(x)− f(y)| ≤ L|x− y| and 0 < α ≤ f ≤M ,
then for all x ∈ Rn, Cuλ(fχK) is Hausdorff-Lipschitz continuous in the sense that

|Cuλ(fχK)(x)− Cuλ(fχE)(x)| ≤

(
2
√
λM + L

√
M

α

)
distH(K,E) . (4.6)
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We can now easily state the Hausdorff stability theorem for our approximations.

Theorem 4.12. Suppose f : Rn 7→ R is bounded and uniformly continuous (respectively, globally
Lipschitz continuous) and |f(x)| ≤ A0 for x ∈ Rn. Then for M > A0, the mappings K 7→
LMλ (fK), K 7→ UMλ (fK), K 7→ AMλ (fK) and K 7→ (SA)Mλ (fK) are uniformly Hausdorff continuous
(respectively, Hausdorff-Lipschitz continuous).

We conclude this section by stating the regularity, or smoothness, of our approximations. Since
our upper, lower and average approximations are globally Lipschitz functions on Rn and our mixed
approximation is a C1,1 function, we have the following.

Theorem 4.13. Let K ⊂ Rn be a non-empty closed set and fK : K ⊂ Rn 7→ R be a bounded
function with |f(x)| < M for all x ∈ K. Suppose λ > 0 and τ > 0 are fixed. Then

(i) UMλ (fK), LMλ (fK) and AMλ (fK) are globally Lipschitz continuous on Rn, with the Lipschitz
constant bounded above by 8

√
Mλ;

(ii) (SA)Mλ,τ (fK) is a C1,1 function on Rn, and satisfies

|(SA)Mλ,τ (fK)(x)−AMλ (fK)(x)| ≤ 16Mλ

τ
for all x ∈ Rn. (4.7)

5 Proofs of the Main Results

Proof of Proposition 3.1: Since f is 2λ-semiconvex, C lτ (f)(x) = f(x) for x ∈ Rn and τ ≥ λ. As
f(x) ≤ fMK (x) for x ∈ Rn, we have, for any x ∈ K,

f(x) = C lτ (f)(x) ≤ C lτ (fMK )(x) ≤ fMK (x) = f(x) ,

where we have applied the ordering property (2.6) to show that C lτ (f)(x) ≤ C lτ (fMK )(x) and (2.7)
to state that C lτ (fMK )(x) ≤ fMK (x). Thus C lτ (fMK ) is an interpolation of fK . Similarly, if f is 2λ-
semiconcave, Cuτ (f−MK ) is an interpolation of fK .

Proof of Theorem 3.2: The first part is immediate from (3.1) and (3.2). If f is continuous, it
follows from [47, Theorem 2.3(iii)] that, uniformly on any compact set,

lim
λ→+∞

C lλ(f)(x) = f(x), lim
λ→+∞

Cuλ(f)(x) = f(x) ,

whereas the ordering properties (2.6) and (2.7) imply that

C lλ(f) ≤ C lλ(fMK ) ≤ fMK , Cuλ(f) ≥ Cuλ(f−MK ) ≥ f−MK .

Since fMK = f = f−MK on K, it follows that

lim
λ→+∞

C lλ(fMK )(x) = f(x), lim
λ→+∞

Cuλ(f−MK )(x) = f(x), lim
λ→+∞

AMλ (fK)(x) = f(x)

uniformly on K, as required.

Proof of Proposition 3.3: By Proposition 2.4, without loss of generality, we may assume that
x = 0. Taking the constant function `(y) = −A0 for y ∈ Rn, we see that−A0 = `(y) ≤ fMK (y)+λ|y|2
so that −A0 ≤ C lλ(fMK )(0).
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Since 0 ∈ co[K], by Proposition 2.1, there exist xi, . . . , xn+1 ∈ Rn with λi ≥ 0 for i = 1, . . . , n+ 1
such that

∑n+1
i=1 λi = 1 and

∑n+1
i=1 λixi = 0. We then have

C lλ(fMK )(0) = co[fMK + λ| · |2](0) ≤
n+1∑
i=1

λi(f
M
K (xi) + λ|xi|2) ≤

n+1∑
i=1

λi(A0 + λd2
K) < M .

The proof for the upper transform follows similar arguments.

Proof of Theorem 3.4: Let supK f = A0, so that by our assumption (3.5), infK f = −A0. Fix
x ∈ co[K]. By Proposition 2.4, without loss of generality, we assume that x = 0. Notice that
K is compact, C lλ(f∞K )(0) = C lλ(f∞K )(0), and f∞K is lower semicontinuous. Also, Cuλ(f−∞K )(0) =

Cuλ(f−∞K )(0), and f−∞K is upper semicontinuous. Thus, by Proposition 2.1, there are two finite

generating sets Kl = {x−i }
k−
i=1 ⊂ K and Ku = {x+

i }
k+
i=1 ⊂ K, two sets of positive numbers Λl =

{λ−i }
k−
i=1 and Λu = {λ+

i }
k+
i=1 satisfying 1 ≤ k−, k+ ≤ n + 1,

∑k−
i=1 λ

−
i = 1,

∑k−
i=1 λ

−
i x
−
i = 0,∑k+

i=1 λ
+
i = 1,

∑k+
i=1 λ

+
i x

+
i = 0, such that

co[f∞K + λ| · |2]|(0) =

k−∑
i=1

λ−i [f∞K (x−i ) + λ|x−i |
2]

= inf
{ n+1∑
i=1

λi[f
∞
K (xi) + λ|xi|2], xi ∈ Kl ∪Ku, λi ≥ 0,

n+1∑
i=1

λi = 1,

n+1∑
i=1

λixi = 0
}

≥ B0 −A0,

where B0 = λ inf
{∑n+1

i=1 λi|xi|2, xi ∈ Kl ∪Ku, λi ≥ 0,
∑n+1

i=1 λi = 1,
∑n+1

i=1 λixi = 0
}

. Likewise

co[f∞K + λ| · |2](0) ≤ B0 +A0 ,

and thus
B0 −A0 ≤ C lλ(f∞K )(0) ≤ B0 +A0 .

On the other hand, we also have, by Proposition 2.1, that

co[λ| · |2 − f−∞K ](0) =

k+∑
i=1

λ+
i [λ|x+

i |
2 − fK(x+

i )]

= inf

{
n+1∑
i=1

λi[λ|xi|2 − f−∞K (xi)], xi ∈ Kl ∪Ku, λi ≥ 0,
n+1∑
i=1

λi = 1,
n+1∑
i=1

λixi = 0

}
≥ B0 −A0,

and similarly

co[λ| · |2 − f−∞K ](0) ≤ B0 +A0 ,

so since Cuλ(f−∞K )(0) = − co[λ| · |2 − f−∞K ](0), we obtain

−B0 −A0 ≤ Cuλ(f−∞K )(0) ≤ −B0 +A0 .

Thus
−A0 ≤ A∞λ (fK)(0) ≤ A0 ,
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which concludes the proof.

Proof of Theorem 3.6. Part (i): By Proposition 2.4, without loss of generality we again
assume that x = 0. Since both y 7→ λ|y|2 + f∞K (y) and y 7→ λ|y|2 − f−∞K (y) are coercive and lower
semicontinuous, we have, by Proposition 2.1, that

C lλ(f∞K )(0) =

kl∑
j=1

λlj(λ|xlj |2 + f(xlj)), −Cuλ(f−∞K )(0) =

ku∑
j=1

λuj (λ|xuj |2 − f(xuj )) ,

where 2 ≤ kl, ku ≤ n + 1, λlj > 0, xlj ∈ K, j = 1, . . . , kl,
∑kl

j=1 λ
l
j = 1,

∑kl
j=1 λ

l
jx
l
j = 0; λuj > 0,

xuj ∈ K, j = 1, . . . , ku,
∑kl

j=1 λ
u
j = 1,

∑kl
j=1 λ

u
j x

u
j = 0.

We also define

B0 = min

{
n+1∑
k=1

λk|xk|2, λk ≥ 0, xk ∈ K, k = 1, 2, . . . , n+ 1,

n+1∑
k=1

λk = 1,
n+1∑
k=1

λkxk = 0

}

=

m∗∑
k=1

λ∗k|x∗k|2 ,

for some 2 ≤ m∗ ≤ n + 1, λ∗j > 0, x∗j ∈ K∗ for j = 1, 2, . . . ,m∗,
∑m∗

j=1 λ
∗
j = 1 and

∑m∗

j=1 λ
∗
jx
∗
j = 0,

and let

C0 = min

{
n+1∑
k=1

λk|xk|2, λk ≥ 0, xk ∈ B̄rc(0)(0) ∩K, k = 1, . . . , n+ 1,

n+1∑
k=1

λk = 1,

n+1∑
k=1

λkxk = 0

}

=

n+1∑
k=1

λrk|xrk|2 .

Clearly C0 ≤ r2
c (0), and by definition,

B0 =

m∗∑
k=1

λ∗k|x∗k|2 ≤ C0 ≤ r2
c (0) .

By the Cauchy-Schwarz inequality, we also have

m∗∑
k=1

λ∗k|x∗k| ≤ rc(0) .

Now

C lλ(f∞K )(0) ≤
m∗∑
k=1

λ∗k(λ|x∗k|2 + f(x∗k)) = λB0 + f(0) +

m∗∑
k=1

λ∗k(f(x∗k)− f(0))

≤ λB0 + f(0) +
m∗∑
k=1

λ∗kω(|x∗k|) ≤ λB0 + f(0) + ω

(
m∗∑
k=1

λ∗k|x∗k|

)
≤ λB0 + f(0) + ω(rc(0)),

(5.1)
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since ω is non-decreasing and concave. Furthermore, we also have

λB0 + f(0) + ω(rc(0)) ≤ λr2
c (0) + f(0) + ω(rc(0)) , (5.2)

and

C lλ(f∞K )(0) =

kl∑
j=1

λlj(λ|xlj |2 + f(xlj)) ≥ f(0) +

kl∑
j=1

λlj(λ|xlj |2 − |f(xlj)− f(0)|)

≥ f(0) +

kl∑
j=1

λlj(λ|xlj |2 − ω(|xlj |)) ≥ f(0) +

kl∑
j=1

λlj(λ|xlj |2 − a|xlj | − b) .

(5.3)

By comparing (5.1), (5.2) with (5.3), it follows that

f(0) +

kl∑
j=1

λlj(λ|xlj |2 − a|xlj | − b) ≤ λr2
c (0) + f(0) + ω(rc(0)),

and hence

kl∑
j=1

λlj

(
|xlj | −

a

2λ

)2
≤ r2

c (0) +
ω(rc(0))

λ
+

a2

4λ2
+
b

λ
≤ r2

c (0) +
a

λ
+

a2

4λ2
+

2b

λ
=
(
rc(0) +

a

2λ

)2
+

2b

λ
.

Here we have used the fact that ω(t) ≤ at+ b for t ≥ 0. Thus by the Cauchy-Schwarz inequality,

kl∑
j=1

λlj

∣∣∣|xlj | − a

2λ

∣∣∣ ≤ ((rc(0) +
a

2λ

)2
+

2b

λ

)1/2

≤ rc(0) +
a

2λ
+
√

2b/λ ,

so that
kl∑
j=1

λlj |xlj | ≤ rc(0) +
a

λ
+
√

2b/λ .

Now

C lλ(f∞K (0)) =

kl∑
j=1

λlj(λ|xlj |2 + f(xlj)) ≥ f(0) +

kl∑
j=1

λlj(λ|xlj |2 − |f(xlj)− f(0)|)

≥ f(0) + λB0 −
kl∑
j=1

λljω(|xlj |) ≥ f(0) + λB0 − ω

 kl∑
j=1

λlj |xlj |


≥ f(0) + λB0 − ω

(
rc(0) + a/λ+

√
2b/λ

)
,

(5.4)

and by combining (5.1) and (5.4), we obtain

f(0) + λB0 − ω
(
rc(0) + a/λ+

√
2b/λ

)
≤ C lλ(f∞K )(0) ≤ λB0 + f(0) + ω(rc(0)) .

Similarly, we can prove

f(0)− λB0 − ω(rc(0)) ≤ Cuλ(f−∞K )(0) ≤ f(0) + ω
(
rc(0) + a/λ+

√
2b/λ

)
− λB0 ,
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and thus

|A∞λ (fK)(0)− f(0)| ≤ 1

2

(
ω(rc(0)) + ω

(
rc(0) + a/λ+

√
2b/λ

))
.

The proof of Part (i) is thus complete.

Part (ii): We only need to note that in this case, ω(t) = Lt for t ≥ 0, taking a = L and b = 0. The
result then follows.

Part (iii): By Proposition 2.4 we again assume that x = 0. The proof is similar to that of Part
(i), and in the following we use the same notation as in the proof of Part (i) for λli, x

l
i, λ

r
j , x

r
j and

λ∗k, x
∗
k. Thus since

B0 :=

m∗∑
k=1

λ∗k|x∗k|2 ≤
n+1∑
k=1

λrk|xrk|2 ≤ r2
c (0) ,

we have

C lλ(f∞K )(0) ≤
m∗∑
k=1

λ∗k(f(x∗k) + λ|x∗k|2) = λB0 + f(0) +
m∗∑
k=1

λ∗k(f(x∗k)− f(0)−Df(0) · x∗k)

≤ λB0 + f(0) +
L

2

m∗∑
k=1

λ∗k|x∗k|2 ≤ λB0 + f(0) +
L

2
r2
c (0) ≤ f(0) +

(
L

2
+ λ

)
r2
c (0) ,

(5.5)

and also

C lλ(f∞K )(0) =

kl∑
i=1

λli(f(xli) + λ|xli|2) = f(0) + λ

kl∑
i=1

λli|xli|2 +

kl∑
i=1

λli(f(xli)− f(0)−Df(0) · xli)

≥ f(0) + λ

kl∑
i=1

λli|xli|2 −
L

2

kl∑
i=1

λli|xli|2 = f(0) +

(
λ− L

2

) kl∑
i=1

λli|xli|2 .

(5.6)

By comparing (5.5) and (5.6), we then obtain

f(0) +

(
λ− L

2

) kl∑
i=1

λli|xli|2 ≤ f(0) +

(
L

2
+ λ

)
r2
c (0) ,

so that
kl∑
i=1

λli|xli|2 ≤
λ+ L

2

λ− L
2

r2
c (0) .
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Thus from (5.6), we have

C lλ(f∞K )(0) =

kl∑
i=1

λli(f(xli) + λ|xli|2)

= f(0) + λ

kl∑
i=1

λli|xli|2 +

kl∑
i=1

λli(f(xli)− f(0)−Df(0) · xli)

≥ f(0) + λB0 −
L

2

kl∑
i=1

λli|xli|2 ≥ f(0) + λB0 −
L

2

(
λ+ L

2

λ− L
2

)
r2
c (0) .

(5.7)

By combining (5.5) and (5.7), we finally get

f(0) + λB0 −
L

2

(
λ+ L

2

λ− L
2

)
r2
c (0) ≤ C lλ(f∞K )(0) ≤ f(0) + λB0 +

L

2
r2
c (0) .

Similarly we can show that

f(0)− λB0 −
L

2
r2
c (0) ≤ Cuλ(f−∞K )(0) ≤ f(0)− λB0 +

L

2

(
λ+ L

2

λ− L
2

)
r2
c (0) .

The conclusion then follows.

Remark 5.1. From the proof of Part (i) of Theorem 3.6 we observe that for a finite M > 0, if
C lλ(fMK )(0) can be calculated by using values of f in K (0 ∈ K), that is,

C lλ(fMK )(0) =
n+1∑
i=1

λi
(
f(xi) + λ|xi|2

)
,

with λi ≥ 0, xi ∈ K,
∑n+1

i=1 λi = 1 and
∑n+1

i=1 λixi = 0, and if a similar result holds for the
upper transform, then the arguments of the proof of Part (i) can go through without any changes.
However, it is possible that one of the xi’s does not belong to K. In this case the situation is more
complicated. In fact, we do not know whether Part (i) still holds for a finite M > 0. However, if
we extend fK outside a large ball as zero, we can still derive error bounds (see Corollary 3.9).

Proof of Theorem 3.7. Part (i): We first give estimates for C lλ(fMK )(x). Without loss of
generality we assume that x = 0. Since y 7→ fMK (y) + λ|y|2 is lower semicontinuous and coercive,
there are xi ∈ Rn, λi > 0 for i = 1, 2, . . . ,m ≤ n+ 1 such that,

∑m
i=1 λi = 1,

∑m
i=1 λixi = 0 and

co[fMK + λ| · |2](0) =

m∑
i=1

λi
(
fMK (xi) + λ|xi|2

)
.

This implies that there is an affine function `(y) such that `(y) ≤ fMK (y) + λ|y|2 for y ∈ Rn and
`(xi) = fMK (xi) + λ|xi|2.

We first show that xi ∈ K for i = 1, 2, . . . , k. If this is not the case, there is some 1 ≤ i0 ≤ k such
that xi0 ∈ Ω. Since `(xi0) = fMK (xi0)+λ|xi0 |2, `(y) is an affine support function of M+λ|y|2 at xi0 ,
and hence is the unique tangent plane of the function M+λ|y|2. Thus `(y) = M+λ|xi0 |2 +2λxi0 ·y.
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If xi0 = 0, `(0) = M , which contradicts the assumption that M > 2A0 + λd2
Ω. If xi0 6= 0 and

xi0 ∈ Ω, then since Ω is a bounded domain, there are two points x′i0 , x′′i0 ∈ ∂Ω and some 0 < α < 1,
such that xi0 = αx′i0 + (1− α)x′′i0 . We also have

α
(
fMK (x′i0) + λ|x′i0 |

2
)

+ (1− α)
(
fMK (x′′i0) + λ|x′′i0 |

2
)

= α
(
f(x′i0) + λ|x′i0 |

2
)

+ (1− α)
(
f(x′′i0) + λ|x′′i0 |

2
)

≤ A0 + λd2
Ω

< M ≤ M + λ|xi0 |2 = fMK (xi0) + λ|xi0 |2 .

Here we have used the fact that x′i0 , x
′′
i0
∈ ∂Ω and 0 ∈ Ω, so that |x′i0 − 0| ≤ dΩ and |x′′i0 − 0| ≤ dΩ.

Thus

1 =

m∑
i=1

λi =

 m∑
i=1,i 6=i0

λi

+ αλi0 + (1− α)λi0 ,

0 =

m∑
i=1

λixi =

 m∑
i=1,i 6=i0

λixi

+ λi0αx
′
i0 + λi0(1− α)x′′i0 ,

and

co[fMK + λ| · |2](0) =
m∑
i=1

λi[f
M
K (xi) + λ|xi|2]

>
(∑m

i=1,i 6=i0 λi[f
M
K (xi) + λ|xi|2]

)
+ αλi0

(
fMK (x′i0) + λ|x′i0 |

2
)

+ (1− α)λi0
(
fMK (x′′i0) + λ|x′′i0 |

2
)
.

But this contradicts the definition of the convex envelope. So xi ∈ K for all i = 1, 2, . . . , k. The
rest of the proof of Part (i) then follows from a similar argument to that for Part (i) of Theorem
3.6.

For Part (ii) and Part (iii), we can use similar arguments to the proof of Part (i) to show that
all xi’s are in K, so that the conclusions then follow from Part (ii) and Part (iii) of Theorem 3.6,
respectively.

Proof of Corollary 3.9: The proof is very similar to that of Theorem 3.7 and is left to interested
readers.

Proof of Lemma 4.3: This lemma is a direct consequence of the definitions (1.2) of fMK , f−MK
and the definition of the upper and lower compensated convex transforms (1.1).

Proof of Lemma 4.6: Fix x ∈ Rn. For every δ > distH(K,E), by Remark 4.5, there is some
xE ∈ E, such that dλ,f (x, E) = |xE − x| −

√
f(xE)/λ. For xE ∈ E, there is some xK ∈ K such

that |xK − xE | < δ. Thus

dλ,f (x, K)− dλ,f (x, E) ≤ |xK − x| −
√
f(xK)/λ− |xE − x|+

√
f(xE)/λ

≤ |xK − xE |+ 1√
λ
ω(|xK − xE |)

≤ δ +
ω(δ)√
λ
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for all δ > distH(K,E). Hence,

dλ,f (x, K)− dλ,f (x, E) ≤ distH(K,E) +
ω(distH(K,E))√

λ
.

Similarly, we can show that

dλ,f (x, E)− dλ,f (x, K) ≤ distH(K,E) +
ω(distH(K,E))√

λ
,

and conclusion then follows.

Proof of Lemma 4.7: We have

|D2
λ,f (x, K)−D2

λ,f (x, E)| ≤ (|Dλ,f (x, K)|+ |Dλ,f (x, E)|)|Dλ,f (x, K)−Dλ,f (x, E)| .

By definition of Dλ,f (x, K), we then have if miny∈K(|y − x| −
√
f(y)/λ) > 0,

|Dλ,f (x, K)| = 0 ,

and if miny∈K(|y − x| −
√
f(y)/λ) = |xK − x| −

√
f(xK)/λ < 0 for some xK ∈ K, then

|Dλ,f (x, K)| =
√
λ||xK − x| −

√
f(xK)/λ| =

√
λ(
√
f(xK)/λ− |xK − x|) ≤

√
f(xK) ≤

√
M .

Similarly, we have
|Dλ,f (x, E)| ≤

√
M .

Next, by the formula min{0, a} = (a− |a|)/2 for a ∈ R, we have

|Dλ,f (x, K)−Dλ,f (x, E)| =
√
λ

2

∣∣∣dλ,f (x,K)− |dλ,f (x,K)| − (dλ,f (x,E)− |dλ,f (x,E)|)
∣∣∣

≤
√
λ
∣∣∣dλ,f (x,K)− dλ,f (x,E)

∣∣∣
≤
√
λ
(

distH(K,E) +
ω(distH(K,E))√

λ

)
.

Thus we obtain

|D2
λ,f (x, K)−D2

λ,f (x, E)| ≤ 2
√
λMdistH(K,E) + 2

√
Mω(distH(K,E)) ,

which completes the proof.

Proof of Lemma 4.8: The proof of this lemma is an easy exercise and is omitted here.

Proof of Lemma 4.9: We first show that

f(x)χK(x) ≤ D2
λ,f (x, K) (5.8)

for all x ∈ Rn, so that by (2.7),

Cuλ(fχK)(x) ≤ Cuλ(D2
λ,f (·, K))(x) (5.9)
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for all x ∈ Rn. If x /∈ K, clearly, χK(x)f(x) = 0 ≤ D2
λ,f (x, K). If x ∈ K, since

dλ,f (x,K) = min
y∈K

(|y − x| −
√
f(y)/λ) ≤ −

√
f(x)/λ < 0 ,

we have

Dλ,f (x,K) = −
√
λmin{0, dλ,f (x,K)} = −

√
λ dλ,f (x,K) ≥

√
λ
√
f(x)/λ =

√
f(x) ,

and thus D2
λ,f (x,K) ≥ f(x). Therefore (5.8) holds for all x ∈ Rn, from which (5.9) follows.

Next we show that the opposite inequality, Cuλ(D2
λ,f (·,K))(x) ≤ Cuλ(fχK)(x), also holds. If

dλ,f (x,K) = min
y∈K

(|y − x| −
√
f(y)/λ) > 0, (5.10)

then by definition, Dλ,f (x,K) = 0, and hence D2
λ,f (x,K) = 0. We show in this case that

Cuλ(D2
λ,f (·,K))(x) = 0 ≤ Cuλ(fχK)(x) .

We will consider the function z 7→ λ|z−x|2−D2
λ,f (z,K) for z ∈ Rn and show that the value of the

convex envelope of this function at x is zero. Consider the affine function `(z) = 0 for all z ∈ Rn
and show that

0 = `(x) =
(
λ|z − x|2 −D2

λ,f (z,K)
)
|z=x, (5.11)

and
0 = `(z) ≤ λ|z − x|2 −D2

λ,f (z,K), z ∈ Rn. (5.12)

Equality (5.11) is obvious as [λ|z−x|2−D2
λ,f (z,K)]|z=x = −D2

λ,f (x,K) = 0. Now we prove (5.12),

that is, 0 ≤ λ|z − x|2 −D2
λ,f (z,K), which is equivalent to

D2
λ,f (z,K) ≤ λ|z − x|2, z ∈ Rn. (5.13)

If dλ,f (z,K) ≥ 0, then D2
λ,f (z,K) = 0, hence (5.13) holds. If dλ,f (z,K) < 0, then D2

λ,f (z,K) =

λd2
λ,f (z,K). We need to show that λ(miny∈K(|y− z| −

√
f(y)/λ)2 ≤ λ|z − x|2, which is equivalent

to −miny∈K(|y − z| −
√
f(y)/λ) ≤ |z − x|, which is in turn equivalent to

|z − x|+ min
y∈K

(|y − z| −
√
f(y)/λ) ≥ 0. (5.14)

By the triangle inequality and (5.10), we have

|z − x|+ min
y∈K

(|y − z| −
√
f(y)/λ) = min

y∈K
(|z − x|+ |y − z| −

√
f(y)/λ)

≥ min
y∈K

(|y − x| −
√
f(y)/λ) = dλ,f (x,K) > 0.

Thus (5.12) holds. Therefore

0 = co[λ| · −x|2 −D2
λ,f (·,K)](x) = −Cuλ(D2

λ,f (·,K))(x),
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which implies
D2
λ,f (x,K) ≤ Cuλ(D2

λ,f (·,K))(x) = 0 ≤ Cuλ(fχK)(x) . (5.15)

Finally, we consider the case

dλ,f (x,K) = min
y∈K

(|y − x| −
√
f(y)/λ) = |xK − x| −

√
f(xK)/λ < 0, (5.16)

where xK ∈ K is the minimum point. Now we consider the function f(y)χ{xK}(y) for y ∈ Rn. By
Lemma 4.8, we have

Cuλ(fχ{xK})(y) =

 λ

(
|y − xK | −

√
f(xK)/λ

)2

, |y − xK | ≤
√
f(xK)/λ,

0, |y − xK | ≥
√
f(xK)/λ.

In particular, since xK ∈ K, we have f(y)χ{xK}(y) ≤ f(y)χK(y) for all y ∈ Rn, so that by (2.7),

Cuλ(fχ{xK})(y) ≤ Cuλ(fχK)(y) for all y ∈ Rn .

By our assumption (5.16), we also have |xK − x| <
√
f(xK)/λ, thus

Cuλ(fχ{xK})(x) = λ

(
|x− xK | −

√
f(xK)/λ

)2

= D2
λ,f (x,K)

as dλ,f (x,K) < 0. Thus, in this case, D2
λ,f (x,K) = Cuλ(fχ{xK})(x) ≤ Cuλ(fχK)(x). By combining

this case and (5.15), we have, for all x ∈ Rn, that D2
λ,f (x,K) ≤ Cuλ(fχK)(x), so that

Cuλ(D2
λ,f (·,K))(x) ≤ Cuλ(Cuλ(fχK))(x) = Cuλ(fχK)(x) .

Since the opposite inequality (5.9) also holds, we have

Cuλ(D2
λ,f (·,K))(x) = Cuλ(fχK)(x)

for all x ∈ Rn, which completes the proof.

Proof of Theorem 4.10: By Lemma 4.9, we only need to prove

|Cuλ(D2
λ,f (·,K))(x)− Cuλ(D2

λ,f (·, E))(x)| ≤ 2
√
λMdistH(K,E) + 2

√
Mω(distH(K,E)) . (5.17)

By Lemma 4.7 we have, for all x ∈ Rn that

|D2
λ,f (x,K)−D2

λ,f (x,E)| ≤ 2
√
λMdistH(K,E) + 2

√
Mω(distH(K,E)) .

Thus

D2
λ,f (x,E)− 2

√
λMdistH(K,E)− 2

√
Mω(distH(K,E)) ≤ D2

λ,f (x,K)

≤ D2
λ,f (x,E) + 2

√
λMdistH(K,E) + 2

√
Mω(distH(K,E))

for all x ∈ Rn. By the ordering and the affine covariance properties of compensated convex trans-
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forms, we have

Cuλ(D2
λ,f (·, E))(x)− 2

√
λMdistH(K,E)− 2

√
Mω(distH(K,E)) ≤ Cuλ(D2

λ,f (·,K))(x)

≤ Cuλ(D2
λ,f (·, E))(x) + 2

√
λMdistH(K,E) + 2

√
Mω(distH(K,E)).

Hence (5.17) follows.

Proof of Corollary 4.11: This is a direct consequence of Theorem 4.10 where ω(t) = Lt/(2
√
α)

for t > 0, with L ≥ 0 the Lipschitz constant of f , since |
√
f(x)−

√
f(y)| ≤ L|x− y|/(2

√
α).

Proof of Theorem 4.12: The cases of LMλ (fK), UMλ (fK) and AMλ (fK) are direct consequences
Definition 1.1, Lemma 4.3, Theorem 4.10 and Corollary 4.11. Note that for the Hausdorff-Lipschitz
continuity properties, the assumption that M > A0 ensures that the uniform positivity assumption
in Corollary 4.11 is satisfied by both M − f and M + f . For the mixed average approximation
(SA)Mλ,τ (fK) = 1

2(Cuτ (C lλ(fMK )) +C lτ (Cuλ(f−MK ))), we use (2.7). Since |C lλ(fMG )(x)−C lλ(fMK )(x)| < ε

for all x ∈ Rn with ε = 2
√
λMdistH(G,K) + 2

√
Mω (distH(G,K)), we have

C lλ(fMK )(x)− ε < C lλ(fMG )(x) < C lλ(fMK )(x) + ε ,

and hence
|Cuτ (C lλ(fMG ))(x)− Cuτ (C lλ(fMK ))(x)| < ε ,

since Cuτ (C lλ(fMK )± ε) = Cuτ (C lλ(fMK ))± ε. Similarly,

|C lτ (Cuλ(f−MG ))(x)− C lτ (Cuλ(f−MK ))(x)| < ε

since |Cuλ(f−MG )(x)−Cuλ(f−MK )(x)| < ε. The proof for (SA)Mλ,τ (fK) then follows. The proof for the
Lipschitz case is similar, using arguments from Lemma 4.3 and Corollary 4.11.

Proof of Theorem 4.13: Part (i) and the error estimate (4.7) follow from [48, Theorem 3.13].
The fact that mixed transforms are C1,1 is a consequence of [47, Theorem 2.1(iv), Theorem 4.1(ii)].
Note that this latter regularity result also follows from the fact that if g is both 2λ-semiconvex and
2λ-semiconcave, then g is a C1,1 function [15, Corollary 3.3.8].
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