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A new framework for large strain electromechanics

based on convex multi-variable strain energies:

variational formulation and material characterisation.

Antonio J. Gil1, Rogelio Ortigosa

Zienkiewicz Centre for Computational Engineering, College of Engineering

Swansea University, Bay Campus, SA1 8EN, United Kingdom

Abstract

Following the recent work of Bonet et al.[1], this paper postulates a new
convex multi-variable variational framework for the analysis of Electro Ac-
tive Polymers (EAP) in the context of reversible nonlinear electro-elasticity.
This extends the concept of polyconvexity [2] to strain energies which de-
pend on non-strain based variables introducing other physical measures such
as the electric displacement. Six key novelties are incorporated in this work.
First, a new definition of the electro-mechanical internal energy is intro-
duced expressed as a convex multi-variable function of a new extended set of
electromechanical arguments. Crucially, this new definition of the internal
energy enables the most accepted constitutive inequality, namely ellipticity,
to be extended to the entire range of deformations and electric fields and, in
addition, to incorporate the electro-mechanical energy of the vacuum, and
hence that for ideal dielectric elastomers, as a degenerate case. Second, a new
extended set of variables, work conjugate to those characterising the new def-
inition of multi-variable convexity, is introduced in this paper. Third, both
new sets of variables enable the definition of novel extended Hu-Washizu type
of mixed variational principles which are presented in this paper for the first
time in the context of nonlinear electro-elasticity. Fourth, some simple strate-
gies to create appropriate convex multi-variable energy functionals (in terms
of convex multi-variable invariants) by incorporating minor modifications to
a priori non-convex multi-variable functionals are also presented. Fifth, a
tensor cross product operation [3] used in [1] to facilitate the algebra associ-
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ated with the adjoint of the deformation gradient tensor is incorporated in
the proposed variational electro-mechanical framework, leading to insightful
representations of otherwise complex algebraic expressions. Finally, under a
characteristic experimental set up in dielectric elastomers, the behaviour of a
convex multi-variable constitutive model capturing some intrinsic nonlinear
effects such as electrostriction, is numerically studied.

Keywords: Dielectric elastomers, Nonlinear electro-elasticity, Large
strains, material stability, Mixed variational principles, polyconvexity

1. Introduction

The actuator and harvesting capabilities of the early piezoelectric crystals
and ceramics were not very long ago eclipsed by those of Electro Active
Polymers (EAP). This heterogeneous group can be divided into two further
subgroups, namely Electronic Electro Active Polymers (EEAP) and Ionic
Electro Active Polymers (IEAP) [4]. Within the first subgroup, Dielectric
Elastomers (DE) and electrostrictive relaxor ferroelectric polymers or simply
Piezoelectric Polymers (PP), have become increasingly relevant. The second
subgroup includes ionic gels, Ionic Polymer Metal Composites (IPMC) and
carbon nanotubes.

The present manuscript focuses mainly on DEs and PPs. The elastomer
VHB 4910 and the highly popular PolyVinylidene DiFlouride (PVDF) are the
most representative examples of both groups, respectively. However, DEs are
becoming specially attractive due to their outstanding actuation properties
[5–8]. For instance, a voltage induced area expansion of 1980% on a DE
membrane film has been recently reported by Li et al. [9]. In this specific
case, the electromechanical instability is harnessed as a means for obtaining
these electrically induced massive deformations with potential applications
in soft robots, adaptive optics, balloon catheters and Braille displays [9],
among others. Moreover, these materials have been successfully applied as
generators to harvest energy from renewable sources as human movements
and ocean waves [10].

With the emergence of these highly deformable materials, a variational
framework for nonlinear electro-elasticity was developed by different authors
[11–21]. Within that framework, as customary in nonlinear continuum me-
chanics, the constitutive behaviour of the material is encoded in an energy
functional which depends typically upon appropriate strain measures, a La-
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grangian electric variable and, if dissipative effects are considered, upon an
electromechanical internal variable.

Several authors have proposed alternative representations of the energy
functional in terms of electromechanical invariants [12–17]. However, some
restrictions need to be imposed on the invariant representation if physically
admissible behaviours are expected to occur. Bustamante and Merodio [22]
considered classical constitutive inequalities, namely: the Baker-Ericksen in-
equality, the pressure-compression inequality, the traction-extension inequal-
ity and the ordered forces inequality. The objective was to study under
what conditions a specific invariant representation of the energy functional
for magneto-sensitive elastomers would violate the previous inequalities for
very specific deformation scenarios.

The most well accepted constitutive inequality is ellipticity, also known
as the Legendre-Hadamard condition [2, 23]. This inequality has important
physical implications. In particular, it guarantees positive definiteness of the
generalised electromechanical acoustic tensor [24] and hence, existence of real
wave speeds in the material in the vicinity of an equilibrium configuration.
Several authors have also studied under what conditions positive definiteness
of the generalised electromechanical acoustic tensor is compromised for a
specific invariant representation of the energy functional [24–26]. Recently, a
material stability criterion based on an incremental quasi-convexity condition
of the energy functional has been introduced by Miehe et al. [27].

In nonlinear elasticity, polyconvexity [1, 2, 23, 28–34, 34–45] of the (strain)
energy functional, namely, convexity with respect to the components of the
deformation gradient tensor F , the components of its adjoint or cofactor H

and its determinant J , automatically implies the ellipticity condition. Follow-
ing the work of Rogers [46], the present manuscript presents an extension of
the concept of polyconvexity to the field of nonlinear electro-elasticity based
on a new convex multi-variable definition of the energy functional. Notice
that the focus of this paper is on material stability and not on the existence
of minimisers. The latter would also require the study of the sequentially
weak lower semicontinuity and the coercivity of the energy functional.

A new electro-kinematic variable set is introduced including the deforma-
tion gradient F , its adjoint H , its determinant J , the Lagrangian electric
displacement field D0 and an additional spatial or Eulerian vector d com-
puted as the product between the deformation gradient tensor and the La-
grangian electric displacement field. The resulting energy functional is called
the internal energy and as presented in Reference [47], convexity of the inter-
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nal energy functional with respect to the elements of the new extended set
permits an extension of the concept of ellipticity [23], not only to the entire
range of deformations but to any applied electric field as well.

The extended set of variables V = {F , H , J, D0, d} enables the introduc-
tion of another new set of work conjugate variables ΣV = {ΣF ,ΣH , ΣJ ,ΣD0

,Σd}
[48]. Convexity of the internal energy with respect to V guarantees that the
relationship between both sets of variables is one to one and invertible. In
addition, convexity of the internal energy enables three additional energy
functionals to be defined (at least implicitly) by making appropriate use of
the Legendre transform2.

From the computational standpoint, the scientific community typically
resorts to a discretisation of a displacement-electric potential based varia-
tional principle via the Finite Element Method [11, 49–52]. Bustamante [14]
presents alternative variational principles in which the unknown variables are
displacements and the Lagrangian electric displacement field and the vector
potential. Moreover, the authors in Reference [53] present a series of mixed
variational principles for electro-elasticity. In our case, the new extended set
of electro-kinematic variables associated to the proposed definition of multi-
variable convexity, their work conjugates and the four new different types of
energy functionals enable new mixed variational principles to be defined. The
present manuscript presents extended Hu-Washizu type of variational princi-
ples [39, 54–56, 56–61, 61–67] which open up new interesting possibilities in
terms of using various interpolation spaces for different variables, leading to
enhanced type of formulations [36, 68–73]. A Finite Element implementation
of these new variational principles has been presented in Reference [74].

This paper is organised as follows. Section 2 revises the fundamental
concepts of large strain kinematics with the help of the tensor cross prod-
uct notation re-introduced by Bonet et al. [1]. Section 3 summarises key
aspects of nonlinear elasticity in the context of polyconvexity as presented
by the authors in recent papers [1, 75]. Section 4 presents the extension of
the concept of polyconvexity to nonlinear electro-elasticity, where the more
appropriate term multi-variable convexity has been used instead. An ex-
tended set of electro-kinematic variables and its work conjugate counterpart

2Two partial Legendre transforms can be obtained by fixing either purely mechanical or
purely electrical variables of the extended set. A total Legendre transform of the internal
energy would render the third energy functional in terms of the elements of the extended
set of work conjugate variables
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are presented for the first time. Moreover, different energy functionals are
derived via appropriate application of the Legendre transform over the con-
vex multi-variable internal energy functional. Based on the new extended set
of electro-kinematic variables and their work conjugate counterpart, Section
5 presents new interesting Hu-Washizu type of mixed variational principles.
Section 6 presents simple (convexification or stabilisation) strategies which
permit to create convex multi-variable electromechanical invariants by adding
simple modifications to a priori non-convex ones.

A simple convex multi-variable constitutive model able to capture non-
linear constitutive features inherent to Dielectric Elastomers, namely, elec-
trostriction and electric saturation, is presented in Section 7. The material
parameters of the proposed constitutive model are adjusted to reproduce the
electrostrictive behaviour reported by Zhao et al [76] in DE films. More-
over, the effect of electrostriction and saturation on the behaviour of the
DE films subjected to a specific experimental set up is investigated numeri-
cally. Section 8 provides some concluding remarks and a summary of the key
contributions of this paper.

Three appendices have been included for the sake of completeness. Ap-
pendix A summarises the algebra associated to the tensor cross product
operation [1, 75]. Appendix B expands on the developments of Section 6
including some tedious algebraic manipulations. Finally, Appendix C de-
tails the necessary steps required in order to carry out a realistic material
characterisation at the origin.

2. Motion and deformation

Let us consider the motion of an electro active polymer which in its initial
or material configuration is defined by a domain V of boundary ∂V with out-
ward unit normal N , which is embedded within a truncated continuum V∞
with inner boundary ∂V (with outward unit normal −N ) and outer bound-
ary ∂∞V∞. Let ∂∞V∞ be ideally located in a region infinitely far from the
electro active polymer such that the deformation can be assumed to vanish.
After the motion, the electro active polymer occupies a spatial configuration
defined by a domain v of boundary ∂v with outward unit normal n, whilst
the deformed truncated continuum is defined by v∞ with boundaries ∂v (with
outward unit normal −n) and ∂∞v∞ ≡ ∂∞V∞ (refer to Figure 1).

The motion of the electro active polymer V (extended to also include that
of the surrounding truncated continuum V∞) is defined by a pseudo-time t

5



dependent mapping field φ which links a material particle from material
configuration X to spatial configuration x according to x = φ(X, t), where
displacement boundary conditions can be defined as x = (φ)∂uV on the
boundary ∂uV ⊂ ∂V , where the notation (•)∂uV is used to indicate the given

value of a variable • ion the boundary ∂uV .
The two-point deformation gradient tensor or fibre-map F , which relates

a fibre of differential length from the material configuration dX to the spatial
configuration dx, namely dx = F dx, is defined as the material gradient ∇0

of the spatial configuration [2, 23, 28–30, 67, 77–80]

F = ∇0x =
∂φ(X, t)

∂X
. (1)

Figure 1: Electro active polymer and surrounding truncated domain in initial
(undeformed) and final (deformed) configurations.

In addition, J = det F represents the Jacobian or volume-map of the
deformation, which relates differential volume elements in the material con-
figuration dV and the spatial configuration dv as dv = JdV . Finally, the
element area vector is mapped from initial dA (colinear with N ) to final da
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(colinear with n) configuration by means of the two-point co-factor or ad-
joint tensor H as da = HdA, which is related to the deformation gradient
via the so-called Nanson’s rule [67]

H = JF−T . (2)

Figure 1 depicts the deformation process as well the three kinematic maps,
that is, F , H and J . With the help of the definition of the tensor cross
product presented in [3], rediscovered in [1] and included in Appendix A
for completeness, it is possible to re-write the area H and volume J maps in
tensor and indicial notation as follows

H =
1

2
F F ; HiI =

1

2
EijkEIJKFjJFkK ; (3a)

J =
1

3
H : F ; J =

1

3
HiIFiI , (3b)

where Eijk (or EIJK) symbolises the third order alternating tensor compo-
nents3 and the use of repeated indices implies summation, unless otherwise
stated.

In addition, throughout the paper, the symbol (·) is used to indicate the
scalar product or contraction of a single index a · b = aibi; the symbol (:)
is used to indicate double contraction of two indices A : B = AijBij; the
symbol (×) is used to indicate the cross product between vectors [a× b]i =
Eijkajbk and the symbol (⊗) is used to indicate the outer or dyadic product
[a⊗ b]ij = aibj.

For a smooth deformation mapping φ, it can be shown from equations
(1) and (3) that the material divergence of the co-factor H as well as the
material CURL of the deformation gradient F vanish, that is [81]:

DIVH = 0; [DIVH ]i =
∂HiI

∂XI

= 0; (4a)

CURLF = 0; [CURLF ]iI = EIJK

∂FiK

∂XJ

= 0. (4b)

In general, it is possible to consider a subdivision of the domain V so that
V = ∪i=n

i=1Vi, with interfaces ∂Vi ∩ ∂Vj, i 6= j. The deformation mapping φ

3Lower case indices {i, j, k} will be used to represent the spatial configuration whereas
capital case indices {I, J, K} will be used to represent the material description.
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is considered to be sufficiently regular in every subdomain Vi and in the sur-
rounding truncated domain V∞ but not necessarily smooth across interfaces.
In this case, equations (4) apply to Vi and V∞, whilst suitable boundary and
jump conditions can be introduced as follows

φ = (φ)∂uV on ∂uV ; (5a)

φ = 0 on ∂∞V∞; (5b)

JφK = 0 on (∂Vi ∩ ∂Vj) ∪ ∂V ; (5c)

F N = (F N )∂uV on ∂uV ; (5d)

JF K N |∂Vi
= 0 on (∂Vi ∩ ∂Vj) ∪ ∂V ; (5e)

HN = (HN )∂uV on ∂uV ; (5f)

JHK N |∂Vi
= 0 on (∂Vi ∩ ∂Vj) ∪ ∂V, (5g)

where JϕK = (ϕi − ϕj) denotes the jump of a variable ϕ across an interface
∂Vi ∩ ∂Vj with associated unit outward normal N |∂Vi

.
Let us define δu and u as virtual and incremental variations of x, re-

spectively, where it will be assumed that δu and u satisfy compatible homo-
geneous displacement based boundary conditions that vanishes on ∂uV and
∂∞V∞. Following the notation of [67] and making use of the tensor cross
product introduced above, the first and second directional derivatives of
the co-factor H with respect to virtual and incremental variations of the
geometry are easily evaluated as

DH [δu] = F DF [δu] = F ∇0δu; (6a)

D2H [δu; u] = DF [u] DF [δu] = ∇0δu ∇0u. (6b)

Similarly, the directional derivatives of the Jacobian J with respect to
virtual and incremental variations of the geometry can be obtained as

DJ [δu] = H : ∇0δu; (7a)

D2J [δu; u] = F : (∇0δu ∇0u) . (7b)

A stated in [1], the directional derivatives (6)-(7) are greatly simplified
when using the new tensor cross product 4.

4As an example and for comparison purposes, the classical way [67] to compute ex-

pression (6a) results in the cumbersome expression DH [δu] =
(
JF−T : ∇0δu

)
F−T −

JF−T (∇0δu)
T

F−T .
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3. Equilibrium and constitutive law in nonlinear continuum me-
chanics

In this section, the translational and rotational equilibrium equations are
presented. Moreover, the internal energy and the concept of polyconvexity
in the context of nonlinear elasticity (electric effects are not considered in
this section) are also introduced.

3.1. Translational and rotational equilibrium

Let us assume that the domain defined by the electro active polymer is
subjected to a body force per unit of undeformed volume f 0 and a traction
force per unit of undeformed area t0 applied on ∂tV ⊂ ∂V , such that ∂tV ∪
∂uV = ∂V and ∂tV ∩ ∂uV = ∅. The global conservation of linear momentum
leads to the integral translational equilibrium equations as [67, 80]

∫

∂tV

t0dA +

∫

V

f 0dV = 0. (8)

From above equation (8), the local (strong form) translational equilibrium
equations and the associated boundary and jump conditions can be expressed
as

DIVP + f 0 = 0 in Vi, i = 1 . . . n; (9a)

PN = t0 on ∂tV ; (9b)

JP K N |∂Vi
= 0 on ∂Vi ∩ ∂Vj. (9c)

where P represents the first Piola-Kirchoff two-point stress tensor. Further-
more, satisfaction of rotational equilibrium leads to the well-known tensor
condition PF T = FP T .

3.2. The internal energy density: polyconvex elasticity

For the closure of the system of equations defined by (5) and (9), an addi-
tional constitutive law is needed relating deformation and stresses in both the
continuum and the surrounding medium. In the case of reversible elasticity,
where thermal effects and any other possible state variables (i.e. accumu-
lated plastic deformation) are disregarded, the internal energy density e per
unit of undeformed volume can be solely defined in terms of the deformation,
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namely e = e(∇0x). In this case, combination of (9) and the first law of
thermodynamics yields

De[δu] = P : ∇0δu; P =
∂e(F )

∂F

∣∣∣∣
F=∇0x

. (10)

The concept of polyconvexity was introduced by Ball [2, 28, 30] in order to
establish sufficient conditions for the existence of solutions in nonlinear elas-
ticity. It is recognised these days [1, 23, 29, 39] that polyconvexity is a useful
mathematical requirement that can be used to ensure the well-posedness of
the equations in the large strain regime. Moreover, polyconvexity implies el-
lipticity (or rank-one convexity) [31], guaranteeing the existence of real wave
speeds [1, 2, 23, 28–30, 34, 81]. Essentially, the internal energy density e must
be a function of the deformation gradient ∇0x via a convex multi-variable
density functional W as

e (∇0x) = W (F , H , J) , (11)

where W is convex with respect to its 19 variables, namely, J and the 3× 3
components of F and H . In addition, the requirement for objectivity or
material frame indifference (i.e. invariance with respect to rotations in the
material configuration) implies that W must be independent of the rotational
components of F and H and hence a function of these tensors via symmetric
tensors such as the right Cauchy-Green strain tensor C = F T F or G =
HT H5.

3.3. Conjugate stresses, the first Piola-Kirchhoff and Cauchy stress tensors

The fibre, area and volume mappings F , H and J , respectively, have
work conjugate stresses ΣF , ΣH and ΣJ defined by [1]:

ΣF =
∂W

∂F
; ΣH =

∂W

∂H
; ΣJ =

∂W

∂J
. (12)

For notational convenience, the following sets to be used in subsequent
sections are defined

Vm = {F , H , J}; Σm
V = {ΣF ,ΣH , ΣJ}, (13)

5Notice that using equation (3), it is easy to show that G is related to the right Cauchy-
Green strain tensor C as G = J2C−1 = 1

2
C C.
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where the superscript m denotes the mechanical set of variables, that will
be extended later with electric components. By using equation (12), it is
therefore possible to evaluate the directional derivative of the internal energy
density e as:

De [δu] = DW [DF [δu] , DH [δu] , DJ [δu]]

= ΣF : DF [δu] + ΣH : DH [δu] + ΣJDJ [δu]

= ΣF : ∇0δu + ΣH : (F ∇0δu) + ΣJ (H : ∇0δu)

= (ΣF + ΣH F + ΣJH) : ∇0δu.

(14)

Comparison of (10) with above equation (14), leads to the evaluation of
the first Piola-Kirchhoff tensor as

P = ΣF + ΣH F + ΣJH . (15)

In addition to the first Piola-Kirchhoff stress, it is necessary to derive
expressions for the Cauchy σ and Kirchhoff τ stress tensors, as often these
stresses are needed in order to display solution results at a post-processing
stage (e.g. visualisation). Such expressions can be derived from the stan-
dard push forward relationship between these tensors [67], namely Jσ =
τ = PF T . Following a similar procedure to that presented in [1, 81], an
expression for the Kirchhoff stress tensor emerges as

Jσ = τ = τF + τH I + τJI. (16)

where I denotes the second order identity tensor and with

τF = ΣFF T ; τH = ΣHHT ; τJ = JΣJ . (17)

3.4. Tangent elasticity operator

With a Newton-Raphson type of solution process in mind, it is useful to
derive the tangent elasticity operator. This is typically evaluated in terms of
a fourth order tangent elasticity tensor C defined by

D2e [δu; u] = ∇0δu : DP [u] = ∇0δu : C : ∇0u, (18)

where

C :=
∂P

∂F

∣∣∣∣
F=∇0x

=
∂2e(F )

∂F ∂F

∣∣∣∣
F=∇0x

. (19)

11



Using equation (15) for the first Piola-Kirchhoff tensor and following a
chain rule derivation similar to that in equation (14) (refer to [1]), a more
physically insightful representation of the tangent elasticity operator (18) is

D2e [δu; u] =
[
Sδ

]T
[HW ]

[
S∆

]
+ (ΣH + ΣJF ) : (∇0δu ∇0u) , (20)

where

[
Sδ

]T
=

[
(∇0δu) : (∇0δu F ) : (∇0δu : H)

]
;

[
S∆

]
=




: (∇0u)
: (F ∇0u)
(H : ∇0u)


 ,

(21)
and with the Hessian operator [HW ] denoting the symmetric positive definite
operator containing the second derivatives of W (F , H , J) as

[HW ] =




WFF WFH WFJ

WHF WHH WHJ

WJF WJH WJJ




, (22)

where WAB = ∂2W
∂A∂B

. As discussed in [1], polyconvexity dictates that the
first (constitutive) term on the right hand side of equation (20) is necessarily
positive for a virtual field δu satisfying δu = u and thus, buckling can only be
induced by the second (geometrical) term. As presented in reference [75], the
alternative representation of the tangent operator in equation (20) enables
to easily see the relationship between polyconvexity and ellipticity (rank-one
convexity).

3.5. Material characterisation in the reference configuration

As an example, one of the simplest isotropic polyconvex energy function-
als is that representing a compressible Mooney-Rivlin material, which can be
described as

WMR(F , H , J) = αIIF + βIIH + f (J) ; IIF = F : F ; IIH = H : H ;
(23)

where α and β are positive material parameters and f denotes a convex
function of J and II(•) denotes the squared of the L2 norm of the entity (•).
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For the Mooney-Rivlin energy functional in (23), the first Piola-Kirchhoff
stress tensor becomes (refer to equation (15)):

P = 2αF + 2βH F + f ′ (J) H . (24)

For this particular constitutive model, the Hessian operator [HW ] (22)
contained in the tangent operator of the internal energy defined in (20) be-
comes

[HW ] =




2αI 0 0

0 2βI 0

0 0 f ′′(J)




, (25)

where I denotes the identity fourth order tensor, defined as IiIjJ = δijδIJ .
It is interesting to observe the positive definite nature of the above Hessian
operator provided that the constants α and β are positive and that the func-
tion f(J) is convex. Appropriate values for α and β and suitable functions
f(J) must be such that, at the initial configuration, the stress vanishes.
Moreover, the typical linear elasticity relation between stresses and strains
through the classical forth order linear elasticity tensor in terms of the Lamé
coefficients λ and µ must be recovered [1]. Material characterisation in the
reference configuration (obtention of α and β in terms of λ and µ) of a simple
isotropic Mooney-Rivlin model with strain energy as that of equation (23)
has been described in Bonet et al. [1].

Remark 1. The case β = 0 gives the simpler compressible Neo-Hookean model
WNH , which is convex in F and J alone without the need to introduce H as
a separate independent variable or its conjugate stress ΣH .

4. Nonlinear continuum electromechanics

4.1. Governing equations in nonlinear electromechanics

In this section, the entire set of governing equations in nonlinear elec-
tromechanics is presented. First, the Faraday and Gauss laws are introduced
in a global and local manner. Then, the translational and rotational equilib-
rium equations are revisited. Moreover, the internal energy and the concept
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of multi-variable convexity (notice that in the context pure elasticity in Sec-
tion 3.2 the term polyconvexity was used instead) in the context of nonlinear
electromechanics are introduced in this section.

4.1.1. Faraday and Gauss laws

Maxwell’s equations, when neglecting time dependent effects and in the
absence of magnetic fields and electric currents, can be used to describe the
behaviour of electrostatic fields. Let us recall the electro active polymer intro-
duced in Section 2 surrounded by a medium which, without loss of generality
in the present manuscript, will be the vacuum or free space. Moreover, let
ρe

0 denote an applied electric charge per unit of undeformed volume. The
electric charge per unit of undeformed volume V∞ is typically neglected in
the particular case in which V∞ corresponds to the vacuum. Let ωe

0 be an
electric charge per unit of undeformed area applied on ∂ωV ⊂ ∂V . The
integral version of the Gauss law can be written in a Lagrangian format as

∫

∂ωV

ωe
0 dA +

∫

V

ρe
0 dV = 0. (26)

The local version of equation (26) and the associated boundary and jump
conditions can be written as

DIVD0 = ρ0 in Vi, i = 1 . . . n; (27a)

DIVD0 = 0 in V∞; (27b)

JD0K ·N = ω0 on ∂ωV ; (27c)

JD0K ·N = 0 on ∂ϕV ; (27d)

JD0K ·N |∂Vi
= 0 on ∂Vi ∩ ∂Vj (27e)

where D0 is the Lagrangian electric displacement field [12, 13]. Notice that
equations (27a) and (27b) represent the local Gauss law in the dielectric
and the vacuum, respectively. In addition, in the case of equations (27c)-
(27d), the term JD0K represents the jump of electric displacement between
the domain defined by the dielectric V and the surrounding vacuum V∞.
Equations (27) could alternatively be presented in a spatial description in
terms of the Eulerian electric displacement D field6, which is related to its

6Note that the computation of the Eulerian electric displacement D is also important
at a post-processing stage when computing or visualising final results.
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Lagrangian counterpart D0 through the standard Piola (area) transformation
as D0 = HT D [12, 13].

Analogously, the integral version of the static Faraday law can be written
in a Lagrangian format for a closed curve C embedded in V ∪ ∂V as

∮

C

E0 · dX = 0, (28)

where E0 is the Lagrangian electric field vector. The local version of equation
(28) and the associated boundary and jump conditions can be expressed as

E0 = −∇0ϕ in Vi, i = 1 . . . n; (29a)

E0 = −∇0ϕ in V∞; (29b)

ϕ = (ϕ)∂ϕV on ∂ϕV ; (29c)

ϕ = 0 on ∂∞V∞; (29d)

JE0K N = 0 on ∂ωV ; (29e)

JE0K N |∂Vi
= 0 on ∂Vi ∩ ∂Vj, (29f)

where ϕ is an electric potential field that can be introduced in the case
of a contractible domain7. Typically, the origin of electric potential field
is defined on ∂∞V∞. This is mathematically stated in equation (29d). In
equation (29c), ∂ϕV ⊂ ∂V represents the part of the boundary subjected
to electric potential boundary conditions, such that ∂ωV ∪ ∂ϕV = ∂V and
∂ωV ∩ ∂ϕV = ∅. As above equations (27), equations (29) could alternatively
be presented in a spatial description in terms of the Eulerian electric field
E, which is related to its Lagrangian counterpart E0 through the standard
fibre transformation E0 = F T E [12, 13].

4.1.2. Translational and rotational equilibrium

The existence of an electric field leads to a modification of the trans-
lational equilibrium equations of the dielectric to account for the presence
of coupled electromechanical stresses and vacuum effects. Specifically, this
leads to the modification of the local form of translational equilibrium and

7Alternatively, equation (29a) could be replaced by the more general condition
CURLE0 = 0 and equation (29c) by E0 N = (E0 N)∂ϕV .
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its associated boundary and jump conditions in (9) as

DIVP + f 0 = 0 in Vi, i = 1 . . . n; (30a)

DIVP = 0 in V∞; (30b)

JP KN = t0 on ∂tV ; (30c)

JP KN = 0 on ∂uV ; (30d)

JP K N |∂Vi
= 0 on ∂Vi ∩ ∂Vj. (30e)

In this case, the stress tensor P includes both deformation and electrical
components. As pointed out in [14], as there are no experiments that can
separate the mechanical from the electrical contributions in P , it is preferred
to work with the overall coupled stress tensor and not with its individual
(deformation and electrical) components.

Notice that equations (30a) and (30b) represent the local translational
equilibrium in the dielectric and the vacuum, respectively. Moreover, in the
case of equations (30c)-(30d), JP K represents the jump in the first Piola-
Kirchhoff stress tensor between that of the domain defined by the dielectric
V and that of the surrounding vacuum, the latter known as Maxwell stress
tensor [14, 19, 50]. Once again, satisfaction of rotational equilibrium leads to
the condition PF T = FP T imposed on the coupled electromechanical stress
tensor [12], and not on its individual deformation and electrical contributions.

Remark 2. When the surrounding truncated medium corresponds to vacuum,
a distribution of stress (typically known as the Maxwell stress) due to the
surrounding electric field arises. The Maxwell stress is divergence free and
hence, we can conclude that f 0 = 0 in V∞, which is stated in equation (30b).

4.2. The internal energy in nonlinear electro-elasticity: multi-variable con-

vexity

For the closure of the system of equations defined by (5), (27), (29), (30)
and (34), an additional constitutive law is needed relating deformation and
electric displacement with stresses and electric field in the domain defined
by the dielectric. In the case of reversible electro-elasticity, where thermal
effects and any other possible state variables (i.e. accumulated plastic defor-
mation or electrical relaxation) are disregarded, the internal energy density
e per unit of undeformed volume can be defined in terms of the deformation
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and the electric displacement, namely e = e(∇0x, D0). In addition, let us
consider δD0 and ∆D0 to denote virtual and incremental variations of D0,
respectively, satisfying compatible homogeneous electric displacement based
boundary conditions on ∂ωV . In this case, combination of (27) and (30) and
the first law of thermodynamics yields

De[δu, δD0] = P : ∇0δu + E0 · δD0, (31)

or alternatively,

P =
∂e(F , D0)

∂F

∣∣∣∣
F=∇0x

; E0 =
∂e(F , D0)

∂D0

∣∣∣∣
F=∇0x

. (32)

As an example, the internal energy functional of a very popular material
is that of an ideal isotropic dielectric elastomer, which is defined based on
the additive decomposition of a purely mechanical component em(∇0x) and
an electromechanical component which is proportional to the internal energy
of the vacuum e0, namely

eideal(∇0x, D0) = em(∇0x) +
1

εr

e0(∇0x, D0);

e0(∇0x, D0) =
1

2ε0J
IId; d = FD0 = JD; IId = d · d;

(33)

where εr is a dimensionless constant representing the relative permittivity
of the dielectric and ε0, the electric permittivity of the vacuum, with ε0 ≈
8.854× 10−12A2s4kg−1m−3. For the particular case of the vacuum, equation
(32) enables to obtain the Maxwell stress tensor and the relationship between
the electric field and the electric displacement field based on the internal
energy W0(x, D0) defined in equation (33) as

P =
1

ε0J
d⊗D0 −

1

2ε0J2
IIdH in V∞;

E0 =
1

ε0J
F T d in V∞.

(34)

These expressions can be pushed forward to the Eulerian configuration
using the standard Piola transformation σ = J−1PF T and E = F−T E0 to
give after simple algebra the Cauchy stress tensor in the vacuum and the
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corresponding electric field as

σ =
1

ε0

D ⊗D −
1

2ε0

IIDI in V∞;

E =
1

ε0

D in V∞.
(35)

In this paper, a generalisation of expression (11) for the internal energy
density functional e including electromechanical contributions is postulated
as8

e (∇0x, D0) = W (F , H , J, D0, d) , (37)

where W represents a convex multi-variable functional in terms of its ex-
tended set of arguments V = {F , H , J, D0, d} and with d defined in equation
(33). Objectivity or material frame indifference implies that W (F , H , J, D0, FD0)
must be independent of the rotational components of F and H via sym-
metric tensors such as the right Cauchy-Green strain tensor C = F T F or
G = HT H .

Remark 3. It would be tempting to postulate W as a convex function of
{F , H , J, D0} [21], excluding the vector d. However, it is easy to show that
this leads to a non-convex representation of the energy function describing the
vacuum (33) and hence, that for a ideal dielectric elastomer. In other words,
as the invariant FD0·FD0 is not convex with respect to arguments {F , D0},
this would preclude its use in the sense of material stability. However, as this
invariant is convex with respect to d, its use can still be incorporated into our
framework, hence including the electro-mechanical energy of both vacuum
and ideal dielectric elastomers as a valid degenerate case of our formulation.

8Note that extension of the definition of multi-variable convexity in equation (37) to
electro-magneto-elasticity is simply obtained through a definition of the internal energy as

e (∇0x,D0, B0) = W (F ,H, J,D0,B0, d, b) ; d = FD0 = JD; b = FB0 = JB,

(36)
where W represents a convex multi-variable functional in terms of its extended set of
arguments, namely {F ,H, J,D0,B0,d, b} and B, the spatial counterpart of B0, defined
through the classical area transformation B0 = HT B.
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4.3. Work conjugate variables

The definition of multi-variable convexity in equation (37) enables the in-
troduction of a set of work conjugate variables ΣV = {ΣF ,ΣH , ΣJ ,ΣD0

,Σd}
to those in the set V defined as

ΣF =
∂W

∂F
; ΣH =

∂W

∂H
; ΣJ =

∂W

∂J
; ΣD0

=
∂W

∂D0

; Σd =
∂W

∂d
. (38)

For notational convenience, in addition to the sets Vm and Σm
V defined in

equation (13), two new sets which contain the electrical variables, namely Ve

and Σe
V , used in subsequent sections are defined as,

Ve = {D0, d}; Σe
V = {ΣD0

,Σd}. (39)

Following a similar procedure to that of equation (14), the directional
derivative of the internal energy e with respect to virtual changes in the
geometry is obtained as

De [δu] = DW [DF [δu] , DH [δu] , DJ [δu] , Dd [δu]]

= ΣF : DF [δu] + ΣH : DH [δu] + ΣJDJ [δu] + Σd ·Dd [δu]

= ΣF : ∇0δu + ΣH : (F ∇0δu) + ΣJ (H : ∇0δu) + (Σd ⊗D0) : ∇0δu

= (ΣF + ΣH F + ΣJH + Σd ⊗D0) : ∇0δu,
(40)

where the relationship Dd[δu] = (∇0δu)D0 emanating from the relationship
d = FD0 has been used. Similarly, the first directional derivative of the
internal energy with respect to virtual variations of the electric displacement
field is obtained as

De [δD0] = DW [δD0, F δD0] = ΣD0
· δD0 + Σd · F δD0

=
(
ΣD0

+ F TΣd

)
· δD0.

(41)

Comparison of equations (40) and (41) against (31), enables the first
Piola-Kirchhoff stress tensor and the material electric displacement field to
be expressed in terms of the elements of both sets V and ΣV as

P = ΣF + ΣH F + ΣJH + Σd ⊗D0; E0 = ΣD0
+ F TΣd. (42)

An expression for the Kirchhoff stress tensor [1] and the spatial electric
field emerges based upon the relations τ = PF T and E = F−T E0 as

τ = ΣFF T +
(
ΣHHT

)
I + JΣJI + Σd ⊗ d;

E = F−T
(
ΣD0

+ F TΣd

)
= F−TΣD0

+ Σd.
(43)
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4.4. Tangent electromechanics operator for the internal energy

With a Newton-Raphson type of solution process in mind, the internal en-
ergy e = e(∇0x, D0) can be further linearised leading to a tangent operator
defined as follows

D2e [δu, δD0; u, ∆D0] =
[

∇0δu : δD0·
] [

C QT

Q θ

] [
: ∇0u

∆D0

]
, (44)

with the fourth order tensor C, the third order tensor Q and the second order
tensor θ defined as

C =
∂2e(F , D0)

∂F ∂F

∣∣∣∣
F=∇0x

; Q =
∂2e(F , D0)

∂D0∂F

∣∣∣∣
F=∇0x

; θ =
∂2e(F , D0)

∂D0∂D0

∣∣∣∣
F=∇0x

.

(45)
Following a similar procedure to that presented in Section 3.4, with the

additional relationships D2d[δu, ∆D0] = (∇0δu)∆D0 and D2d[δD0, u] =
(∇0u)δD0, a more physically insightful representation of the tangent oper-
ator (44) is

D2e [δu, δD0; u, ∆D0] =
[
Sδ

]T
[HW ]

[
S∆

]
+ (ΣH + ΣJF ) : (∇0δu ∇0u)

+ Σd · ((∇0δu)∆D0 + (∇0u)δD0) ,
(46)

where

[
Sδ

]T
=

[
(∇0δu) : (∇0δu F ) : (∇0δu : H) δD0· ((∇0δu)D0 + F δD0) ·

]
;

[
S∆

]
=




: (∇0u)
: (F ∇0u)
(H : ∇0u)

∆D0

(∇0u)D0 + F∆D0




,

(47)
and with the extended Hessian operator [HW ] denoting the symmetric posi-
tive definite operator containing the second derivatives of W (F , H , J, D0, d)
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as

[HW ] =




WFF WFH WFJ WFD0
WFd

WHF WHH WHJ WHD0
WHd

WJF WJH WJJ WJD0
WJd

WD0F
WD0H

WD0J WD0D0
WD0d

WdF WdH WdJ WdD0
Wdd




. (48)

It is important to emphasise that this additive decomposition of the tangent
operator is not merely technical but, extremely useful, as the multi-physics
of the problem is completely captured in the first term on the right hand
side of equation (46), whilst geometrically nonlinear terms are collected on
the second and third terms.

Multi-variable convexity dictates that the first term on the right hand side
of equation (46) is necessarily positive for virtual fields {δu, δD0} satisfying
{δu = u, δD0 = ∆D0} and thus, buckling can only be induced by the second
and third (geometrically-based) terms.

Remark 4. Equation (46) makes it possible to highlight the relationship be-
tween multi-variable convexity and ellipticity in the case of electromechanics.
Taking rank-one equal virtual and incremental displacement gradient tensors
∇0δu = ∇0u = v ⊗ V and ∆D0 = δD0 = V ⊥ (where V ⊥ represents any
orthogonal vector to V ) [47] in equation (46) makes the initial stress term
vanish since,

∇0δu ∇0u = (v ⊗ V ) (v ⊗ V ) = (v × v)⊗ (V × V ) = 0;

Σd · ((∇0δu)∆D0 + (∇0u)δD0) = 2 (v ·Σd) (V · V ⊥) = 0.
(49)

This leaves only the contribution from the first positive definite term in
equation (46), leading to (refer to equation (44)),

[
u⊗ V : V ⊥·

] [
C QT

Q θ

] [
: u⊗ V

V ⊥

]
> 0. (50)

Equation (50) is a generalisation of the concept of ellipticity to the case
of electromechanics9.

9In the context of elasticity, ellipticity is equivalent to rank-one convexity and requires
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4.5. A simple convex multi-variable electromechanical constitutive model

As an example, a simple internal energy functional which complies with
the definition of multi-variable convexity in (37) can be defined as

W1 =µ1IIF + µ2IIH + f(J) +
1

2ε1J
IId +

1

2ε2

IID0
, (51)

where a possible definition of the function f(J) in equation (51) could be

f(J) = −2 (µ1 + 2µ2) ln J +
κ

2
(J − 1)2 . (52)

The work conjugates in (38) for the internal energy functional in (51) are
obtained as

ΣF = 2µ1F ; ΣH = 2µ2H ; ΣJ = f ′(J)−
1

2ε1J2
IId; ΣD0

=
1

ε2

D0; Σd =
1

ε1J
d.

(53)
For the particular constitutive model defined in equation (51), the first

Piola-Kirchhoff stress tensor and the material electric field are obtained ac-
cording to equation (42) as

P =2µ1F + 2µ2H F +

(
f ′(J)−

1

2ε1J2
IId

)
H +

1

ε1

d⊗D0;

E0 =
1

ε2

D0 +
1

ε1J
F T d.

(54)

Substitution of the relationship d = FD0 enables the last equation to be
re-written as

E0 =

(
1

ε2

I +
1

ε1

C

)
D0, (55)

where C is the right Cauchy-Green deformation tensor defined above. For the
particular constitutive model defined in equation (51), the Hessian operator

that the double contraction of the elasticity tensor by an arbitrary rank-one tensor v⊗V

should be positive.
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becomes:

[HW ] =




2µ1I 0 0 0 0

0 2µ2I 0 0 0

0 0 f ′′(J) + 1
ε1J3 IId 0 − 1

ε1J2 d

0 0 0 1
ε2

I 0

0 0 − 1
ε1J2 d 0 1

ε1J
I




. (56)

It is interesting to observe the positive definite nature of the above Hessian
operator provided that the constants µ1, µ2, ε1 and ε2 are positive and that
the function f(J) is convex.

Remark 5. Similarly to Remark 1 in the case of nonlinear elasticity, the
degenerate case ε2 = ∞ results in the ideal dielectric model in equation (33),
which is convex in {F , H , J, d} alone without the need to introduce D0 as a
separate independent variable. Moreover, for µ1 = µ2 = 0 and f(J) = 0, the
energy of the vacuum is retrieved, which is convex in the reduced set {J, d}.

It is important to emphasise that the energy of an ideal dielectric (vac-
uum) cannot be expressed as a convex multi-variable function of {F , H , J, D0}
({J, D0}). That is the reason behind the definition of the extended set V
including the spatial vector d among its variables. Crucially, this enables
to consider the vacuum as a degenerate case of the formulation presented in
this paper.

4.6. Alternative energy density functionals

Multi-variable convexity of the internal energy guarantees that the rela-
tionship between both sets of variables V and ΣV is one to one and invertible.
This enables the definition of alternative energy functionals established via
appropriate Legendre transforms applied to the internal energy W (V) as

Υ (ΣV) = sup
V

{Tm + T e −W (V)} ; (57a)

Ψ (Σm
V ,Ve) = sup

Vm

{Tm −W (V)} ; (57b)

Φ (Vm, Σe
V) = − sup

Ve

{T e −W (V)} , (57c)
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with the sets Vm, Ve, Σm
V and Σe

V defined in equations (13) and (39) and with

Tm = ΣF : F + ΣH : H + ΣJJ ; T e = ΣD0
·D0 + Σd · d. (58)

In equation (57), Υ (ΣV) represents an extended Gibbs’ energy density,
Ψ (Σm

V ,Ve), an extended enthalpy energy density and Φ (V , Σe
V), an extended

Helmholtz’s energy density10. Expressions relating strain, stress and electric
fields, in terms of the different energy densities, follow naturally as

F =
∂Υ

∂ΣF

; H =
∂Υ

∂ΣH

; J =
∂Υ

∂ΣJ

; D0 =
∂Υ

∂ΣD0

; d =
∂Υ

∂Σd

;

(59a)

F =
∂Ψ

∂ΣF

; H =
∂Ψ

∂ΣH

; J =
∂Ψ

∂ΣJ

; ΣD0
= −

∂Ψ

∂D0

; Σd = −
∂Ψ

∂d
;

(59b)

ΣF =
∂Φ

∂F
; ΣH =

∂Φ

∂H
; ΣJ =

∂Φ

∂J
; D0 = −

∂Φ

∂ΣD0

; d = −
∂Φ

∂Σd

.

(59c)

10The terminology adopted here matches that of classical Thermodynamics, where the
electric displacement (electric field) plays the same role as the entropy (temperature) of
the system.
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W (Vm,Ve)

R ΣR

F ΣF

H ΣH

J ΣJ

D0 ΣD0

d Σd

Υ(Σm
V , Σe

V)

R ΣR

ΣF F

ΣH H

ΣJ J

ΣD0
D0

Σd d

Ψ(Σm
V ,Ve)

R ΣR

ΣF F

ΣH H

ΣJ J

D0 ΣD0

d Σd

Φ(Vm, Σe
V)

R ΣR

F ΣF

H ΣH

J ΣJ

ΣD0
D0

Σd d

(57a)(57b)

(57c)

Figure 2: The arguments (R) of the internal W (V) (37), Gibbs’s Υ (ΣV)
(57a), Enthalpy Ψ (Σm

V ,Ve) (57b) and Helmtholz’s Φ (Vm, Σe
V) (57c) energy

functionals and their respective set of work conjugates (ΣR). Relation be-
tween W (V) and the remaining energy functionals according to the Legendre
transforms defined in equation (57).

Figure 2 summarises the set of arguments (denoted as R) for the different
extended energy functionals defined, namely the internal, Gibbs’s, Enthalpy
and Helmtholz’s energy functionals and their respective set of work conju-
gates (denoted as ΣR).

Remark 6. Notice that the definition of multi-variable convexity in (37)
ensures a one to one relationship between the pairs {D0, d} and {ΣD0

,Σd},
respectively. Moreover, consideration of the definition of the spatial vector
d = ∇0xD0 and the definition of the material electric field −∇0ϕ in terms
of the work conjugates {ΣD0

,Σd} in (42), results in turn in a one to one
relationship between the variables D0 and −∇0ϕ.
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In this case, it is possible to define an alternative energy functional to
e = e(∇0x, D0) by making use of the Legendre transform. This might be
a computationally convenient approach in the case of pursuing a standard
semi-discrete variational implementation via the Finite Element Method,
where the scalar electric potential is preferred as an unknown over the elec-
tric displacement field vector. For instance, the Helmholtz’s energy density
Φ = Φ(∇0x,−∇0ϕ) can be defined as11

Φ (∇0x,−∇0ϕ) = − sup
D0

{−∇0ϕ ·D0 − e (∇0x, D0)} , (60)

leading to an alternative definition to that of (32) for the stress and electric
fields as

P =
∂Φ(F , E0)

∂F

∣∣∣∣
F=∇0x

E0=−∇0ϕ

; D0 = −
∂Φ(F , E0)

∂E0

∣∣∣∣
F=∇0x

E0=−∇0ϕ

. (61)

5. Variational formulations

This section presents several possible variational principles in nonlinear
electro-elasticity. Initially, a revision of the standard displacement and elec-
tric potential based variational principle [14, 49] is presented for complete-
ness. Exploiting the convex multi-variable properties of the internal energy
e(∇0x, D0), new interesting mixed variational principles in terms of the
extended energy functionals W (V) (37), Φ(Vm, Σe

V) (57c), Ψ(Σm
V ,Ve) (57b)

and Υ(ΣV) (57a) emerge. In particular, two new mixed variational principles
based upon the extended energy functionals Φ(Vm, Σe

V) (57c) and W (V) (37)
are presented in Sections 5.3 and 5.2 respectively, for the first time in the
context of nonlinear electro-elasticity.

These new mixed variational principles belong to the general class of
Franjs-de-Veubeke-Hu-Washizu (FdVHW) type variational principles, which
were developed with the purpose of enhancing the numerical solution ob-
tained though Finite Element based variational principles. Finite element
implementation of the two mixed variational principles presented has been
carried out in Reference [74].

11Alternatively, an equivalent definition of the Legendre transform in equation (60) can
be defined as Φ (∇0x,−∇0ϕ) = inf

D0

{∇0ϕ ·D0 + e (∇0x,D0)}
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5.1. Standard displacement and electric potential based variational principle

A first variational principle can be established by the total energy minimi-
sation defined in terms of the internal energy of the system e(∇0x, D0). The
principle applies to the space occupied by both the electro active polymer
and the surrounding truncated domain, namely V ∪ V∞, as [14]

Π̂e(x
∗, D∗

0) = inf
x,D0





∫

V ∪V∞

e(∇0x, D0)dV − Πm
ext(x)



 ;

s.t.

{
DIVD0 = ρe

0 in V ∪ V∞

JD0K ·N = ωe
0 on ∂ωV

;

(62)

where {x∗, D∗
0} denotes the exact solution and

Πm
ext(x) =

∫

V

f 0 · xdV +

∫

∂tV

t0 · xdA, (63)

represents the total external work due to the action of external mechanical
forces. Using a standard Lagrange multiplier approach to enforce the con-
straints defined by the Gauss’ law, a new variational principle defined by a
new energy potential Πe(x

∗, ϕ∗, D∗
0) emerges as

Πe(x
∗, ϕ∗, D∗

0) = inf
x,D0

sup
ϕ





∫

V ∪V∞

e(∇0x, D0)dV − Πm
ext(x)

+

∫

V ∪V∞

ϕ (ρe
0 −DIVD0) dV +

∫

∂ωV

ϕ (ωe
0 − JD0K ·N ) dA



 ,

(64)

where the electric potential ϕ acts as the Lagrange multiplier needed to
enforce the constraints. Application of the Gauss divergence theorem to
above equation (64) yields an alternative representation of the variational
principle as

Πe(x
∗, ϕ∗, D∗

0) = inf
x,D0

sup
ϕ





∫

V ∪V∞

e(∇0x, D0)dV +

∫

V ∪V∞

∇0ϕ ·D0dV − Πext(x, ϕ)



 ,

(65)
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with

Πext(x, ϕ) = Πm
ext(x) + Πe

ext(ϕ); Πe
ext(ϕ) = −

∫

V

ρe
0ϕdV −

∫

∂ωV

ωe
0ϕdA,

(66)
where a new external work contribution, that is Πe

ext(ϕ), appears due to
electrical effects. Provided that a one to one relationship between D0 and
−∇0ϕ exists (refer to Remark 5), application of the Legendre transform (60)
enables above variational principle (65) to be reformulated as

ΠΦ(x∗, ϕ∗) = inf
x

sup
ϕ





∫

V ∪V∞

Φ(∇0x,−∇0ϕ)dV − Πext(x, ϕ)



 . (67)

Traditional Finite Element based implementations resort to this varia-
tional principle, where the geometry and the electrical potential are the only
unknowns of the problem [49, 50]. The stationary condition of this functional
with respect to changes in the geometry leads to the principle of virtual work
(or power), written as

DΠΦ[δu] =

∫

V ∪V∞

P x : ∇0δudV −DΠext[δv], (68)

where the term P x represents the first Piola-Kirchhoff stress tensor evaluated
in the standard fashion (15) in terms of the gradient of the geometry and the
electric potential, namely, by using {F x, Hx, Jx,−∇0ϕ}, where

Fx = ∇0x; Hx =
1

2
∇0x ∇0x; Jx = det ∇0x. (69)

Explicitly, the computation can be carried out from equation (61)a. Anal-
ogously, the stationary point with respect to changes in the electric potential
leads to the variational statement for the Gauss’ law as

DΠΦ[δϕ] =

∫

V ∪V∞

D0,ϕ ·∇0δϕdV −DΠext[δϕ], (70)

where the term D0,ϕ represents the electric displacement evaluated from (61)b

by using {F x, Hx, Jx,−∇0ϕ}.
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5.2. A new mixed variational principle in terms of the extended internal

energy functional W

In the case of an electromechanical convex multi-variable energy func-
tional, an equivalent representation of the total variational principle Πe in
equation (65) is

Πe(x
∗, ϕ∗, D∗

0) = inf
x,D0

sup
ϕ





∫

V ∪V∞

W (V) dV +

∫

V ∪V∞

D0 ·∇0ϕ dV − Πext(x, ϕ)



 ;

s.t.
{

F = F x; H = Hx; J = Jx; d = F xD0 in V ∪ V∞
(71)

Using a standard Lagrange multiplier approach to enforce the compat-
ibility constraints in (71) yields a new variational principle which can be
represented as

ΠW (x∗, F ∗, H∗, J∗,Σ∗
F
,Σ∗

H
, Σ∗J , ϕ∗, D∗

0, d
∗,Σ∗

d
)

= inf
x,F ,H,J,D0,d

sup
ΣF ,ΣH ,ΣJ ,ϕ,Σd

{∫

V ∪V∞

W (V) dV +

∫

V ∪V∞

D0 ·∇0ϕ dV

+

∫

V ∪V∞

[ΣF : (Fx − F ) + ΣH : (Hx −H) + ΣJ(Jx − J)

+Σd · (FxD0 − d)] dV − Πext(x, ϕ)} .

(72)

For notational convenience, the following sets of variables are introduced

W = {F , H , J, d}; ΣW = {ΣF ,ΣH , ΣJ ,Σd}. (73)

Virtual and incremental variations of the elements in the sets W and ΣW
in above equation (73) are denoted as

δW = {δF , δH , δJ, δΣD0
}; δΣW = {δΣF , δΣH , δΣJ , δΣd};

∆W = {∆F , ∆H , ∆J, ∆Σd}; ∆ΣW = {∆ΣF , ∆ΣH , ∆ΣJ , ∆Σd}.
(74)

The stationary point of the above variational principle (81) with respect
to virtual changes of the geometry leads to the principle of virtual work
(power) as

D1ΠW [δu] =

∫

V ∪V∞

P W : ∇0δu dV −DΠext[δv], (75)
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where the first Piola-Kirchoff stress tensor is now evaluated as

P W = ΣF + ΣH F x + ΣJHx + Σd ⊗D0. (76)

Similarly, the stationary point of (81) with respect to the electric potential
yields

D8ΠW [δϕ] =

∫

V ∪V∞

D0 ·∇0δϕ dV −DΠext[δϕ]. (77)

The directional derivative with respect to the elements in the set W (73)
and with respect to the electric displacement field results in the constitutive
relationships formulated in a weak (variational) sense

D2,3,4,10,9ΠW [δW , δD0] =

∫

V ∪V∞

(
∂W

∂F
−ΣF

)
: δF dV +

∫

V ∪V∞

(
∂W

∂H
−ΣH

)
: δH dV

+

∫

V ∪V∞

(
∂W

∂J
− ΣJ

)
δJ dV +

∫

V ∪V∞

(
∂W

∂D0

+ ∇0ϕ + Fx
TΣd

)
· δD0 dV

+

∫

V ∪V∞

(
∂W

∂d
−Σd

)
· δd dV.

(78)
The directional derivative with respect to the elements of the set ΣW (73)

results in the electro-kinematic constraints as follows

D5,6,7,11ΠW [δΣW ] =

∫

V ∪V∞

(F x − F ) : δΣF dV +

∫

V ∪V∞

(Hx −H) : δΣH dV

+

∫

V ∪V∞

(Jx − J) δΣJ dV +

∫

V ∪V∞

(FxD0 − d) · δΣd dV.

(79)

5.3. A new mixed variational principle in terms of the extended Helmholtz’

energy functional Φ

In order to derive a variational principle in terms of the extended Helmholtz’s
energy (57c), recall first the mixed variational principle ΠW in (72) with a
different ordering of terms and where addition of subtraction of the term
ΣD0

·D0 has been carried out, namely
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ΠW (x∗, F ∗, H∗, J∗,Σ∗
F
,Σ∗

H
, Σ∗J , ϕ∗, D∗

0, d
∗,Σ∗

d
)

= − inf
x,F ,H,J,D0,d

sup
ΣF ,ΣH ,ΣJ ,ϕ,Σd

{∫

V ∪V∞

[T e −W (V)] dV +

∫

V ∪V∞

D0 ·∇0ϕ dV

+

∫

V ∪V∞

[ΣF : (Fx − F ) + ΣH : (Hx −H) + ΣJ(Jx − J)

+Σd · FxD0 + ΣD0
·D0] dV − Πext(x, ϕ)} .

(80)
where T e has been defined in equation (58). Comparing the term in brackets
in the first integral in above equation with the definition of the extended
Helmholtz’s energy functional in (57c) enables to obtain an equivalent rep-
resentation of the above variational principle as

ΠΦ(x∗, F ∗, H∗, J∗,Σ∗
F
,Σ∗

H
, Σ∗J , ϕ∗, D∗

0,Σ
∗
D0

,Σd
∗)

= inf
x,F ,H,J,D0

sup
ΣF ,ΣH ,ΣJ ,ϕ,ΣD0

,Σd





∫

V ∪V∞

Φ(Vm, Σe
V)dV

+

∫

V ∪V∞

[ΣF : (Fx − F ) + ΣH : (Hx −H) + ΣJ(Jx − J)

+D0 · (ΣD0
+ ∇0ϕ) + Σd · FxD0] dV − Πext(x, ϕ)} .

(81)

For notational convenience, the following sets are introduced,

D = {F , H , J,ΣD0
}; ΣD = {ΣF ,ΣH , ΣJ , D0}. (82)

Virtual and incremental variations of the elements in the sets D and ΣD
in above equation (82) are denoted as

δD = {δF , δH , δJ, δΣD0
}; δΣD = {δΣF , δΣH , δΣJ , δD0};

∆D = {∆F , ∆H , ∆J, ∆ΣD0
}; ∆ΣD = {∆ΣF , ∆ΣH , ∆ΣJ , ∆D0}.

(83)
The directional derivative of above variational principle in (72) with re-

spect to virtual changes of the geometry and electrical potential leads to
identical expressions to those for ΠΦ in (75) and (77) as

D1ΠΦ[δu] = D1ΠW [δu]; D8ΠΦ[δϕ] = D8ΠW [δϕ]. (84)
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The stationary conditions with respect to the elements in the set D (82)
and Σd results in the constitutive relationships formulated in a weak (varia-
tional) sense as

D2,3,4,10,11ΠΦ[δD, δΣd] =

∫

V ∪V∞

(
∂Φ

∂F
−ΣF

)
: δF dV +

∫

V ∪V∞

(
∂Φ

∂H
−ΣH

)
: δH dV

+

∫

V ∪V∞

(
∂Φ

∂J
− ΣJ

)
δJ dV +

∫

V ∪V∞

(
∂Φ

∂ΣD0

+ D0

)
· δΣD0

dV

+

∫

V ∪V∞

(
∂Φ

∂Σd

+ FxD0

)
· δΣd dV.

(85)
The stationary conditions with respect to the elements of the set ΣD (82)

results in the kinematic constraints and Faraday’s law as follows

D5,6,7,9ΠΦ[δΣD] =

∫

V ∪V∞

(F x − F ) : δΣF dV +

∫

V ∪V∞

(Hx −H) : δΣH dV

+

∫

V ∪V∞

(Jx − J) δΣJ dV +

∫

V ∪V∞

(
ΣD0

+ Fx
TΣd + ∇0ϕ

)
· δD0 dV.

(86)

6. Convexification (stabilisation) of materially unstable invariants

For isotropic materials, the internal energy e is typically represented [12,
13, 16] as

e(∇0x, D0) = ê(IIF , IIH , J, IID0
, IId, IIh), (87)

where h = HD0. Unfortunately, since h is not included in the extended
set V , the invariant IIh is not convex multi-variable itself. Furthermore, not
every possible combination of the remaining convex multi-variable invariants
in (87), namely IIF , IIH , J , IID0

and IId will result in a convex multi-
variable energy functional according to (37) 12.

Nevertheless, appropriate modifications of a non-convex multi-variable
invariant can yield an invariant convex multi-variable according to (37). The

12For instance, the purely mechanical invariant Ψm defined as Ψm(F ,H) = IIF IIH is
not convex in its arguments, i.e, F and H.
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obtention of convex multi-variable invariants through suitable modifications
of non-convex multi-variable invariants is denoted in the present manuscript
as convexification or stabilisation. In particular, two simple examples of
stabilisation of a priori non-convex multi-variable invariants will be shown.

6.1. Stabilisation example 1

In this section, the following non-convex multi-variable invariants will be
considered

W1 = IIF IID0
; W2 = IIHIID0

. (88)

The one-dimensional representation of the invariant W1 in above equation
(88) is expressed in terms of the stretch λ and the sole component of the
electric displacement D0 as W1(λ, D0) = λ2D2

0. The Hessian of W1(λ, D0) is
simply obtained as

[HW1
] =




∂2W
∂λ∂λ

∂2W
∂λ∂D0

∂2W
∂D0∂λ

∂2W
∂D0∂D0


 =




2D2
0 4λD0

4λD0 2λ2


 . (89)

Clearly, the one dimensional representation of the invariant W1 and hence,
its three-dimensional counterpart, is not convex multi-variable as det[HW1

] ≤
0. Alternatively, the invariant W1(λ, D0) could be stabilised by adding two
convex functions of λ and D0 as

W1,mod(λ, D0) = (λ2 + D2
0)

2 = 2W1(λ, D0) + λ4 + D4
0. (90)

The Hessian of the resulting invariant W1,mod(λ, D0) in above equation
(90) is obtained as

[
HW1,mod

]
=




∂2W1,mod

∂λ∂λ

∂2W1,mod

∂λ∂D0

∂2W1,mod

∂D0∂λ

∂2W1,mod

∂D0∂D0


 =




12λ2 + 4D2
0 8λD0

8λD0 12D2
0 + 4λ2


 . (91)

Clearly, W1,mod(λ, D0) is convex in its arguments {λ, D0} since det[HW1,mod] ≥
0. Based on the stabilisation procedure in equation (90) for the one-dimensional
representations of W1(λ, D0), a convex multi-variable three-dimensional en-
ergy functional including the stabilised version of the non-convex multi-
variable invariants W1(F , D0) and W2(H , D0) in (88) could be defined as

W (F , H , J, D0, d) =α
(
IIF + γ2IID0

)2

︸ ︷︷ ︸
WFD0

(F ,D0)

+β
(
IIH + γ2IID0

)2

︸ ︷︷ ︸
WHD0

(H,D0)

+f(F , H , J, D0, d),

(92)
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with α, β and γ13 positive material parameters and f(F , H , J, D0, d), a con-
vex function of the elements of the extended set V . Appropriate values for
α, β and γ and suitable functions f must be such that, at the initial configu-
ration, the stress vanishes, the Hessian operator (48) is positive definite and
material characterisation can be carried out against available data. Since f
is convex multi-variable and α and β are positive material parameters, suffi-
cient conditions to ensure the multi-variable convexity of the functional (92)
are the convexity of the energy contributions WFD0

with respect to its argu-
ments {F , D0} and WHD0

with respect to its arguments {H , D0} (refer to
equation (92)). Proof of convexity of WFD0

with respect to {F , D0} can be
found in Appendix B.1. Similar procedure can be applied to prove convexity
of WHD0

with respect to {H , D0}.

6.2. Stabilisation example 2

Following a similar stabilisation procedure to that presented in Section 6.1
for invariants W1 and W2 (88), an energy functional including the stabilised
version of the non-convex multi-variable invariant IIh could be defined as

W (F , H , J, D0, d) =α
[
II2

H
+ γ2IIh + γ4II2

D0

]
︸ ︷︷ ︸

ŴHD0
(H,D0)

, +f(F , H , J, D0, d),

(93)
with α, β and γ14 positive material parameters and f a convex multi-variable
function. Therefore, a sufficient condition to ensure the multi-variable con-
vexity of the functional (93) is the convexity of the energy contribution ŴHD0

with respect to its arguments {H , D0} (refer to equation (93)). Proof of con-
vexity of ŴHD0

with respect to {H , D0} can be found in Appendix B.2.

7. Numerical examples

The objective of this section is to present well posed constitutive models
via definition of internal energy density functionals e(∇0x, D0) complying
with the multi-variable convexity condition in equation (37). Without loss
of generality, convex multi-variable internal energy functionals suitable for a
reliable description of the constitutive behaviour of isotropic dielectric elas-
tomers will be presented.

13The material parameter γ is employed for re-scaling purposes.
14The material parameter γ is employed for re-scaling purposes.
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Two examples will be presented. The objective of the first example, in
Section 7.1, is to present a convex multi-variable constitutive model which
captures the electrostrictive behaviour of dielectric elastomers measured typi-
cally for a small value of the electric field, which can be considered in practice
as zero. The objective of the second example, in Section 7.2, is to study the
effect of two additional material parameters necessary for the stabilisation of
the constitutive model. These material parameters do not intervene in the
characterisation of electrostriction at low values of the electric field. How-
ever, modification of these parameters might alter significantly the response
of the material, showing an additional nonlinearity which manifests in dielec-
tric elastomers, namely electric saturation, which manifests at high values of
the electric field.

7.1. Incorporation of electrostriction in convex multi-variable constitutive

models for dielectric elastomers

It is customary to define the internal energy for ideal dielectric elastomers
(recall the definition of the internal energy eideal(∇0x, D0) in equation (33))
via an additive decomposition of a purely mechanical component and an
additional contribution proportional to the internal energy of the vacuum, as

Wideal = Wm(F , H , J) +
1

εr

W0(J, d); W0(J, d) =
1

2ε0J
IId;

Wm(F , H , J) = µ1,0IIF + µ2,0IIH + f(J),
(94)

where f(J) is defined as in equation (52) by replacing the constants µ1, µ2

and κ with µ1,0, µ2,0 and κ0, respectively. In addition, the elastic parameters
µ1,0, µ2,0 and κ0 and the relative electric permittivity εr in (94) match the
material properties of the dielectric elastomer in the reference configuration,
namely the shear modulus µ, the first Lamé parameter λ̂ and the electric
permittivity ε if the following relationships are imposed

µ = 2µ1,0 + 2µ2,0; λ̂ = κ0 + 4µ2,0; ε = εrε0. (95)

A constitutive model defined as in equation (94) is termed ideal because
it neglects physical nonlinearities which are inherent to dielectric elastomers.
In particular, electrostriction [76] and saturation [82] are not captured in a
model like that in (94). It has been reported in the experimental literature
[5, 76] that the spatial electric permittivity of dielectric elastomers, namely ε,
is a function of the deformation gradient tensor. This phenomenon is called

35



electrostrictive effect [76]. Moreover, the spatial electric permittivity exhibits
a nonlinear dependence with respect to the electric field. In general, as the
electric field increases, the value of ε decreases until a stagnation scenario is
reached. In this situation, the electric displacement field would not exhibit
any further variation irrespectively of the increment in the applied electric
field. This asymptotic behaviour is denoted as saturation [82].

For the particular constitutive model in equation (94), tensor θ in equa-
tion (44) (inverse of the dielectric tensor) can be obtained by using equation
(C.8), leading to the following expression

θ =
1

εJ
F T F . (96)

Equation (96) and the push forward relation ε−1 = JF−T θF−1 between
the tensor θ and its spatial counterpart ε−1 enables the following expression
for the spatial dielectric tensor ε to be obtained as

ε = εI. (97)

Since the electric permittivity tensor ε in equation (97) is constant, elec-
trostriction and saturation cannot be incorporated using a constitutive model
defined as that defined in equation (94).

The authors in Reference [76] have proposed constitutive models for di-
electric elastomers incorporating the electrostrictive behaviour based on ex-
perimental observations. These authors focused on the particular experimen-
tal set up depicted in Figure 3. In this set up, a thin film of an incompressible
dielectric elastomer is subjected to an electric field applied across its thick-
ness, namely, in direction OX3. Consequently, a uniform deformation in
the plane of the film (perpendicular to the axis OX3) characterised by the
stretch λ, is observed. Moreover, the incompressibility constraint enables the
deformation gradient in the film to be expressed as

F =




λ 0 0
0 λ 0
0 0 1/λ2


 . (98)

Under this particular experimental set up, the internal electromechanical
energy of the vacuum, namely W0 (94) can be expressed in terms of the
stretch λ and the only component of the material electric displacement field
D0 as

W0(λ, D0) =
D2

0

2εrε0λ4
. (99)
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The authors in Reference [76] incorporate the electrostrictive effect by
modifying the internal energy in equation (94) as

WZhao = Wm(λ) +
1

εr,Zhao(λ)
W0(λ, D0), (100)

with W0(λ, D0) defined in (99). For different levels of pre-stretch λ, the
spatial electric permittivity was measured as a function of the stretch (at a
fixed value of the electric field). Then, Zhao et al. propose an expression for
εr,Zhao(λ) as

εr,Zhao(λ) = 4.68 (1− 0.106(λ− 1)) . (101)
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Figure 3: Experimental set up. The application of a uniform electric potential
gradient across the thickness of the incompressible dielectric elastomer film
(parallel to the axis OX3) of initial length and thickness l0 and h0 respectively,
leads to a uniform biaxial expansion of the film with final length l = λl0 and
final thickness h = 1/λ2h0, with λ the stretch in the dielectric elastomer.

The spatial electric permittivity in the reference configuration, namely ε,
of the dielectric elastomer studied by Zhao et al is ε = εr,Zhao|λ=1 ε0 = 4.68ε0.
Notice that the electric permittivity associated to the constitutive model
proposed by Zhao et al. [76] in equations (100) and (101) does not depend
on the electric displacement, and hence, on the electric field. Therefore,
this model cannot capture the saturation effect. Alternatively, a generalised
three-dimensional15 convex multi-variable constitutive model incorporating

15The proposed constitutive model can be applied to more general scenarios than that
for the experimental set up depicted in Figure 3.
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Figure 4: Prediction of electrostrictive effect in a dielectric elastomer film
subjected to different levels of pre-stretch and at a fixed value of the electric
field of E = 0. The green dashed line corresponds to the constitutive model
proposed by Zhao et al. (101). The blue line corresponds to the convex multi-
variable constitutive model in equation (102) with µ1 = 2µ2, fs = 0.1, ε2 =
∞, εe = 252ε and fe = 1.05, consistent with εr = 4.68, µ = 7.5× 104 N/m2

and λ = 106 N/m2 in the reference configuration.
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electrostriction and, moreover, saturation, can be defined through and ex-
tended convex multi-variable function as follows

Wel,1 = µ1IIF + µ2IIH +
1

2Jε1

IId + µe

(
II2

F
+

2

µeεe

IIF IId +
1

µ2
eε

2
e

II2
d

)

︸ ︷︷ ︸
Stabilised electrostrictive invariant WFd(F ,d)

+
1

2ε2

IID0
− (2µ1 + 4µ2 + 12µe) ln J +

κ

2
(J − 1)2.

(102)
Material characterisation in the reference configuration enables the ma-

terial parameters µ1, µ2, µe, ε1, ε2 and εe in above (102) to be expressed in
terms of the material properties in the reference configuration, namely µ, λ̂
and ε as

µ = 2µ1 + 2µ2 + 12µe; λ̂ = κ + 8µe + 4µ2;
1

ε
=

1

ε1

+
1

ε2

+
12

εe

.

(103)
The amount of electrostriction in the constitutive model Wel,1 (102) is

controlled by an additional electrostrictive parameter fe, defined as

ε1 = feε, (104)

where fe ≥ 1 in order to ensure positiveness of ε2 and εe. High values
of the parameter fe are associated to highly electrostrictive materials (for a
constant value of ε2) leading to a high value of 12

εe
in detriment of 1

ε1

(103).
An additional stiffening parameter can be introduced for the convex multi-
variable constitutive model Wel,1 (102), defined as

12µe = fsµ. (105)

High values of the stiffening parameter fs lead to mechanically stiffer
constitutive models. Notice that the energy functional Wel,1 in above equa-
tion (102) contains the invariant WFd. This invariant results after stabilising
the non-convex multi-variable invariant IIF IId, where the same stabilisation
procedure as that for WFD0

and WHD0
in equation (92) has been utilised

(refer to Section 6). Following the same procedure as that for the constitutive
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model in (94), the spatial dielectric tensor is obtained as

ε(F , d) =

(
1

ε1

I +
4J

εe

IIF I + ε̂−1(J, F , d)

)−1

;

ε̂−1(F , d) =
4J

ε2
eµe

IIdb
−1 +

8J

ε2
eµe

d⊗ d +
Jb−1

ε2

,

(106)

where b is the left Cauchy-Green deformation tensor, defined as b = FF T .
Evaluation of the expression for ε in above (106) for a vanishing electric
displacement field, namely D0 = 0 leads to the following expression for
ε(F ,0)

ε(F ,0) =

(
1

ε1

I +
4J

εe

IIF I +
J

ε2

b−1

)−1

. (107)

Particularisation of the kinematical restrictions of the experimental set
up described in equation (98) enables a diagonal representation of the above
electric permittivity tensor as

ε =




ε11 0 0
0 ε11 0
0 0 ε33


 , (108)

where an expression for the component ε33 can be obtained in terms of the
stretch λ as

ε33(λ, 0) =

(
1

ε1

+
4

εe

f(λ) +
1

ε2

λ4

)−1

; f(λ) = 2λ2 +
1

λ4
. (109)

For the shake of simplicity, the material parameter ε2 is prescribed as ε2 =
∞. Notice that the resulting energy functional would be convex in a reduced
set {F , H , J, d} ⊂ V . Choosing the extreme values of the deformation in
the experiment considered in reference [76], namely λ1 = 1 and λ2 = 6, the
following system of equations is obtained

(
1

ε1

+
1

εe

f(λ1)

)−1

= εr,Zhao(λ1)ε0;

(
1

ε1

+
1

εe

f(λ2)

)−1

= εr,Zhao(λ2)ε0

(110)
The above system of equations in (110) enables ε1 and εe to be determined

as
ε1 = 1.05ε ⇒ fe = 1.05; εe = 252ε. (111)
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Figure 4 shows the good agreement between the predicted spatial per-
mittivity for the constitutive model proposed by Zhao et al. [76] and for the
convex multi-variable (with electric material parameters chosen as in (111))
constitutive models in equations (102), for the range of deformations con-
sidered in the experiment, i.e 1 ≤ λ ≤ 6 and for the particular scenario for
which D0 = 0. Notice that in the material characterisation carried out to
predict the electrostrictive behaviour of the constitutive model in equation
(102), the elastic parameter µe did not have any influence. This characteri-
sation was performed at the specific scenario for which D0 = 0. In the more
general case, i.e. D0 6= 0, the parameter µe introduces a further nonlinear
dependence of the spatial electric permittivity upon the material electric dis-
placement field which, for extreme values of the electric field, resembles the
physical behaviour known as electric saturation. This nonlinear effect will
be observed in the following section.

7.2. Numerical experiment

In this section, in addition to the constitutive models Wideal and Wel,1 in
equations (94) and (102), respectively, a non-convex multi-variable internal
energy functional very similar to the convex multi-variable model in (102)
containing the invariant IIF IId without the additional stabilising invariants
will be defined as

Wel,2 =µ̂1IIF + µ̂2IIH +
1

2Jε̂1

IId +
2

ε̂e

IIF IId
︸ ︷︷ ︸

Non-convex multi-variable invariant

+
1

2ε̂2

IID0
− (2µ̂1 + 4µ̂2) ln J +

κ̂

2
(J − 1)2.

(112)

Equivalence in the reference configuration between the convex multi-
variable constitutive model in equation (102)-(103) and the non-convex multi-
variable model in above (112) is guaranteed if the parameters µ̂1, µ̂2, ε̂e, ε̂2

and κ̂ are related to the material properties of the material in the reference
configuration, namely µ, κ and ε as

µ = 2̂µ1 + 2µ̂2; λ̂ = κ̂ + 4µ̂2;
1

ε
=

1

ε̂1

+
1

ε̂2

+
12

ε̂e

. (113)

An electrostrictive parameter similar to that in equation (104) can be
defined for the constitutive model in above equation (112) as
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ε̂1 = f̂eε. (114)

Notice that the following choice of material parameters, i.e,

ε̂1 = 1.05ε ⇒ f̂e = 1.05; ε̂e = 252ε, (115)

would replicate the electrostrictive behaviour (variation of the spatial electric
permittivity with the deformation for D0 = 0) of the model in (102) with
the particular choice of electric material parameters ε1, c1 and c2 in equation
(115).

The objective of this section is to study the behaviour of the convex
multi-variable and non-convex multi-variable constitutive models in equa-
tions (102) and (112) respectively, for the experimental set up depicted in
Figure 3 under a more general scenario where D0 6= 0. For a given value of
the only component of the material electric field, i.e, E0, the stretch λ and
the only component of the material electric displacement field, namely D0

are obtained via minimisation of an energy functional per unit undeformed
volume π(λ, D0) defined as

π(λ, D0) = min
λ,D0

{W (F (λ), D0(D0))− E0D0} . (116)

The stationary conditions of the energy functional π(λ, D0) in above (116)
are obtained as

Dπ(λ, D0)[δλ] =
∂W

∂F
:
∂F

∂λ
δλ = 0;

Dπ(λ, D0)[δD0] =

(
∂W

∂D0

·
∂D0

∂D0

− E0

)
δD0 = 0.

(117)

Since equation (117) must hold for any arbitrary virtual variations {δλ, δD0},
the final system of nonlinear equations is obtained

R(λ, D0) = 0; R(λ, D0) =

[
Rλ(λ, D0)
RD0

(λ, D0)

]
, (118)

with

Rλ(λ, D0) =
∂W

∂F
:
∂F

∂λ
; RD0

(λ, D0) =
∂W

∂D0

·
∂D0

∂D0

− E0. (119)
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For the particular experimental set up described in Section 7.1, where
the deformation gradient tensor F is defined as in equation (98) and where

the material electric displacement field is defined as D0 =
[
0 0 D0

]T
, the

derivatives ∂F
∂λ

and ∂D0

∂D0

featuring in equations (117) and (119) are obtained
as

∂F

∂λ
=




1 0 0
0 1 0
0 0 −2λ−3


 ;

∂D0

∂D0

=
[
0 0 1

]
. (120)

A combined Newton-Raphson/arc length algorithm has been applied to
solve the above system of nonlinear equations in (118)-(119). Figure 5 shows
the result of the nonlinear equations (118) replicating the experimental set
up in Figure 3. The predicted behaviour of the dielectric elastomer film
considering the convex multi-variable constitutive model in equation (102)
(where different values of the stiffening parameter fe (refer to equation (105))
have been considered), the non-convex multi-variable constitutive model in
(112) and the ideal dielectric elastomer model in (94) has been studied. The
three models considered have identical material properties in the reference
configuration, namely µ, λ̂ and ε. As it can observed from Figure 5(b), a
constitutive model with a low value of the stiffening parameter fs is more
prone to develop electric saturation. In other words, a highly nonlinear
behaviour of the curve relating E and D occurs, which in the ideal case,
would tend to a stagnation scenario.

Additionally, Figure 6 studies the influence of the electrostrictive electric
parameter fe on the convex multi-variable constitutive model in equation
(102). Notice that in this case, unlike that one depicted in Figure 5 (for
which the stiffening parameter fs is changed), the electrostrictive behaviour
of the convex multi-variable constitutive model for D0 = 0 is not the same
for different values of fe, since fe (refer to equation (111)) takes place in
the definition of electrostriction for D0 = 0, as shown in equation (109). A
comparison of the response of the convex multi-variable constitutive model
in equation (102) for different values of the electrostrictive parameter fe for a
fixed value of fs is carried out against that of the non-convex multi-variable
constitutive model in equation (112) (with f̂e chosen according to equation
(115)) and the ideal dielectric elastomer model in equation (94). As it can
be observed from Figure 6(b), a constitutive model with a high value of the
electrostrictive parameter fe is also more prone to develop electric saturation.

Finally, Figure 7 shows the graphical visualisation of the inverse of the La-
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Figure 5: Relation between (a) ε3 and λ, (b) E and D, (c) P x1X1
−P x3X3

and
λ, (d) E0 and λ, (e) D0 and λ and (f) E0 and D0 for the convex multi-variable
model in equation (102) (for different values of the stiffening parameter fs),
the non-convex multi-variable model in (112) and an ideal dielectric elastomer
(94). Material parameters: fe = 1.05, ε2 = ∞, ε2 = 252ε and µ1 = 2µ2 for
the convex multi-variable model and with f̂e = 1.05, ε̂2 = ∞ and µ̂1 = 2µ̂2

for the non-convex multi-variable model. εr = 4.68, µ = 7.5× 104 N/m2 and
λ = 106 N/m2.
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Figure 6: Relations between (a) ε3 and λ, (b) E and D, (c) P x1X1
− P x3X3

and λ, (d) E0 and λ, (e) D0 and λ and (f) E0 and D0 for the convex multi-
variable model in equation (102) (for different values of εe), the non-convex
multi-variable model in (112) and an ideal dielectric elastomer (94). Material
parameters: ε2 = ∞, fs = 0.1 and µ1 = 2µ2 for the convex multi-variable
model and with ε̂2 = ∞ and µ̂1 = 2µ̂2 for the non-convex multi-variable
model. εr = 4.68, µ = 7.5× 104 N/m2 and λ = 106 N/m2.
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grangian dielectric tensor θ, the piezoelectric tensor QT , and the Lagrangian
electrostrictive tensor B computed according to equations (C.8), (C.5) and
(C.10), respectively, for the convex multi-variable constitutive model in equa-
tion (102), the non-convex multi-variable constitutive model in (112) and the
ideal dielectric elastomer model (94), having the three models the same ma-
terial properties in the reference configuration, namely, µ, λ̂ and ε. For the
visualisation of these tensors, their associated moduli 1

ε̃
, Q̃, and B̃µ are de-

fined via a spherical parametrisation of the arbitrary direction n as in [83]16:

1

ε̃
= n · θn; Q̃ = Q : (n⊗ n⊗ n) ; B̃µ = (n⊗ n) : B : (n⊗ n) .

(121)
As predicted from Figures 5 and 6, for increasing values of the dimension-

less electric field E/
√

µ/ε, the differences in the three constitutive tensors
between the three constitutive models involved increase.

8. Concluding remarks

This paper has proposed a new variational framework to formulate large
strain/large electric field electro-elasticity. This work extends for the first
time the ideas presented by Bonet et al. [1] in the field of polyconvex
elasticity to nonlinear electro-elasticity. With that in mind, a new inter-
nal energy density functional has been introduced in the form of a convex
multi-variable function with respect to an extended set of electromechanical
variables V = {F , H , J, D0, d}, which enables the ellipticity condition and
hence, material stability to be satisfied for the entire range of deformations
and electric fields. Notice that the focus of this paper is on material stability
and not on the existence of minimisers. The latter would also require the
study of the sequentially weak lower semicontinuity and the coercivity of the
energy functional.

The introduction of the spatial vector d as an element of the set V proves
to be extremely relevant since it permits the electromechanical energy of the
vacuum and hence, that of ideal dielectric elastomers, to be considered as
a degenerate case of a convex multi-variable functional. Furthermore, the

16An additional modulus can be associated to the forth order tensor B, namely B̃κ =
1

3
I : B : n ⊗ n., resembling both B̃µ and B̃κ the shear C̃µ an volumetric C̃κ counterparts

of the elasticity tensor C (C.2).
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(d) (e) (f)

(g) (h) (i)

Figure 7: Numerical experiment for the experimental set up in Figure
3. From left to right: convex multi-variable constitutive model in equa-
tion (102); non-convex multi-variable constitutive model in (112); ideal
dielectric elastomer (94). Graphical representation of 1/ε̃ (121)a for (a)
E/

√
µ/ε = 0.028, (b) E/

√
µ/ε = 0.14 and (c) E/

√
µ/ε = 2.35. Graphical

representation of Q̃ (121)b for (d) E/
√

µ/ε = 0.028, (e) E/
√

µ/ε = 0.14

and (f) E/
√

µ/ε = 2.35. Graphical representation of B̃µ (121)c for (g)

E/
√

µ/ε = 0.028, (h) E/
√

µ/ε = 0.14 and (i) E/
√

µ/ε = 2.35. Mate-
rial parameters: fe = 1.05ε, ε2 = ∞, εe = 252ε and µ1 = 2µ2 for the convex
multi-variable model in (102) and f̂e = 1.05, ε̂2 = ∞ and µ̂1 = 2µ̂2 for the
non-convex multi-variable model in (112). εr = 4.68, µ = 7.5 × 104 N/m2

and λ = 106 N/m2.
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authors show simple techniques, denoted as convexification or stabilisation,
which enable to create convex multi-variable electromechanical invariants by
modifying a priori non-convex multi-variable invariants.

An additional set of variables ΣV = {ΣF ,ΣH , ΣJ ,ΣD0
,Σd}, dual (work

conjugate) to those in V is presented for the first time in the context of
nonlinear electro-elasticity. Very remarkably, the one to one relationship
between both sets V and ΣV , enable the definition of new interesting extended
Hu-Washizu type of mixed variational principles which are presented. The
use of a tensor cross product [1, 3, 75] operation and its associated algebra,
greatly facilitates the algebraic manipulations of expressions involving the
adjoint of the deformation gradient and its derivatives.

The Finite Element implementation of some of the mixed variational prin-
ciples presented in this paper as well as the development of a general conser-
vation law system (along with the analysis of its hyperbolicity) will be the
next steps of our work.
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Sêr Cymru National Research Network for Advanced Engineering and Ma-
terials.

48



Appendix A. Cross product tensor product

The left cross product of a vector v and a second order tensor A to give
a second order tensor denoted v A is defined so that when applied to a
general vector w gives:

(v A) w = v × (Aw) ; (v A)ij = EiklvkAlj, (A.1)

where Eikl denotes the components of the standard third order alternating
tensor and × is the standard vector cross product. The right cross product of
a second order tensor A by a vector v to give a second order tensor denoted
A v is defined so that for every vector w:

(A v) w = A (v ×w) ; (A v)ij = EjklAikvl. (A.2)

The cross product of two second order tensors A and B to give a new
second order tensor denoted A B is defined so that for any arbitrary vectors
v and w gives:

v · (A B) w = (v A) : (B w) ; (A B)ij = EiklEjmnAkmBln. (A.3)

In the framework developed in this paper the tensor cross product will
be mostly applied between two-point tensors. For this purpose the above
definition can be readily particularised to second order two-point tensors as,

(A B)iI = EijkEIJKAjJBkK . (A.4)

When applied to a second order tensor A and a fourth order tensors H,
two possible operations are defined as:

(H A)pP iI = EijkEIJKHpPjJAkK ; (A H)iIpP = EijkEIJKAjJHkKpP .
(A.5)

Moreover, the double application of the tensor cross product between a
fourth order tensor and two second order tensors is associative, namely:

A H B = (A H) B = A (H B) . (A.6)

Finally, when applied to a second order tensor A and a third order tensors
Q, two possible operations are defined as:

(Q A)PiI = EijkEIJKQPjJAkK ; (A Q)iIP = EijkEIJKAjJHkKP . (A.7)
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Some useful properties of new cross product are enumerated below. Let
a be a scalar, V and W material vectors, v and w spatial vectors, I the
identity tensor with Kronecker delta components (I)ij = δij and A, B and
C second order tensors

A B = B A; (A.8)

A B = AT BT ; (A.9)

A (B + C) = A B + A C; (A.10)

a (A B) = (aA) B = A (aB) ; (A.11)

(v ⊗ V ) (w ⊗W ) = (v ×w)⊗ (V ×W ) ; (A.12)

v (A V ) = (v A) V = v A V ; (A.13)

A (v ⊗ V ) = −v A V ; (A.14)

(A B) : C = (B C) : A = (A C) : B; (A.15)

(A B) (V ×W ) = (AV )× (BW ) + (BV )× (AW ) ; (A.16)

A I = (trA) I −AT ; (A.17)

I I = 2I; (A.18)

(A A) : A = 6 detA; (A.19)

CofA =
1

2
A A; (A.20)

(AC) (BC) = (A B) (CofC) . (A.21)
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Appendix B. Proof of convexity of stabilised invariants

Appendix B.1. Stabilisation strategy 1 in Section 6.1

Convexity of invariant WFD0
(F , D0) in equation (92) is subject to posi-

tiveness of the variable F defined as

F =
[

δF : δD0·
]



∂2WFD0

∂F ∂F

∂2WFD0

∂F ∂D0

∂2WFD0

∂D0∂F

∂2WFD0

∂D0∂D0




[
: δF
δD0

]
≥ 0, (B.1)

where each of the terms featuring in the Hessian of WFD0
in (B.1) are ob-

tained as

∂2WFD0

∂F ∂F
= 8F ⊗ F + 4(IIF + γ2IID0

)I ;

∂2WFD0

∂F ∂D0

= 8γ2F ⊗D0;

∂2WFD0

∂D0∂D0

= 8γ4D0 ⊗D0 + 4γ2(IIF + γ2IID0
)I.

(B.2)

Introduction of above equation (B.2) into (B.1) yields

F = 8(δF : F )2 + 4IIF IIδF︸ ︷︷ ︸
F1

+ 4γ2IID0
IIδF︸ ︷︷ ︸

F3

+ 8γ4(δD0 ·D0)
2 + 4γ4IID0

IIδD0︸ ︷︷ ︸
F2

+ 4γ2IIF IIδD0︸ ︷︷ ︸
F4

+ 16γ2(δF : F )(δD0 ·D0)︸ ︷︷ ︸
F5

.

(B.3)

Application of the Cauchy-Schwarz inequality to the tensors F and δF
and to the vectors D0 and δD0 reads as,

IIF IIδF ≥ (δF : F )2 ; IID0
IIδD0

≥ (δD0 ·D0)
2 . (B.4)

Equation (B.4) enables a set of inequalities for F1 and F2 in (B.3) to be
written as,

F1 = 8(δF : F )2 + 4IIF IIδF ≥ 12(δF : F )2;

F2 = 8γ4(δD0 ·D0)
2 + 4γ4IID0

IIδD0
≥ 12γ4(δD0 ·D0)

2.
(B.5)
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Introduction of the inequalities for F1 and F2 in (B.5) into equation (B.3)
yields the following inequality

F ≥ 12(δF : F )2

︸ ︷︷ ︸
F∗

1

+ 4γ2IID0
IIδF︸ ︷︷ ︸

F3

+ 12γ4(δD0 ·D0)
2

︸ ︷︷ ︸
F∗

2

+ 4γ4IIF IIδD0︸ ︷︷ ︸
F4

+ 16γ2(δF : F )(δD0 ·D0)︸ ︷︷ ︸
F5

.
(B.6)

Notice in above (B.6) that F3 ≥ 0 and F4 ≥ 0. Therefore, inequality
(B.6) can be further modifed as

F ≥ F∗; F∗ = F∗1 + F∗2 + F5. (B.7)

Introduction of equation (B.6) into equation (B.7)b enables the interme-
diate variable F∗ in (B.7) to be written as

F∗ = F∗1 + F∗2 + F5 = 12 (δF : F )2

︸ ︷︷ ︸
a2

+12 γ4(δD0 ·D0)
2

︸ ︷︷ ︸
b2

+16 γ2(δF : F )(δD0 ·D0)︸ ︷︷ ︸
ab

.

(B.8)
Notice from equation (B.8) that F∗ can be re-written in a more compact

and clearer form in terms of a and b (B.8) as

F∗ = 12a2 + 12b2 + 16ab = 4(a2 + b2 + 2(a + b)2) ≥ 0. (B.9)

Positiveness of F∗ in above (B.9) yields positiveness of F in (B.6) (inferred
from (B.7)a). Hence, the invariant WFD0

(F , D0) in equation (92) is convex
with respect to its arguments, namely {F , D0}.

Appendix B.2. Stabilisation strategy 1 in Section 6.2

Convexity of invariant ŴHD0
in equation (93) is subject to positiveness

of the variable G defined as

G =
[

δH : δD0·
]



∂2ŴHD0

∂H∂H

∂2ŴHD0

∂H∂D0

∂2ŴHD0

∂D0∂H

∂2ŴHD0

∂D0∂D0




[
: δH
δD0

]
≥ 0, (B.10)
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where each of the terms featuring in the Hessian of ŴHD0
in (B.10) are

obtained as

∂2ŴHD0

∂H∂H
= 8H ⊗H + 4IIH + 2γ2T ;

∂2ŴHD0

∂H∂D0

= 2γ2S;

∂2ŴHD0

∂D0∂D0

= 8γ4D0 ⊗D0 + 2γ2(HT H + 2γ2IID0
I)I.

(B.11)

with TiIjJ = δijD0I
D0J

and SiIJ = HiJD0I + (HD0)i δIJ . Introduction of
above equation (B.11) into (B.10) enables G in (B.10) to be re-written as

G = 4IIHIIδH︸ ︷︷ ︸
G1

+ 4γ4IID0
IIδD0︸ ︷︷ ︸

G2

+ 4γ2 (δHD0 ·HδD0 + HD0 · δHδD0)︸ ︷︷ ︸
F3

+ 8 (δH : H)2 + 8γ4 (D0 · δD0)
2 + 2γ2IIδHD0

+ 2γ2IIHδD0︸ ︷︷ ︸
G4

.

(B.12)
Application of the Cauchy-Schwarz inequality to the term G1 in above

(B.12) yields the following inequality

G1 = 4IIHIIδH ≥ 4tr
(
HT HδHT δH

)
= 4tr

(
HT δHδHT H

)
. (B.13)

Introduction of inequality (B.13) for G1 into equation (B.12) renders the
following inequality for G (B.12)

G ≥ 4tr
(
HT δHδHT δH

)
︸ ︷︷ ︸

G∗

1

+ 4γ4IID0
IIδD0︸ ︷︷ ︸

G2

+ 4γ2 (δHD0 ·HδD0 + HD0 · δHδD0)︸ ︷︷ ︸
G3

+ 8 (δH : H)2 + 8γ4 (D0 · δD0)
2 + 2γ2IIδHD0

+ 2γ2IIHδD0︸ ︷︷ ︸
G4

.

(B.14)
Notice in above equation (B.14) that G4 ≥ 0. Therefore, inequality (B.14)

can be further modified as

G ≥ G∗; G∗ = G∗1 + G2 + G3. (B.15)

Introduction of equation (B.14) into (B.15)b enables the intermediate vari-
able G? to be written as

G? = G∗1 + G2 + G3 = 4tr
(
BT B

)
; B = δHT H + γ2δD0 ⊗D0. (B.16)
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Finally, positive definiteness of the tensor BT B in above equation (B.16)
implies positiveness of G? and hence, positiveness of G (inferred from equation
(B.15)a). Therefore, convexity of invariant ŴHD0

in (93) with respect to its
arguments, namely {H , D0} is proved.
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Appendix C. Material characterisation in the reference configu-
ration

Proper material characterisation in nonlinear electro-elasticity is at its
early stage. Experimental studies reporting the behaviour of specific materi-
als at various high deformation scenarios and for large values of the applied
electric fields are not available. Therefore, material characterisation in non-
linear electro-elasticity relies upon characterisation in the reference configu-
ration [38]. The following section shows how the different constitutive tensors
emerging in electro-elasticity (45) can be expressed in terms of the elements
of the extended set V . Then, material characterisation in the reference con-
figuration is achieved by replacing {F , H , J, D0, d} with {I, I, 1,0,0} in the
expressions obtained for the different constitutive tensors.

Appendix C.1. Elasticity tensor

From equation (44), the second directional derivative of the internal en-
ergy e with respect to changes of the geometry can be obtained as

D2e [δu; u] = ∇0δu : C : ∇0u. (C.1)

Comparison of equations (C.1) and (46) enables the elasticity tensor C to
be alternatively re-written in terms of the derivatives of the electro-kinematic
variable set V as

C = WFF + F (WHH F ) + WJJH ⊗H + C1

+ 2(WFH F )sym + 2(WFJ ⊗H)sym + 2(WFd ⊗D0)
sym

+ 2((F WHJ)⊗H)sym + 2((F WHd)⊗D0)
sym

+ 2(H ⊗ (WJd ⊗D0))
sym + A,

(C.2)

where

AiIjJ = EijpEIJP (ΣH + ΣJΣH)pP ; C1,iIjJ = (Wdd)ij D0ID0J . (C.3)

Moreover, for any fourth order tensor T included in equation (C.2), the
symmetrised tensor T sym is defined as T sym

iIjJ = 1
2
(TiIjJ + TiJjI).
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Appendix C.2. Piezoelectric tensor

From equation (44), the second directional derivative of the internal en-
ergy e with respect to changes in geometry and electric displacement field
leads to the following expression

D2e [δu; ∆D0] =
(
∇0δu : QT

)
·∆D0. (C.4)

Comparison of equations (C.4) and (46) allows to re-express the piezo-
electric tensor QT in terms of the elements of the set V as

QT = WFD0
+ F WHD0

+ H ⊗WJD0
+ QT

1

+ QT
2 + QT

3 + QT
4 + QT

5 + Σd ⊗ I.
(C.5)

where the expressions for the tensors QT
i in above equation (C.5) are given

as

(
QT

1

)
iIJ

= (WdD0
)iJ D0I ; (C.6a)

(
QT

2

)
iIJ

=
(
WFdiIj

)
FjJ ; (C.6b)

(
QT

3

)
iIJ

=(F WHd)iIjFjJ ; (C.6c)
(
QT

4

)
iIJ

=(H ⊗WJd)iIjFjJ ; (C.6d)
(
QT

5

)
iIJ

= (Wdd)ij FjJD0I . (C.6e)

Appendix C.3. Dielectric tensor

The second directional derivative of the internal energy e with respect
to changes in the electric displacement field can be identified from equation
(44) as

D2e [δD0; ∆D0] = δD0 · θ∆D0. (C.7)

Comparison of equations (C.7) and (46) enables the inverse of the di-
electric tensor θ to be re-expressed in terms of the elements of the set V
as

θ = WD0D0
+ (WD0d

F + F T WdD0
) + F T WddF . (C.8)
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Appendix C.4. Electrostrictive tensor

A very important constitutive tensor described as a second order effect (it
does not appear in the tangent operator of the internal energy e (∇0x, D0)
in (44)) is the electrostrictive tensor, defined as

B|
F=∇0x

=
∂QT

∂D0

. (C.9)

Introduction of equation (C.5) into (C.9) enables B to be expressed in
terms of the elements of the set V as
(
B|

F=∇0x

)
iIJK

= (WFD0D0
)iIJK + (WFD0d

)iIJm FmK

+ (F WHD0D0
)iIJK + (F WHD0d

)iIJm FmK

+ (H ⊗WJD0D0
)iIJK + (H ⊗WJD0d

)iIJm FmK

+ (B1 + B2 + B3 + B4 + B5)iIJK + (WdD0
)iK δIJ + (Wdd)im FmKδIJ ,

(C.10)
where WABC = ∂3W

∂A∂B∂C
and with

(B1)iIJK = (WdD0D0
)iJk D0I + (WdD0d

)iJm FmKD0I + (WdD0
)iJ δIK ;

(C.11a)

(B2)iIJK = (WFdD0
)iIjK FjJ + (WFdd)iIjk FjJFkK ; (C.11b)

(B3)iIJK = (F WHdD0
)iIjK FjJ + (F WHdd)iIjk FjJFkK ; (C.11c)

(B4)iIJK = (H ⊗WJdD0
)iIjK FjJ + (H ⊗WJdd)iIjk FjJFkK ; (C.11d)

(B5)iIJK = (WddD0
)ijK FjJD0I + (Wddd)ijk FjJFkKD0I + (Wdd)ij FjJδIK .

(C.11e)
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[83] C. B. T. Böhlke, Graphical representation of the generalised Hooke’s
law, Technische Mechanik 21 (2001) 145–158.

66


