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Abstract  

Thin films have been grown using silica coated germanium quantum dot (Ge@SiO2) 

nanoparticles (NP) as well as their phosphorus-doped analogues (P-Ge@SiO2). The Ge 

quantum dots (QDs) were coated through the seeding of Stöber particles. The film thickness 

and uniformity were investigated using aqueous solutions of at a range of dilutions from 

the as prepared solutions. The films have been characterized by SEM, XRD, and I/V 

measurements of test solar cells using doped n-type Si substrates. While the films were 

relatively compact they are actually made of large plaques of particles rather than a continuous 

layer, and the film thickness showed little significant variation with concentration for the 

Ge@SiO2 films; although a more usual trend was observed for the P-Ge@SiO2 films. Films 

grown using a solution 1/4 of the maximum concentration provided the highest solar cell 

efficiency. Thermal annealing the films prior to deposition of the front and back contacts enabled 

a doubling in the cell efficiency, but did not show any marked increase in the density or 

crystallinity of the films.  

 

Keywords: silica; germanium; quantum dot; thin film; solar cell  
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1. Introduction 

Colloidal crystals are three-dimensional assemblies of mono-dispersed spheres such as 

silica or polystyrene [1,2]. These assemblies have become an interest for applications in anti-

reflective coatings, optical filters, and solar cells [3,4]. There are many methods to produce 

colloidal crystals, such as: gravity sedimentation, electrophoretic deposition, spin coating, 

centrifugation, capillary deposition, and vertical deposition [5-13]. One potential low cost and 

saleable approach has been recently studied for a wide range of films by spray deposition [14-

16]. Gravity sedimentation takes weeks even on a small scale, so using that method for mass 

production would be time consuming and costly [5,11]. For the best control at the laboratory 

scale, the vertical deposition method appears to have the most success because it is the most 

reproducible and reliable method of the above mentioned; this method also does not require 

special equipment or environment to produce the array [9-13].  

We have recently reported that germanium quantum dots (QDs) may be coated with silica 

via either a liquid phase deposition (LPD) process [17] or through the seeding of Stöber particles 

[18,19]. The formation of thin films on suitably doped silicon wafers enabled a hybrid solar cell 

device to be tested [19]. While device performance is dependent on a myriad of parameters, 

including the inter QD…QD distance, the doping of the QDs, and the conductivity of the silica 

matrix, we are interested in determining the effects of film formation and post deposition 

annealing on the device performance. We have therefore investigated the vertical deposition of 

silica coated Ge QD (Ge@SiO2) nanoparticles (NPs). Using these particles will allow for a 

similar approach as that reported in literature since the particles are externally silica. 

 

2. Experimental  

2.1. Materials and methods 

All materials were obtained commercially and were not further purified. Silica coated Ge QDs 

(Ge@SiO2) were prepared by previously reported methods [18,19]. Quartz slides (75 x 25 x 1 

mm3) were obtained from Chem Glass. Indium tin oxide (ITO) coated glass slides (75 x 25 x 1 
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mm3, 8-12 Ω/sq surface resistivity) came from Sigma Aldrich. The n-type silicon wafers were 

provided by Natcore Technology, Inc. (NXTV) with additional heavy phosphorus doping on the 

back to create a very conductive surface ready for the Au metal as a contact [19]. The wafers 

were passivated with silica to ensure the dopants remained in the wafers before use. The wafers 

were cut into 2 x 2 cm2 pieces for experimental use. The oxide layer needed to be removed from 

each piece of wafer before thin films could be deposited, and the p-type wafers needed the 

excess aluminum paste to be removed as well to stop the aluminum from contaminating the 

particles during deposition. The wafers were cleaned in buffered oxide etchant for 3 minutes to 

remove the native oxide layer and the excess aluminum paste. The pieces were then cleaned with 

DI H2O and plasma cleaned for 10 seconds to put a very thin oxide layer of about 10 nm back on 

the surface of the wafer. Without the thin oxide layer, the surface is too hydrophobic to allow the 

silica coated particles to come near the surface to create the thin film.  

Characterization of the arrays was performed with a FEI Quanta 400 ESEM FEG 

scanning emission microscope equipped with an EDAX energy dispersive spectroscope. X-ray 

diffraction was performed on a Rigaku D/Max Ultima II configured with a vertical theta/theta 

goniometer, Cu-Kα radiation, graphite monochromator, and scintillation counter. Plasma 

cleaning was performed with a Plasma Cleaner 1020 equipped with Ar:O2 (95:5) gas solution.  

The efficiency of the QD/Si cells were calculated from the I-V curves detected via 

Keithley 2420 and 2425 High Current SourceMeter with an Oriel Model 81190 Solar simulator 

equipped with a Xenon lamp, including light intensity feedback control [19]. The intensity of 

incident light was 100 mW/cm2. The solar cells were kept at a fixed distance of 6 inches from the 

light source for optimal conditions. The cells were attached to two leads, one connected to the 

back contact and the other connected to the busbar of the front contact [20]. This setup allowed 

for the measurement of the current produced by the cell with change in voltage.  

 

2.3. Vertical deposition 
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To control the array best, a 2 x 2 cm2 silicon wafer was placed vertically in a centrifuge tube with 

the coated QD solution (12 mL) having the wafer completely submerged. The solvent of the 

coated QD solution was DI H2O to obtain the most control over the film. The solution with the 

wafer was then set to dry in a fume hood at the solvent’s evaporation pace at room temperature. 

Not increasing the speed of evaporation with heat or vacuum allowed the particles to align 

themselves at the very top of the meniscus while the solvent dried slowly (Fig. 1) [10-13]. The 

solution with the wafer was sonicated briefly every couple of hours to ensure that the particles 

were evenly dispersed in the sample and not settling over time. In the case of Si wafer substrates, 

once the wafers are coated with the particles, a back contact of gold is added by sputtering. The 

front contact (gold or silver) is sputtered using a mask to create fingers across the surface without 

completely covering it with metal [20]. Both contacts are 100 nm thick, and the metal used 

depends on the identity of the dopant of the wafer and the presence of a QD containing layer 

[19].  

 

[Insert Fig. 1 here] 

 

 To determine if the amount of material in the solution controlled the thickness of the thin 

film, several samples were made with varying concentrations of nanoparticles (NPs). Ge@SiO2 

NPss varied from 0.094-1.5 M, and P-Ge@SiO2 NPs varied from 0.034-0.63 M. These 

concentrations were diluted with DI H2O to keep everything consistent for comparison, and they 

were treated identically to the regular vertical deposition samples. 

 Annealing studies were performed on these samples. A set of four wafers was prepared 

with the same concentration of SiO2@Ge NPs (0.375 M) to create four very similar thin films of 

the same material at the same concentration. These wafers were then each annealed at a different 

temperature for comparison. One was not annealed at all as a control sample. The second wafer 

was annealed at 200 °C under an inert atmosphere of argon in a sealed system in a tube furnace 

for 1 hr. The third wafer was treated similarly at 400 °C, and the fourth wafer was treated 
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similarly at 600 °C. These wafers were allowed to rest for 24 hr. after annealing to become 

reacclimated with the natural humidity of the atmosphere [21-24].  

 

3. Results and discussion  

3.1. Vertical deposition 

We have previously deposited films of nanoparticles of silica coated Si QDs (Si@SiO2 NPs) 

with an average particle size of 150 nm [17] by suspending in DI water with the substrate 

standing vertically, and the solution was evaporated on its own time at room temperature. 

Although the films appeared to be a glassy film, a closer view of the film showed that there were 

still gaps between the particles indicating that this was not a true array, and there was room for 

improvement [17]. The average particle center to particle center distance was 170 ±30 nm, 

consistent with a porous film. Other solvents were previously tested with this method [27], but 

none were found to be better than pure water. Furthermore, significantly smaller Ge@SiO2 NPs 

have been produced and are required for solar cell applications [18,19]. Thus, it is expected that 

the packing of the particles and overall topology of the thin film may alter.  

Fig. 2a shows the SEM image of a Ge@SiO2 film grown from 1.5 M solution in DI H2O. 

As may be seen by comparison with the results of an analogous growth of larger Ge@SiO2 NPs 

(Fig. 2b), the film is more densely packed. However, the film is actually made of large plaques 

of particles rather than a continuous layer (Fig. 3). Such a cracked morphology is typically due to 

stresses upon solvent evaporation; however, it is interesting that this was not observed for the 

larger Si@SiO2 particles. Presumably, lower particle…particle forces in the latter film mean that 

a lower density structure is formed (Fig. 2b). Obviously the plaque like structure is not 

appropriate for a device since metallization causes a short through the film, see below, 

Furthermore, not only are the plaques separated from each other in the plane of the substrate, but 

in some cases, the plaques are even separated and peeled up from the silicon wafer surface (Fig. 

3). This separation also causes an issue with achieving higher efficiencies because whatever 

current the thin film generates cannot be transferred to the wafer to complete the circuit. Due to 
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these issues, concentration and annealing studies were done to determine if these problems could 

be combatted with slight modifications. 

 

[Insert Fig. 2 here] 

 

[Insert Fig. 3 here] 

 

In order to determine if the concentration of the particle solution affected the uniformity 

as series of the films were grown with both Ge@SiO2 and P-doped Ge QD derivatives (P-

Ge@SiO2). The concentrations of the as prepared (see Experimental) Ge@SiO2 (1.5 mol/dm3) 

and P-Ge@SiO2 (0.63 mol/dm3) NP solutions were determined from weight measurements after 

drying. This difference in NP concentration is most likely due to the change in QD surface with 

the presence of phosphorus [19]. A series of standard dilutions (1/2, 
1/4, 

1/8, and 1/16 of the original 

solutions) were prepared to determine if there is a correlation between concentration and film 

thickness and/or continuity.  

Fig. 4 shows top and cross sectional views of films grown from different concentration 

solutions of Ge@SiO2 NPs. Regardless of the concentration of the particles, the packing between 

the particles remains constant and relatively close, resulting in a dense film. However, as the 

concentration decreased, the uniformity of the film decreased. More importantly, in most of the 

films, regardless of concentration, plaques of particles were still formed with the exception of the 

lowest concentration of Ge@SiO2 NPs (0.094 mol/dm3). The non-uniform nature of the films 

may be a consequence of the slow rate of film growth (days). In order for the NPs not to 

precipitate out of solution through aggregation, the reaction must be sonicated. This sonication 

may result in the damage of the grown film and the loss of fragments to the solution.  

 

[Insert Fig. 4 here] 
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The graph in Fig. 5 shows that little to no correlation between concentration and film 

thickness of Ge@SiO2 particles, except for the lowest concentration. It is worth noting that it is 

only at the lowest and highest concentrations that uniform films (small standard deviation in 

thickness) are formed. We have previously observed that too rapid an evaporation rate can cause 

the surface of the film show wave-like features [17]. This is not the case here, instead there is an 

inhomogeneous film growth; however, the NP…NP interaction compared to the NP…solvent 

interaction has been discussed as a controlling factor in film uniformity [8]. Although there is an 

obviously smaller film thickness with the lowest concentration of particles, the film also covered 

much less of the wafer. Higher concentrations could not be studied since even at 1.5 mol/dm3 the 

particles have a hard time staying in solution.  

 

[Insert Fig. 5 here] 

 

The same experiments were performed with the phosphorus-doped quantum dots coated 

with silica (P-Ge@SiO2). The base solution of these particles is lower than that of the undoped 

analogs; however, a similar trend is observed for the films grown. SEM images of the top and 

cross sectional views for films grown from each concentration are shown in Fig. 6. It is clear that 

these are very similar to the undoped films with plaques of close packed particles that are not 

touching each other or sometimes not touching the wafer. The variation of film thickness with 

the concentration of P-Ge@SiO2 NP solution is shown in Fig. 7. Here there is the more expected 

trend, but again the variation in film thickness within a sample is wide.  

 

[Insert Fig. 6 here] 

 

[Insert Fig. 7 here] 
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We have previously demonstrated [19] that both the Ge@SiO2 and P- Ge@SiO2 NP thin 

films deposited on n-type Si wafers (see Experimental) allow for the fabrication of low 

efficiency (as a consequence of film uniformity) solar cells of the type defined as 

Ag|Ge@SiO2|n-Si|Au shown in Fig. 8. Ge@SiO2 and P-Ge@SiO2 NP thin film layers were 

deposited on n-type wafers with silver front and gold back contacts. The I/V curves were 

measured for these cells (see Fig. 9). As may be seen from Table 1, the as synthesized 

concentrations used previously [19] were not determined to be the optimal concentration for 

either Ge@SiO2 or the P-doped homologs. Despite each type of NP having a different as-

synthesized concentration (Ge@SiO2 = 1.5 mol/dm3 and P-Ge@SiO2 = 0.63 mol/dm3) the best 

devices were fabricated using films with a quarter of the natural concentration. The difference in 

the as-synthesized concentrations is not due to the pH of the QD solutions; as both reagent 

solutions are at pH 3.9. It can be observed that the incorporation of PCl3 into the reaction mixture 

used for synthesizing the QDs (a toluene solution of GeCl4 and LiAlH4 in the presence of 

tetraoctylammonium bromide) slows the initiation of the reaction down (hours versus minutes) 

and the resulting material is a lot less concentrated. Although these two sets of particles are at 

two very different concentrations, the relative natural concentration ratio of their highest 

efficiencies is the same as seen in Fig. 10.  

 

[Insert Fig. 8 here] 

 

[Insert Fig. 9 here] 

 

[Insert Fig. 10 here] 

 

The plot in Fig. 10 raises two interesting points. First, for both QDs the best devices are 

produced using films grown from 1/4 of highest concentration; even though the absolute values 

are different. We propose this is related to solutions at some value below the saturation point, 
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and therefore the deposition rate is more controllable. At lower concentrations presumably the 

quality of the films is too variable for a suitable cell. This is most likely the reason for the second 

observation, that the values of devices are produced using films grown from 1/8 appear worse 

than the more dilute solutions. Given the potential of short-circuiting the cells with incomplete 

coverage, this is most probably an anomaly.  

 

3.2. Annealing studies.  

In an effort to densify the films, we have investigated thermal anneal in a stepwise manner. 

Based upon prior results with silica particles [21,22] we first annealed the samples to 200 °C, 

which has been reported to remove the residual water between particles without giving them 

enough energy to move closer [21,22]. Heating to 400 °C has been reported to aid in packing the 

thin film better [21]. Finally it has been reported that heating to 600 °C results in the initiation of 

melting of the particles resulting in a change of shape. The latter would be considered sintering 

rather than annealing but could still be considered useful since the quantum dots are randomly 

placed in the silica particles [18] and removing any space between the particles could create a 

quantum dot impregnated glass [21-25].  

 SEM images of the top and cross-sectional images of Ge@SiO2 films grown from 0.38 

mol/dm3 solution after annealing at various temperatures is shown in Fig. 11. There was not 

much of a difference between any of the samples to be able to definitively say that the 

temperature has a real effect on the films as seen in the graph of Fig. 12. However, it is worthy to 

note that in the 600 °C film there were a few areas where particles could not be discerned, and it 

appeared as though there were solid pieces of material instead of aggregates of NPs, as seen in 

Fig. 11d.  

 

[Insert Fig. 11 here] 

 

[Insert Fig. 12 here] 
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XRD analysis of the films also showed that there is little change in the their crystallinity 

upon annealing. The XRD data shows silicon (002) at 33.2 2θ, while the silver from the front 

contacts and aluminum from the sample holder showed a broader peak due to the closeness of 

the peaks with Ag (111) at 38.2 2θ and Al (111) at 38.5 2θ. Regardless, these annealed films 

were studied for efficiency improvements, and the results are shown in Table 2. Two sets of 

samples were run. First, samples were annealed after deposition, but before the front and back 

contacts were deposited, i.e., Ge@SiO2|n-Si. Second, thermal annealing was undertaken after the 

front and back contact were added, i.e., Ag|Ge@SiO2|n-Si|Au. The data reveals that irrespective 

of at what stage the annealing was performed, heating to 400 °C gave the most enhancement in 

the cell efficiency. However, the increase in efficiency for the cell with contacts is only 28% 

over the as deposited film, while the cell without contacts efficiency increases 100% indicating a 

stronger argument for annealing the solar cells before placing the contacts on them.  

 

[Insert Table 2 here] 

 

4. Conclusions 

Despite the vertical deposition method being faster than the evaporation process previously 

employed, none of the films created were ideal regardless of thickness or annealing. The best 

results with regard the test cell performance where at a concentration a quarter of the saturated 

concentrations of the NPs. However, under that level of dilution, the particles were too dispersed 

to make a reliable connection, and the efficiencies decreased beyond that point. Annealing also 

proved useful at 400 °C especially if the annealing was performed before the metal contact was 

applied.  

 It is interesting to note that the Ge@SiO2 NPs formed from the Stöber synthesis [18] all 

produce lower quality porous films than those that use the liquid phase deposition (LPD) process 

[17]. Given that the LPD process involves the generation of HF as a side product and this results 
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in a continual growth/etch process [28], we propose that the LPD growth of dense thin films 

offers benefits over the Stöber synthesis. It would be interesting to combine these solutions with 

a spray process [14-16]. Finally, we note that aerosol assisted chemical vapor deposition 

(AACVD) may be the best option for a uniform array. AACVD would also allow for a 

completely glassy layer to be produced [29-31]. One particular report creates phosphorus-doped 

germanium using this method, so it is possible to use this method for solar cells [31]. 

Additionally, this method can be completely customized with QD concentration, precise glass 

layer thickness, and atmosphere control to ensure that the QDs will not oxidize at the higher 

temperatures required for this method.  
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Table 1 

Concentration studies of untreated Ge@SiO2 and P-Ge@SiO2. 

QD  Actual concentration 

(mol/dm3) 

Relative  

concentration 

Efficiency  

(%) 

Ge@SiO2  1.5 1 0.0025 

  0.75 1/2 0.0004 

  0.38 1/4 0.013 

  0.19 1/8 0.000 

  0.09 1/16 0.011 

P-Ge@SiO2  1.26 2 0.0014 

  0.63  1 0.0093 

  0.32 1/2 0.018 

  0.16 1/4 0.033 

  0.08 1/8 0.0002 

  0.04 1/16 0.0045 

 

 

  



17 

 

Table 2 

Annealing studies with solar cells. 

Sample Annealing temperature (°C) Efficiency (%) 

Ge@SiO2|n-Sia untreated 0.0075 

 200 0.0000 

 400 0.0150 

 600 0.0000 

Ag|Ge@SiO2|n-Si|Au untreated 0.0025 

 200 0.0016 

 400 0.0032 

 600 0.0010 

a Silver front and gold back contacts were deposited after thermal treatment.  
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Legends for Figures 

 

Fig. 1. Schematic of vertical deposition technique. 

 

Fig. 2. SEM image of particles in a typical (a) Ge@SiO2 QDs (d = 17 nm) deposited on a n-type 

Si wafer substrate from DI water suspension compared with (b) larger Si@SiO2 QDs (d = 150 

nm) deposited under similar conditions (used with permission from ref. 17. Copyright: Elsevier 

2012). 

 

Fig. 3. SEM images of (a) the surface and (b) the cross-section of a typical Ge@SiO2 QD thin 

film grown on n-type Si wafer from DI water suspension.  

 

Fig. 4. SEM surface and cross-sectional images of films formed from varying concentrations of 

Ge@SiO2 NPs solutions in DI H2O: 1.50 mol/dm3 (a and f), 0.750 mol/dm3 (b and g), 0.375 

mol/dm3 (c and h), 0.188 mol/dm3 (d and i), and 0.094 mol/dm3 (e and j).  

 

Fig. 5. Film thickness versus concentration of Ge@SiO2 NPs.  

 

Fig. 6. SEM surface and cross-sectional images of films formed from concentrations of P-

Ge@SiO2 NPs. NPs solutions in DI H2O: 0.630 mol/dm3 (a and f), 0.315 mol/dm3 (b and g), 

0.158 mol/dm3 (c and h), 0.079 mol/dm3 (d and i), and 0.034 mol/dm3 (e and j).  

 

Fig. 7. Film thickness versus concentration of P-Ge@SiO2 NPs.  

 

Fig. 8. Schematic representations of the Au|Ge@SiO2|n-Si|Ag test devices.  

 



19 

Fig. 9. Representative I/V curves measured for (a) Ag|Ge@SiO2|n-Si|Au (solid line) and (b) 

Ag|P-Ge@SiO2|n-Si|Au (dashed line).  

 

Fig. 10. Cell efficiencies for (a) Ag|Ge@SiO2|n-Si|Au (black) and (b) Ag|P-Ge@SiO2|n-Si|Au 

(grey) at varying relative concentrations of the NP solutions used to grow the films.  

 

Fig. 11. SEM surface and cross-sectional images of as deposited Ge@SiO2 NP thin films (a and 

e) as compared to those annealed to 200 °C (b and f), 400 °C (c and g), and 600 °C (d and h) for 

1 h at each temperature. 

 

Fig. 12. Film thickness as a function of anneal temperature for Ge@SiO2 NP thin films. 
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Fig. 1.  
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Fig. 2.  
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Fig. 3.  
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Fig. 4.  
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Fig. 5.  
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Fig. 6.  
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Fig. 7 
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Fig. 8.  
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Fig. 9.  
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Fig. 10.  
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Fig. 11.  
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Fig. 12.  
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Artistic Pic: 

 

 


