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INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING

An Implicit Solver For 1D Arterial Network Models

Jason Carson1 and Raoul Van Loon1

1Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea
University, Bay Campus, Fabian Way, Swansea, SA1 8EN.

Abstract

In this study the one dimensional blood flow equations are solved using a newly proposed en-
hanced trapezoidal rule method ETM, which is an extension to the simplified trapezoidal rule
method STM. At vessel junctions the conservation of mass and conservation of total pressure
are held as system constraints using Lagrange multipliers that can be physically interpreted as
external flow rates. The ETM scheme is compared with published arterial network benchmark
problems and a dam break problem. Strengths of the ETM scheme include being simple to
implement, intuitive connection to lumped parameter models, and no restrictive stability crite-
ria such as the CFL number. The ETM scheme does not require the use of characteristics at
vessel junctions, or for inlet and outlet boundary conditions. The ETM forms an implicit sys-
tem of equations which requires only one global solve per time step for pressure, followed by
flow rate update on the elemental system of equations, thus no iterations are required per time
step. Consistent results are found for all benchmark cases and for a 56 vessel arterial network
problem it gives very satisfactory solutions at a spatial and time discretisation that results in a
maximum CFL of 3, taking 4.44 seconds per cardiac cycle. By increasing the time step and
element size to produce a maximum CFL number of 15 the method takes only 0.39 seconds
per cardiac cycle with only a small compromise on accuracy.

Keywords: 1D arterial network; implicit solvers; finite elements; lumped models; Lagrange multi-
pliers; penalty method

1 Introduction

One-dimensional blood flow models have become more and more recognised as a powerful tool
for the analysis of pressure and flow pulses in the cardiovascular system. These 1D models use
relatively simple (non-)linear relation between pressure in the vessel and area (constitutive law),
and simplified velocity profiles. If localised flow fields are not of interest, one-dimensional models
can be a computationally inexpensive alternative to three-dimensional fluid-structure interaction
models.

Important contributions to the development of 1D models include studies by Hughes and Lubliner
[1], Stergiopoulos [2], Stergiopoulos et al. [3], Olufsen et al. [4], Formaggia et al. [5], Hellevik
et al. [6], Bessems et al. [7], Sherwin et al. [8], Mynard and Nithiarasu [9], Müller and Toro
[10, 11, 12], Low et al. [13] and, Blanco et al. [14, 15, 16]. There have also been methods proposed
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for 1D-3D coupling [14, 17, 18, 19] and a semi-implicit method that allows 1D or 2D simulations
within the same framework [20]. Models concentrating on specific vessels have been proposed such
as the arm [21], the calf muscle [22], carotid artery [23], cerebral circulation [24], foetal veins [25],
neonatal pulmonary atresia [26], valve models [27]. Inlet boundary conditions used in these mod-
els may also include a heart model with cardiac valves [9, 13, 11, 12]. Mynard and Smolich [28]
presented a fully closed system, incorporating a heart model with chamber interactions, coronary
model with interaction from the heart, with 1D vessels for both systemic and pulmonary arteries
and veins. There are various outlet (terminal) boundary conditions such as structured tree models
[4], simple resistance models or Windkessel models [29].

Many different formulations have been proposed and various numerical methods have been de-
veloped. As the equations govern non-linear wave propagations, these cardiovascular flow prob-
lems are typically solved using shock capturing numerical schemes, like Discontinuous Galerkin
and Taylor-Galerkin in finite elements or high-resolution finite volume methods and finite differ-
ence methods. However, under normal physiological conditions shocks do not appear in the arterial
system.

Wang et al. [30] compared four numerical schemes which included the local discontinuous
Galerkin, MacCormack, Taylor-Galerkin and monotonic upwind scheme for conservation laws
(MUSCL). These comparisons were tested on a single vessel, a simple bifurcation and an arte-
rial network comprising of 55 arteries. The conclusions from [30] indicated that the MacCormack
scheme was best in cases of small non-linearities as it is robust and very simple to implement.
The second order finite volume scheme (MUSCL) was a better option when there were shock like
phenomena present. Taylor-Galerkin had a good balance between speed and accuracy if no shock
phenomena were present. The local discontinuous Galerkin method was suitable for systems with
a small physical diffusive term. Recently a benchmark paper by Boileau et al. [31] included cases
which had experimental and 3D data for comparing accuracy. There were six numerical schemes
that were compared. These were: locally conservative Galerkin (LCG) [9], discontinuous Galerkin
(DCG) [32], Galerkin least-squares finite element method (FEM) [14], finite volume method (FVM)
[11, 12], finite difference method MacCormack (McC) [25], and, the Simplified Trapezoidal Method
(STM) [33]. There were six test cases which ranged from single vessels (single reflection free tube,
common carotid artery and upper thoracic aorta), a bifurcation (aortic bifurcation) and two different
arterial networks (one with 37 arteries and the other with 56). The results for 5 of the cases were
consistent amongst all schemes. However, in the 56 arterial network (ADAN56) the results from
the STM scheme deviated from the results of other methods.

The aim of this paper is to develop an implicit scheme for 1D blood flow to alleviate CFL restric-
tions and prevent non-linear solves for the characteristics at vessel junctions. Lagrange multipliers
and penalty methods will be used to hold the system constraints in place at vessel junctions to pre-
vent using characteristics. The scheme is tested on all the benchmark test problems presented in
[31]. These tests include: a single pulse in a reflection free tube to which a theoretical solution
exists, a common carotid artery, an upper thoracic aorta, an aortic bifurcation, a 37-arterial tree
network with experimental data, and a 56-arterial tree model. Although physiologically not very
common, performance of the ETM scheme is also explored for shock waves.
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2 One Dimensional Blood Flow Model

There are various formulations for the 1D blood flow equations. The AU (area and average axial
velocity) [9, 32]; AQ (area and average flow rate) [10, 11, 12, 5]; PQ (pressure and average flow rate)
[7, 33]; and in characteristic variables [15]. The model presented here is equivalent to the model
described in [31]. In the one dimensional model the arteries are split into a number of segments
connected at nodes. Each segment is considered as a deformable tube, which represents a blood
vessel. Due to various assumptions, the system can be modelled using a single axial coordinate x.
The wall of the vessel is considered impermeable and blood is assumed to be an incompressible
Newtonian fluid. The system of equations that describes blood flow in major arteries in PQ form is
given by the conservation of mass and the conservation of momentum

CA
∂P
∂t + ∂Q

∂x = 0,

ρ
A
∂Q
∂t + ρ

A
∂
∂x

(
Q2

A

)
+ ∂P

∂x −
f
A = 0,

(1)

where t is the time; Q(x, t) is the average flow rate in the cross-section; P (x, t) is the average
pressure in the cross-section; A(x, t) is the cross-sectional area; ρ is the blood density; f(x, t) is the
frictional force per unit length; and CA is the vessel compliance given by

CA =
∂A

∂P
=

(
2Ad (P − Pext − Pd)

β
+ 2
√
Ad

)
Ad
β
. (2)

The relationship between pressure and area (constitutive law) which accounts for the fluid-structure
interaction of the system is

P = Pext + Pd +
β

Ad

(√
A−

√
Ad

)
, β(x) = 4/3

√
πEh, (3)

where Pext is the external pressure; Pd(x) and Ad(x) are the diastolic pressure and area respec-
tively; β(x) accounts for material properties where E(x) and h(x) are the elastic modulus and wall
thickness respectively. The velocity profile is chosen as

u(x, ξ, t) = U(x, t)
ξ + 2

ξ

[
1−

(
ξ

r

)ζ]
, (4)

where u(x, ξ, t) is the axial velocity profile; U = Q/A is the average axial velocity in the cross-
section; ξ is a radial coordinate; r(x,t) is the lumen radius; ζ is a given constant for a specific profile.
This means the frictional force becomes

f = −2(ζ + 2)µπ
Q

A
, (5)

where µ is the dynamic viscosity.
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2.1 Boundary Conditions

To validate our method a comparison is performed with several benchmark problems as proposed
in Boileau et al. [31], so the same boundary conditions will be applied in this work, unless stated
otherwise. Therefore, a flow rate is prescribed as the inlet boundary condition for the common
carotid artery (Section 4.4), upper thoracic aorta (Section 4.5), aortic bifurcation (Section 4.6), 37-
arterial tree (Section 4.7) and ADAN56 arterial network (Section 4.8) problems. The outlet of the
arterial system model is connected to a 3-element Windkessel model (or single resistance model),
which comprises of a resistor R1 (characteristic impedance) in series with a resistor R2 (peripheral
resistance) and capacitor C (Compliance) in parallel. This is normally calculated using the single
differential equation

Q

(
1 +

R1

R2

)
+ CR1

∂Q

∂t
=
P − Pout

R2
+ C

∂P

∂t
. (6)

The majority of schemes such as those in [9, 32, 25, 11], use characteristic equations at the inlet
and use both characteristic equations together with Equation (6) and Newton-Raphson iterations
to determine variables at the outlet. It is also possible to separate this differential equation into
its individual components. This would include two resistance elements and a compliance element.
This will be discussed further in Section 3.1.

3 Numerical Methods

3.1 Enhanced Trapezoidal Method

The ETM scheme is an extension to the method proposed by Kroon et al. [33]. The method was
called simplified trapezoidal rule method (STM) in the paper by Boileau et al. [31]. An important
property of the method is that all flows Q are directed inwards (toward the element centre), which
has major implications when implementing the method. The scheme can be derived by using the
trapezoidal rule in space on the elemental blood flow equations with a particular manipulation of the
flow rates, assuming ζ = 2 during the formulation. The system of equations in a PQ formulation is
given by Equation (1). The equations are linearised (see [33] for more details) in the following way

Cn+1
a ≈ Cn+1,k

a , Qn+1 ≈ Qn+1,k+1, Pn+1 ≈ Pn+1,k+1,

Q2

A

n+1

≈ Q2

A

n+1,k

,
ρ

A

n+1
≈ ρ

A

n+1,k
,

(
8µπQ

A2

)n+1

≈
(

8µπQ

A2

)n+1,k

, (7)

where superscript k is the iteration level, and as an initial guess k = 1 ≈ n. However, in this paper
no iterations are performed, which means (n + 1, k) ≈ (n) and (n + 1, k + 1) ≈ (n + 1). The
linearised system then has the form

CnA
∂P

∂t
+
∂Qn+1

∂x
= 0, (8)

ρ

An
∂Q

∂t
+
∂Pn+1

∂x
=

(
−8µπQ

A2
− ρ

A

∂(Q
2

A )

∂x

)n
, (9)
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where Equations (8) and (9) are the conservation of mass and momentum respectively. The domain
is then split into smaller elements with 2 nodes each. This system is integrated in space using the
trapezoidal rule. Looking at each term individually and integrating the mass equation within an
element gives ∫

e

(
CnA

∂P

∂t

)
dx =

∆x

2

(
CnA,1

∂P1

∂t
+ CnA,2

∂P2

∂t

)
, (10)

∫
e

(
∂Qn+1

∂x

)
dx =

(
Qn+1

2 −Qn+1
1

)
. (11)

In a similar way for conservation of momentum∫
e

(
ρ

An
∂Q

∂t

)
dx =

∆x

2

(
ρ

An1

∂Q1

∂t
+

ρ

An2

∂Q2

∂t

)
. (12)

The second term of the conservation of momentum is∫
e

(
∂Pn+1

∂x

)
dx =

(
Pn+1

2 − Pn+1
1

)
. (13)

Letting the right side of Equation (9) be

h =

−8πµQ

A2
− ρ

A

∂
(
Q2

A

)
∂x

n

. (14)

Integrating gives ∫
e

(h)ndx =
∆x

2
(h1 + h2)

n
. (15)

This indicates that the mass and momentum is conserved at the element centre, while the variables
are defined on the nodes. Using second order backward difference for the time derivatives (∂U∂t ≈

3
2∆tU

n+1 − 2
∆tU

n + 1
2∆tU

n−1) gives the system in the exact same form as Kroon et al. [33].

[
3

2∆t
∆x
2 CnA,1,

3
2∆t

∆x
2 CnA,2

−1, 1

][
P1

P2

]n+1

e

+

[
−1, 1

3
2∆t

∆x
2

ρ
An

1
, 3

2∆t
∆x
2

ρ
An

2

][
Q1

Q2

]n+1

e

=

[
0

∆x
2 (hn1 + hn2 )

]
e

+

[
∆x
2

(
CnA

2
∆tP

n − CnA 1
2∆tP

n−1
)

1
∆x
2

(
ρ
An

2
∆tQ

n − ρ
An

1
2∆tQ

n−1
)

1

]
e

+

[
∆x
2

(
CnA

2
∆tP

n − CnA 1
2∆tP

n−1
)

2
∆x
2

(
ρ
An

2
∆tQ

n − ρ
An

1
2∆tQ

n−1
)

2

]
e

which can be generalised to
F eP

n+1
e +Gc

eQ
c,n+1
e = hne . (16)

where superscript c represents conventional discretisation (before flows are directed inwards) and
subscript e represents the elemental level.

The second term on the right side of Equation (14) uses the following first order upwind dis-
cretisation for node i to avoid spatial oscillations that would occur from central differencing. For

5



two neighbouring elements that share node i

∂
(
Q2

A

)n
∂x

≈


[(

Q2

A

)
i
−
(
Q2

A

)
i−1

]
1

∆x if Qni > 0,[(
Q2

A

)
i+1
−
(
Q2

A

)
i

]
1

∆x if Qni < 0,

(17)

where node i−1 would be the first node of element 1, node i is the second node in element 1 and the
first node in element 2, while node i+ 1 would be the second node in element 2. If required a ghost
node is used at the vessel boundaries. At this point the flows are enforced to be directed inwards
(defined to point towards element centre) which implies changing the sign of the second row of Qc

e

(Q at second node) and changing the sign of the second column of the matrix Gc
e.

Gc
e =

[
G11 G12

G21 G22

]
, becomes Ge =

[
G11 −G12

G21 −G22

]
. (18)

While flows Qce =
[
Q1, Q2

]T
become Qe =

[
Q1,−Q2

]T
. This means that the system equations

will still be the same as before when multiplied out. MatrixGe is then inverted so the final elemental
system of equations is given by

[−Ge
−1F e]P

n+1
e = [−Ge

−1hne ] +Qn+1
e . (19)

Once these elemental systems are assembled into the global system matrix it can be seen that the
flow column Qn+1

g becomes the conservation of mass between connected elements and hence is
zero for all internal nodes. The flow column then only has non-zero values on the boundaries,
which represent external flows. That is Qn+1

g =
[
Qinflow, 0, . . . , 0, Qoutflow

]
. This has major

implications on the implementation at junctions, such as bifurcations, as the continuity of mass is
automatically satisfied. Moreover, the STM scheme uses the same pressure node (last node in parent
and first nodes in daughters) such that the conservation of static pressure is also satisfied. Hence, no
additional constraints need to be applied (see [33] for full details on the STM method).

However, this limits the STM method as only conservation of static pressure can be imposed.
Therefore the ETM method extends the existing STM method to allow conservation of total pressure
to be applied between vessel segments, whilst within a vessel segment the ETM and STM are
identical. This difference only occurs at vessel junctions as will be discussed in Section 3.2. Once
the global matrix is assembled the implicit system is solved for pressures, then the flows can be
updated using the elemental system (19).

As an example of two neighbouring elements within the same vessel, let

[−Ge
−1F e] = Ke, and [−Ge

−1hne ] = fe. (20)

which means Equation (19) takes the form

KeP
n+1
e = fne +Qn+1

e , (21)
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where

Ke =

[
Ke

11 Ke
12

Ke
21 Ke

22

]
, fne =

[
f1

f2

]
, (22)

and P n+1
e =

[
P1 P2

]T
, Qn+1

e =
[
Q1 −Q2

]T
. Consider element one with pressure nodes P1

and P2 and flows Q1 and Q2, and element two with pressure nodes P2 and P3 and flows Q3 and Q4

respectively. Assembling these two elemental system leads to the following system,K1
11 K1

12 0

K1
21 K1

22 +K2
11 K2

12

0 K2
21 K2

22


P1

P2

P3


n+1

=

 f1
1

f2
1 + f1

2

f2
2

+

 Q1

−Q2 +Q3

−Q4


n+1

. (23)

where the superscripts on K and f represent which element they belong to. The conservation of
mass between element one and two requires the outflow of element one (Q2) to be equal to inflow
of element two (Q3), hence Q2 = Q3 or rearranged 0 = Q3 − Q2. This is exactly the middle
value in the flow column (last term on right) in Equation (23). Thus only inflow Q1 and outflow
Q4 (boundary conditions) of this column vector are non-zero, at which either pressure or flow rate
would be prescribed. This implicit use of conservation of mass occurs when: 1D elements connect
with other 1D elements; when 1D elements connect to one, or multiple lumped (0D) elements; and
when any number of lumped elements connects to any number of other 0D elements.

The inlet boundary condition for the benchmark problems is given as a flow rate, which is
easily implemented in the STM and ETM methods using the external flow column vector Qn+1

g . If
the pressure is required as a boundary condition then this can be imposed as a Dirichlet boundary
condition.

The outlet of the arterial system model is connected to a 3-element Windkessel model, which
comprises of a resistor R1 (characteristic impedance) in series with a resistor R2 (peripheral re-
sistance) and capacitor C (compliance) in parallel. This is normally calculated using the single
differential equation (6).

However, following the approach by Kroon et al. [33] the Windkessel model can be treated
using the basic element equations with two pressure nodes and two flow rate nodes given by

1

R1
(Pn+1

1 − Pn+1
2 ) = qn+1

1 = −qn+1
2 ; (24)

1

R2
(Pn+1

2 − Pn+1
3 ) = qn+1

3 = −qn+1
4 ; (25)

C(
∂P2

∂t
− ∂P4

∂t
) = qn+1

5 = −qn+1
6 ; (26)

Note that the flow rates for nodes one and two q1, q2 have opposite signs due to the requirement that
flow rates are defined inwards towards the element centre. The temporal term in Equation (26) is
once again descretised by a second order backward difference scheme. The elemental Windkessel
equations have the same form as the 1D blood flow equations with pressure being the only unknown
variable.

K0D
e P n+1

e = fe +Qn+1
e . (27)
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Like for the 1D equations the flow rate column once again becomes zero (conservation of mass) in
internal nodes with only external flows being non-zero after assembly of the elemental Windkessel
equations. This also allows the Windkessel model to be easily connected to the 1D blood flow
equations, where once again the conservation of mass appears in the flow rate column. For more
details on the implementation see [33]. The outlet boundary condition for the Windkessel is a
pressure, which is applied to the system matrix directly. The flow rate could be given in which case
the boundary condition would simply be added to the flow rate vector, Qn+1.

3.2 Vessel To Vessel Interface Conditions

In many works [9, 32, 25, 11] characteristics are used along with conservation of mass and con-
servation of total pressure at vessel junctions. A Newton-Raphson method is then used to update
variables to provide boundary conditions of the vessels at the next time step. This needs to be per-
formed at every vessel junction and could be very expensive depending on how many junctions are
considered.

In this paper interface constraints are held in place using either Lagrange multipliers or the
penalty method (see [34] for more details on their implementation). To implement Lagrange multi-
pliers first consider the system of equations representing 1D blood flow written in the formAx = b,
which are subject to constraints at an interface between vessels. If we consider N number of ves-
sels at a junction then the system of equations needs to be supplemented with N constraints g1 and
gi. The constraints are given by the continuity of mass (g1) and continuity of total pressure (gi
i = 2, . . . , N )

g1 =

N∑
i=1

Qi = 0, (28)

gi =
ρ

2

Q2
1

A2
1

+ P1 −
ρ

2

Q2
i

A2
i

− Pi = 0, i = 2, . . . , N. (29)

where subscript 1 is the chosen reference vessel. These constraints are imposed for the time level
n + 1 and hence need to be linearised. After linearisation the constraints for all junctions can be
combined into the system Bx = c, which is the same form as the blood flow equations.

At each junction there are N equations which need to be satisfied at the interface between the
parent andN daughter vessels, implying thatN Lagrange multipliers will be needed to impose these
constraints at each vessel junction. For the global system, the Lagrange multipliers for all vessel
junctions are given by λ1,...,M . Where M is the total number of Lagrange multipliers needed to
constrain conservation of mass and conservation of total pressure at all vessel junctions. These can
be added to the system of equations in the following way. Let Λ be a vector containing all λ1,...,M ,
consider

ΛT (Bx− c) = 0. (30)

Defining an energy functional as

δI = (Ax− b)T δx = δ(xTAx− xT b). (31)

where Ax − b are the system of equations which model blood flow. The stationary condition that
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satisfies this is
I = (xTAx− xT b). (32)

Creating a functional by adding Equations (32) and (30) gives

J = xTAx− xT b+ ΛT (Bx− c). (33)

Requiring that the total variation of this functional δJ = 0.

δJ =
∂J

∂xi
δxi +

∂J

∂λi
δλi = 0. (34)

Implies that
∂J

∂xi
= 0, and

∂J

∂λi
= 0, (35)

as δxi and δλi are arbitrary. Thus the full system to be solved can be written as[
A BT

B 0

][
x

Λ

]
=

[
b

c

]
(36)

The penalty method is an alternative option to the use of Lagrange multipliers. The penalty
method turns a constrained problem into an unconstrained problem. The theory also comes from
calculus of variations. Consider the system energy functional as Equations (31) and (32). The
problem involves finding the stationary points of the functional I subjected to constraints. The
system has constraints which can be written in the formC = Bx−c [34], whereC will effectively
be a column vector of residuals Ci for (i = 1, · · ·Nconstraints). Any entry in the vectorC that is not
zero implies that the constraint is not satisfied. Pre-multiplying this column vector with its transpose
gives

CTC = C2
1 + C2

2 + · · ·+ C2
Nconstraints

. (37)

When CTC = 0 the constraints are satisfied and also the variation δ(CTC) = 0. Creating a new
functional

J = I +
1

2
αCTC, (38)

where α is a penalty number. The solution of the unconstrained system will be to find the stationary
point of the energy functional J which is when δJ = 0. The solution of this stationary point of J
will only approximately satisfy the constraints of the system. The larger the value of α the more
accurately the constraints will be imposed.

In order to apply the penalty method consider the system of equations that needs to be solved
written in the form Ax = b. This system is subjected to boundary conditions which are written in
the form Bx = c. Applying the penalty method will lead to the system of equations that is to be
solved as

(A+BTαB)x = b+BTαc. (39)

where α is a diagonal matrix containing all αi. Note that if all values αi are equal then this diagonal
matrix can be replaced by a single value α, which is the approach used in this paper.

As mentioned previously the interface conditions used in the STM model are the conservation
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of mass and the conservation of static pressure. This use of static pressure, rather than total pressure
led to a decrease in the scheme’s performance in the ADAN56 arterial tree, when compared to
results of other schemes (see [31] for details). Moreover, as the STM method implicitly applies the
conservation of static pressure in the formulation, it is not straightforward to include the dynamic
pressure. Other schemes can choose which interface conditions to apply, usually imposing them
along with continuity of the Riemann invariants.

In order to use Lagrange multipliers to hold conservation of total pressure as a constraint, a
separation of pressure nodes at vessel junctions is required. In the method by Kroon et al. [33] only
one pressure node is present at the bifurcation while now there are three (corresponding to the outlet
of the parent vessel and the inlets of both daughter vessels) as shown in Figure 1. Moreover, mass
conservation does not need to be explicitly constrained as it will automatically be satisfied when
conservation of total pressure is applied via Lagrange multipliers, this will be discussed in Section
3.3.

P1 P2

P3

P4

P5

P6

λ1

λ2

(a) STM bifurcation where static pressure is satis-
fied at junction interface.

(b) ETM bifurcation where λ1 and λ2 are Lagrange
multipliers holding the total pressure as a constraint.

Figure 1. Difference in treatment of junctions of STM and ETM schemes.

P3 P4

P5 P6

1

2

P7 P8
3

4

V1

V3

V2

V4

P1 P2

Figure 2. Configuration for bifurcation and unification test

The ETM scheme requires the system equations to be in the same form as equation (21). As a
result, the junction constraints (including both pressure and flow) need to follow the same format.
Linearisations for the conservation of total pressure terms are as follows

Pn+1 ≈ Pn+1,k+1,
ρ

2

(
Q2

A2

)n+1

≈ ρ

2

(
Q2

A2

)n+1,k

, (40)
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where k is the iteration level. As mentioned before only one solve is performed per time step
(no iterations), hence, the iteration levels (n + 1, k) ≈ (n) and (n + 1, k + 1) ≈ (n + 1). Only
the conservation of total pressure is needed as a constraint during the pressure solver, i.e. per
bifurcation only two constraints are required. These are given by constraint (29) with N = 2 for
a bifurcation, and represented by λ1 and λ2 in Figure 1b. The conservation of mass will be shown
to be automatically satisfied in Section 3.3. Note that static pressure can also be used if desired by
simply removing the dynamic pressure term ρ

2
Q2

A2 .

3.3 Physical Interpretation of The Lagrange Multipliers

In order to determine a physical interpretation of the Lagrange multipliers it is advantageous to
consider one parent vessel connecting to one daughter vessel, which can then be easily extended to
multiple parent or daughter vessels. Consider the last element in the parent vessel p1 and the first
element in its daughter vessel d1. The system of equations representing this system is given by


kep111 kep112 0 0

kep121 kep122 0 0

0 0 ked111 ked112

0 0 ked121 ked122



P p11

P p12

P d11

P d12


n+1

=


fp11

fp12

fd11

fd12


n

+


Qp11

−Qp12

Qd11

−Qd12


n+1

. (41)

Noting that the final column on the right hand side of Equation (41) represents the flow rate col-
umn. The first flow of the system Qp11 and the last flow of the system Qd12 will either: become
the conservation of mass when connected another element within the vessel as shown in Equation
(23) (becomes zero); or be a specified boundary condition, which could be either prescribed flow
or pressure. After taking this into account the only flows left in this column are the outflow of the
parent vessel Qp12 , and, the inflow of the daughter vessel Qd11 . However, from mass conservation the
outflow of the parent vessel must equal the inflow of the daughter vessel. Defining λ1 = Qp12 = Qd11

and adding it as a variable to the left hand side of system (41), and adding the conservation of total
pressure equation (29) between one parent vessel and one daughter vessel gives

kep111 kep112 0 0 0

kep121 kep122 0 0 1

0 0 ked111 ked112 −1

0 0 ked121 ked122 0

0 1 −1 0 0




P p11

P p12

P d11

P d12

λ1



n+1

=


fp11

fp12

fd11

fd12

fλ1



n

. (42)

This implies that the Lagrange multiplier is in fact the flow between parent vessel and daughter
vessel. Writing the equations corresponding to the last node of the parent and the first node of the
daughter gives

kep121P
p1
1 + kep122P

p1
2 + λ1 = fp12 , (43)

ked111P
d1
1 + ked112P

d1
2 − λ1 = fd12 . (44)
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Property Units Vessel 1 Vessel 2 Vessel 3 Vessel 4
Length, L cm 400 400 400 400
Radius, rd cm 1.3 0.8 1.1 1.3
Area, Ad cm2 5.3093 2.3093 3.8013 5.3093

Initial area, A(x, 0) cm2 5.3093 2.3093 3.8013 5.3093
Initial flow, Q(x, 0) cm2 s−1 0 0 0 0

Initial pressure, P (x, 0) kPa 10.666 10.666 10.666 10.666
Wall thickness, h cm 0.07 0.07 0.07 0.07
Blood density, ρ kg m−3 1060 1060 1060 1060

Blood viscosity, µ mPa s 4 4 4 4
Velocity profile order ζ — 9 9 9 9

Young’s modulus, E kPa 700.0 700.0 700.0 700.0
Diastolic pressure, Pd kPa 10.666 10.666 10.666 10.666
External pressure, Pext Pa 0 0 0 0
Outflow pressure, Pout Pa 0 0 0 0

Windkessel resistance, R1 Pa s m−3 — — — ∞
Daughter Vessel(s), — Vessel 2& 3 Vessel 4 Vessel 4 —

Parent Vessel(s), — — Vessel 1 Vessel 1 Vessel 2& 3
Table I. Properties for Bifurcation to Unification Test

A dimensional analysis can be done on either of these equations to find that λ1 has the same units
of flow rate.

This can be extended to any number of parent vessels and any number of daughter vessels. For
example, at a bifurcation, the equations of the last node of the parent vessel and the first node of the
two daughter vessels are

kep121P
p1
1 + kep122P

p1
2 + λ1 + λ2 = fp12 , (45)

ked111P
d1
1 + ked112P

d1
2 − λ1 = fd12 , (46)

ked211P
d2
1 + ked212P

d2
2 − λ2 = fd22 . (47)

It is easily seen that λ1 is the inlet flow of the first daughter vessel and λ2 is the inlet flow of the
second daughter vessel and hence λ1 + λ2 is the total flow leaving (or entering) the parent vessel.

In the case of two parent vessels to one daughter vessel the equations of the last node of the two
parents and first node of the daughter become

kep121P
p1
1 + kep122P

p1
2 + λ1 + λ2 = fp12 , (48)

kep221P
p2
1 + kep222P

p2
2 − λ1 = fp22 , (49)

ked111P
d1
1 + ked112P

d1
2 − λ2 = fd12 . (50)

The Lagrange multiplier λ1 = −Qp22 (negative the outlet flow of the second parent vessel), while
λ2 is the inlet flow of the daughter vessel, hence, λ1 + λ2 will be the outlet flow of the first parent
(reference) vessel. This can be extended to any number of parent and/or daughter vessels.

Thus the use of Lagrange multipliers to constrain conservation of total pressure (static pressure
can also easily be used) also finds the external flows of the vessels, meaning that conservation of
mass is also automatically satisfied for the connected vessels.
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Property Units Vessel 1
Length, L cm 3780
Area, Ad cm2 5.6549

Initial flow, Q(x, 0) cm2 s−1 0
Wall thickness, h cm 0.3
Blood density, ρ kg m−3 1060

Blood viscosity, µ mPa s 0
Velocity profile order ζ — 9

Young’s modulus, E kPa 700.0
Diastolic pressure, Pd kPa 10.9333
External pressure, Pext Pa 0

Inflow pressure, PIn kPa 16.3995
Outflow pressure, Pout Pa 10.9333

Table II. Properties for shock wave Test

4 Results

It should be noted that in this section only those results are shown where constraints were imposed
using Lagrange multipliers. The same simulations have been performed using the penalty method
and results of both methods are almost indistinguishable. However, Lagrange multipliers are shown
to be external pressure, meaning mass is conserved at junctions when imposing total pressure as
a constraint, which is not the case with the penalty method. In Section 4.1 a small configuration
of a vessel bifurcation to a re-unification is performed, while a shock example is shown in 4.2. In
Sections 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 the results for the benchmark problems on the single pulse
in a vessel, common carotid, upper thoracic aorta, aortic bifurcation, 37-segment arterial tree and
56-segment arterial tree are presented and compared to the results of the LCG method in [31] (the
other schemes presented in [31] gave consistent results with the LCG method). All simulations were
performed in MATLAB Student R2013a (The MathWorks, Inc., Natick, MA, USA) on an Intel Core
i5-3337U 1.8GHz with turbo boost up to 2.7GHz. It should be noted that for tests containing a single
vessel the ETM scheme and STM scheme will be identical as the only difference is the treatment at
vessel junctions.

4.1 Single Pulse In Bifurcation And Unification

In this test there are four vessels with properties given in Table I and the problem configuration
shown in Figure 2. The exact solution is not known for this problem. This test is used to confirm
the physical interpretation of the Lagrange multipliers for two main types of vessel junctions, a
bifurcation (one parent vessel connected to two daughter vessels) and a unification (two parent
vessels connected to one daughter vessel). The time step is ∆t = 1 ms and element size is ∆x =
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1 cm. The boundary condition at the inlet is

Qinlet =


40 sin( πt

0.3636T ), for 0 < t ≤ 0.3636T,

0, for 0.3636T < t ≤ T,
(51)

with cardiac period T = 1.1 s. The outlet boundary condition (outlet of vessel 4) is a resistance set
at infinity and the simulation is run for 4 cardiac cycles, which allows the network to experience
both positive and negative flow rates at all the junctions. Figure 3 shows the flow rate waveforms
at the junctions, which are compared with values of the Lagrange multipliers at each junction. At
the bifurcation shown in Figure 3a the values for the outlet flow of the parent (vessel 1) are equal
to the sum of Lagrange multipliers λ1 and λ2 as discussed in Section 3.3, and the inlet flow rates
of the two daughter vessels (vessels 2,3) are equal to the values of λ1 and λ2 respectively. At the
unification of vessels 2 and 3 connecting to vessel 4, The reference parent vessel (vessel 2) is equal
to the sum of Lagrange multipliers λ3 and λ4, while the other parent vessel (vessel 3) has in outlet
flow rate equal to the negative of λ3, and the daughter vessel (vessel 4) inlet flow is equal to λ4.
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Figure 3. A comparison Of Outflow/Inflow at Junctions with Lagrange Multipliers

4.2 Shockwave within a vessel

The vessel properties and parameters of the shock example are given in Table II. In this example
the fluid is considered inviscid (µ = 0), while boundary conditions at both inlet and outlet are
reflection free. The time step is ∆t = 0.5 ms and element size is ∆x = 1 cm. The initial pressure is
discontinuous and is given by

Pinitial(x) =


16.3995 kPa if x < L

2 ,

10.9333 kPa if x ≥ L
2 .

(52)

Figure 4 shows results for the ETM scheme compared with an analytical solution (see [35] for
details of the analytic solution). The flow rate and pressure waveforms as shown in Figures 4a and 4c
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(a) Pressure with artificial diffusion
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(b) Pressure without artificial diffusion
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(c) Flow Rate with artificial diffusion
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(d) Flow Rate without artificial diffusion

Figure 4. Pressure and flow rate waveforms for shock test with and without artificial diffusion at different
time instances (seconds).

includes an artificial diffusion applied via a splitting technique that involves an extra computational
step in the form

Qn+1
j

∆t
− 200

An+1
i

Qn+1
j+1 − 2Qn+1

j +Qn+1
j−1

(∆x)
2 =

Q̄n+1

∆t
, (53)

where Q̄n+1 is the flow rate solution from solving system (19). Without this artificial diffusion the
solution develops oscillations as shown in Figures 4b and 4d. This artificial diffusion was applied
over the entire vessel (not just in the region of the shock). The results indicate that the ETM correctly
predicts the position of the right travelling shock and the left travelling rarefaction.

4.3 Single Pulse In a Reflection Free Vessel

A vessel with uniform properties is used with a reflection-free outflow boundary condition. At
the inlet the inflow is a Gaussian-shaped wave. A theoretical solution using a linearised system
is used and is suitable for small fluid velocity. For more details on this test see [31] and [36] for
the theoretical solution. The time step for the ETM scheme is ∆t = 0.1 ms and element size is
∆x = 0.1 cm. Two different variations are considered, with a viscous case and an inviscid case.
Figure 5a shows the ETM method for both the viscous and inviscid case. The theoretical decrease
of the peak for the viscous case is the black line. In the inviscid case the peak pressure for the ETM
method has very good agreement with theoretical peak pressure, and, has very good agreement with
the expected peak decrease for the viscous case.
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(b) Pressure in common carotid artery test
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(c) Flow rate in common carotid artery test
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(d) Pressure in upper thoracic aorta test
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(e) Flow rate in upper thoracic aorta test

Figure 5. Pressure in Single Pulse test for ETM, Common Carotid Artery test comparing pressure and flow
rate waveforms in ETM, STM, LCG and 3D data, Upper thoracic Aorta test comparing pressure and flow

rate waveforms in ETM, STM, LCG and 3D data

4.4 Common Carotid Artery

The common carotid artery model considered has uniform properties and is modelled as a single
vessel. The end of the vessel is connected to a three element Windkessel model, for details on this
test see [31] and [37]. For the ETM scheme the time step used is ∆t = 1 ms and element size
is ∆x = 1 cm. Figures 5b and 5c show that both pressure and flow rate waveforms show good
agreement with the 3D data for all methods shown.

The convergence plot in Figure 6 shows the convergence rate of the flow. The ETM scheme
is first simulated with an element size of ∆x = 0.05 cm and time step of ∆t = 0.05 ms, which is
used as a reference solution. Then the ETM is simulated for different ∆x with ∆t kept constant at
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∆t = 0.05 ms, and different ∆t with ∆x kept constant at ∆x = 0.05 cm. The error is determined at
the middle of the vessel. The method shows super-linear convergence in both time and space.

4.5 Upper Thoracic Aorta

The thoracic aorta is considered to be a single vessel with uniform properties coupled with a three
element Windkessel to simulate the effect of the rest of the systemic circulation [37]. See [31] for
more details on the test. Figures 5d and 5e show the pressure and flow waveforms for the ETM,
STM and LCG, along with a 3D solution. All three 1D methods are in agreement with each other
with some differences with the 3D data, particularly during systole. The time step used for the ETM
scheme is ∆t = 1 ms and element size is ∆x = 1 cm.
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Figure 6. Convergence Curves for ETM in the common carotid artery test for flow rates. The Error taken at
the centre at the vessel, with a reference solution using ∆x = 0.05 cm and ∆t = 0.05 ms

4.6 Aortic Bifurcation

The aortic bifurcation problem consists of an abdominal aorta connected to two iliac arteries. The
bifurcation model is symmetric, i.e. both iliac arteries are identical and the vessels considered have
uniform properties. See [31] and [37] for more details. For the ETM scheme the time step used
is ∆t = 1 ms and element size is ∆x = 1 cm. Figure 7 shows the STM, ETM and LCG methods
compared with the 3D data. Both pressure and flow waveforms show good agreement with the 3D
data in both the abdominal aorta and common iliac arteries.

4.7 Thirty Seven Arterial Tree Network

The arterial tree simulated was presented in [38], with in vitro flow and pressure measurements.
The tree comprises of the largest central systemic arteries. The model uses in vitro flow rate mea-
surements as an inlet boundary condition, while the outflow boundaries are attached to resistance
elements (see [31] for details on parameters). Figure 8 shows the results for the aortic arch II and
the iliac-femoral II arteries for both pressure and flow rate. The methods compared are the ETM,
STM and LCG, along with in vitro data provided in [31].
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(a) Pressure in Abdominal Aorta
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(b) Flow Rate in Abdominal Aorta
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(c) Pressure in Iliac Arteries
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(d) Flow Rate in Iliac Arteries

Figure 7. Aortic Bifurcation. Pressure and flow rate comparison of ETM, STM and LCG schemes with 3D
data [31]

For the ETM scheme the time step used is ∆t = 1 ms and the element size used is ∆x = 1 cm.
The maximum CFL for this problem is CFL = 2.3517 and the simulation takes an average of 2.2
seconds per cardiac cycle. The results are consistent with the numerical schemes. When compared
to the in vitro measurements, the numerical results over predict the high frequency oscillations in
both pressure and flow for the second and third vessel generations.

4.8 The ADAN56 Arterial Tree

The ADAN56 model is a reduced version of an arterial network which was developed in Blanco
et al. [15],[16]. The arterial tree consists of 56 arteries. For details on parameters and arterial
tree data see [31]. The results for the ADAN56 case show that the ETM scheme improves the
solution significantly when compared with the original STM. Figure 9 shows the solution of both
pressure and flow waveforms in the right internal carotid artery, right anterior tibial and right renal,
respectively. The time step used for the ETMa scheme is ∆t = 1 ms and the element size used
is ∆x = 1 cm, while in ETMb ∆t = 2 ms and ∆x = 2 cm, and in ETMc ∆t = 5 ms and ∆x =

5 cm. The ETM scheme shows good agreement with results of the schemes in [31], with only small
discrepancies for larger times steps (∆t = 2 ms and ∆t = 5 ms). Table III shows the run time and
maximum CFL number for each ETM simulation.
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(a) Pressure Error in Aortic Arch II
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(b) Flow Rate Error in Aorta Arch II
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(c) Pressure Error in Iliac-Femoral II
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Figure 8. 37-Artery Tree. Pressure and flow waveforms in Aortic Arch II and Iliac-Femoral II, comparison
between ETM,STM,LCG and experimental

5 Discussion

The ETM scheme was developed by extending the already existing STM scheme as proposed in
[33]. This modification involves the use of Lagrange multipliers at vessel junctions to constrain
conservation of total pressure (static pressure can also easily be used). The Lagrange multipliers
were shown to represent external flow rates of vessels, and hence conservation of mass is automat-
ically satisfied. The ETM scheme is stable for any CFL number, which allows for a number of
cardiac cycles to be performed using larger element sizes and time steps to determine a good initial
guess, before using a refined spatial and temporal mesh for 1-2 cardiac cycles to converge to the
periodic solution.

ETM Run Time Step (ms) Max Element Size (cm) Max CFL Time
a 1 1 3.0332 4.44
b 2 2 6.0668 1.48
c 5 5 15.1605 0.39

Table III. ETM scheme for different time steps and element sizes
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(a) Pressure in Right Internal Carotid
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(b) Flow Rate in Right Internal Carotid
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(c) Pressure in Right Anterior Tibial
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(d) Flow Rate in Right Anterior Tibial
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(e) Pressure in Right Renal
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(f) Flow Rate in Right Renal

Figure 9. Pressure and flow rate waveforms in right internal carotid and right anterior tibial, comparing ETM,
STM and LCG methods. ETMa is the ETM scheme with ∆t = 1 ms and ∆x = 1 cm, ETMb is the ETM

scheme with ∆t = 2 ms and ∆x = 2 cm, ETMc is the ETM scheme with ∆t = 5 ms and ∆x = 5 cm.

The ETM scheme was first applied to a small network configuration involving a bifurcation,
a unification, and a reflective boundary condition. This means that both forward and backward
flows occurred at vessel junctions. Moreover, the test confirmed that the Lagrange multipliers cor-
responded to external flows, meaning that conservation of mass is also being satisfied, whilst only
using the conservation of total pressure to constrain the system.

A shock example was implemented with the initial conditions of zero flow and a discontinuous
pressure (similar to a dam break in the 1D Saint Venant equations). The ETM was compared with an
analytical solution and was shown to contain oscillations with no special treatment. However, these
oscillations were shown to be eliminated by simply adding a small amount of artificial diffusion.
The method was also able to correctly predict the positions of the shock and rarefaction. Although
a more thorough investigation is needed for the ETM scheme with regards to shocks, it is outside
the scope of this current work.
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The single pulse model propagates a narrow Gaussian shaped wave in a vessel with a reflection-
free outlet boundary condition. A theoretical solution exists for both the inviscid and viscid cases.
The wave has a very small wavelength when compared with the length of the vessel. As mentioned
in [31], very high frequencies will dominate which is numerically more challenging. The results
show that the ETM scheme gives good agreement with the theoretical solution and therefore can
capture high frequencies.

Two single vessel cases and an aortic bifurcation were considered under physiological condi-
tions. These cases have 3D solutions available from [37]. The results of the ETM (identical to STM
in the single vessel cases) give excellent agreement with the other schemes presented in [31] and
capture the main features of the 3D data.

The 37 vessel arterial tree presented in [38] is made up of 37 silicone vessels to represent the
main arteries in the human systemic system. In vitro pressure and flow rate measurements were
taken at multiple locations. At the inlet of the model the measured in vitro flow rate is prescribed.
The ETM scheme was shown to give results consistent with all other numerical schemes presented
in [31]. Though there were discrepancies between experimental and numerical results.

The ADAN56 arterial system includes the largest 56 arteries in the human systemic system.
The anatomy and mechanical properties of vessels and inflow and outflow boundary conditions are
based all human physiological data. The ETM was shown to improve upon the solution of the STM
method. Thus, confirming the conclusion in [31] that the discrepancies for the solution of the STM
were due to the method imposing conservation of static pressure at vessel junctions. The results
of the ETM scheme show good agreement with the LCG method [9], which is consistent with the
other methods presented in [31].

6 Conclusions

The aim of this paper was to investigate the use of an implicit solver for the 1D blood flow equations,
and the possible use of Lagrange multipliers and penalty methods to constrain vessel junctions us-
ing dynamic pressure and mass conservation. This led to the newly developed ETM, which extends
the STM method by using Lagrange multipliers to constrain conservation of total pressure at vessel
junctions. The Lagrange multipliers were shown to physically represent the flow at the outlets (or
inlets) of vessels, ensuring mass conservation and allowing both forward and backward flow rates
at vessel junctions without the need to use characteristics and Newton-Raphson iterations, which
are needed for explicit methods. If shocks or high gradients are present, the ETM scheme needs
artificial diffusion in order to capture the shock and rarefaction without spurious oscillations. The
ETM scheme was shown to give results in agreement with the methods presented in [31], for all
benchmark tests. The ETM method improved the solution of both pressure and flow rate waveforms
significantly in the ADAN56 network when compared with the original STM, and has shown ex-
cellent agreement with other published schemes in [31]. The implicit nature of the ETM scheme
means no restrictive stability criterion such as the CFL condition is needed. The scheme works in
a similar way to a split method, with pressures and Lagrange multipliers solved for implicitly once
per time step. The flow rates are then updated at the element level from the updated pressures.
Limitations of the model are similar to the STM method [33], where the coupling equations need to
be in the same form as the fluid flow equations. The model also requires each element to have only
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two nodes and hence, higher order spatial approximations are not possible. Overall the results of
the ETM have showed excellent agreement with other commonly used methods presented in [31].
The implementation of boundary conditions and ease of connecting the 1D blood flow model with
any 0D Windkessel models are also a strength of the method.
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