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Abstract 

Data science extracts new knowledge from high dimensional datasets through 

computer science and statistics. Mental health research, diagnosis and treatment 

can benefit from data science data integration from consented cohort studies, 

genomics, routine healthcare and administrative data. The UK is well placed to 

do so through exemplary data science projects, such as UK Biobank, Generation 

Scotland, ALSPAC and CRIS, set within the UK National Health Service. The NHS 

ensures the highest standards of data governance, public trust and value, 

establishing the ideal platform for the advancement of mental health through 

data science. Data science has great potential as a low cost, high return catalyst 

for how mental health problems may be better recognised, understood, 

supported and outcomes improved. The UK NHS and embedded cohort studies 

provide a unique opportunity to field trial this approach to mental health, with 

global reach in terms of both their output and impact. 

  



 

 

WHAT IS DATA SCIENCE? 

Data science is the extraction of knowledge from high-volume data, using skills 

in computing science, statistics and the specialist domain knowledge of experts.1  

Data science pervades global business and modern living and can partner 

technical revolutions, such as medical genomics and imaging, to revolutionise 

the monitoring, diagnosis, treatment and prevention of disease. This ideal of 

interdisciplinary, evidence-based, data-driven precision medicine is implicit in 

the research strategies of major funding organisations. The case for data science 

is often made for cancer, heart and infectious diseases and yet, mental disorders 

rarely feature as first line targets. Here we argue that it is time to recognise the 

enormous potential for data science to transform mental health research and 

clinical practice. 

 

Figure 1: What is data science? 

 

Insert Figure 1 here 

 

WHY MENTAL HEALTH AND WHY NOW? 

Mental disorders are arguably the greatest ‘hidden’ burden of ill health, with 

substantial long-term impacts on individuals, carers and society.2 People with 

these conditions are often socially excluded3 and less likely to participate in 

research studies or adhere to follow up.4–6 Complexities around defining 

diagnoses present challenges for research into mental health conditions and thus 

enhanced longitudinal datasets are needed to supplement observational 

research. Data science offers an unprecedented opportunity not only for more 

robust diagnostics, but also the prediction of outcome, treatment response, and 

patient preferences to inform interventions.7 It may also provide more effective 

targeting of recruitment to observational and interventional studies. Such data 

are large in size and dimensions and require the application of analytical 

techniques, such as machine learning, where more conventional techniques are 

less computationally tractable.  

 



A key issue in data science is the description of data types that are the most 

informative, most readily available and most easily and efficiently captured. 

Generic data types include electronic health and prescribing records, education, 

welfare, socio-demographic, laboratory and real world monitoring through 

wearable devices and environmental sensors. More specific data might include 

genomic data, in vivo brain imaging and cognitive/behavioural/psychological 

traits. Important challenges should be recognised, which include shortcomings in 

dataset completeness and linkage potential, as well as acceptability to patients 

and the wider public, given the perceived sensitivity of mental health data. It is 

also important to consider the types of information that can, in the round, create 

new ways of classifying mental health and illness. 

 

WHAT RESOURCES DO WE HAVE IN THE UK? 

Within the UK we have rich resources for data science in mental health. In this 

rapidly moving field, we have selected a few exemplars for data science in the 

UK. Whilst these examples give an indication of the range of current resources, 

they also provide a template from which to shape the profile of data science for 

mental health in future years. 

 

1. Population cohorts 

There are several UK population cohorts with enhanced clinical, biological and 

social datasets linked to routinely collected electronic data. UK Biobank 

(www.ukbiobank.ac.uk) and Generation Scotland (www.gen.scot) are two 

examples which illustrate the range of possibilities available. 

 

UK Biobank  

UK Biobank is a cohort study of 502,000 individuals aged between 37 and 73 

years who were recruited from 2006 to 2010. Participants attended an 

assessment centre, completed a touch-screen questionnaire, underwent a nurse-

led interview, and took part in several assessments. These included measures of 

depressive symptoms, psychological distress, cognitive function and alcohol and 

cigarette use. In addition, linkages have been made to National Health Service 

(NHS) healthcare episode data, and a number of biological measures have been 

taken, including DNA for whole-genome genotyping. An initial pilot medical 

imaging study includes unprocessed brain structure, function and connectivity 



data in over 5,000 participants, which is in the process of being extended to 

100,000 individuals. Further longitudinal and outcome assessments include 

repeat cognitive testing and actigraphy. Lifetime history of mental illness will be 

assessed in greater depth with a web-based questionnaire. UK Biobank thus 

brings unprecedented deep and broad phenotyping to mental health research.8  

 

Generation Scotland  

The ‘Generation Scotland: Scottish Family Health Study’ (GS:SFHS) is a 

community and family based study of ~24,000 participants aged between 18 

and 98. Participants were recruited from ~7,000 family groups9,10 with approval 

for medically relevant research, including genetic studies, and for re-contact. 

Questionnaire-based family history and demographics; detailed clinical data; 

validated measures of pain, cognition and mental health; pedigree information; 

and biological samples are available for 21,516 participants. All GS participants 

have consented to allow linkage to their medical record including all routine 

Scottish Morbidity Records, NHS prescriptions, mortality records and the Scottish 

Birth Record. Genetic and phenotypic data are held separately and de-identified. 

Whole-genome data is also available, and serum and urinary proteomics studies 

are under development. All participants were screened for lifetime depression: 

2,706 participants (13.5%) met the DSM IV criteria for major depressive 

disorder (MDD).11 Participants are currently being re-contacted for 

questionnaire-based assessment and further clinical and brain imaging 

measures.  

 

2. Domain specific cohorts linked to routinely collected data (NCMH and 

SAIL Databank) 

In contrast to population based research cohorts, several UK resources are 

focussed specifically on Mental Health and routinely collected clinical data from 

the NHS, the UK’s comprehensive healthcare provider. These data may be more 

representative of the general population and provide a framework for 

implementation.  

 

NCMH and SAIL Databank 

The National Centre for Mental Health (NCMH) was established in Wales in 2011 



and supports and performs high quality research into the causes and treatment 

of mental illness and learning disability (www.ncmh.info). The NCMH continues 

to expand a lifespan-wide cohort of 6000 participants, crossing multiple 

diagnostic categories, willing to participate in research who have consented to 

further contact. Recruitment involves collection of participant information (e.g. 

demographic, clinical, neuropsychological and imaging), routine clinical NHS 

secondary care data and biological materials.  

NCMH has subsequently developed a research platform and infrastructure for 

mental health research in Wales. The NCMH cohort can now be linked to routine 

data nested within prevalent diagnostic cohorts. These cohorts can be tracked 

across healthcare settings, whilst protecting privacy, through linkage to routine 

electronic health and social datasets from the Secure Anonymised Information 

Linkage (SAIL) databank (www.saildatabank.com).12,13  

 

The SAIL databank is a research data repository for Wales, holding over 2Bn 

anonymised health records from ~3.5M patients. Primary care data include 

demographics, diagnoses, symptoms, referrals, laboratory investigations and 

prescriptions. Linkage to the hospital inpatient database provides information on 

admissions, diagnoses, surgery, treatment and discharges. Coverage of 

outpatient appointments, emergency attendances, child health, educational 

attainment, cause-specific mortality, deprivation and urbanicity are also 

recorded. Use of data is conducted in accordance with data protection and 

information governance legislation using a split file approach. 12,13  

 

3. Electronic health record derived cohorts and the Farr Institute 

The increasing use of electronic health records is creating databases unparalleled 

both in sample size and in the depth of information contained. The use of these 

data for research is encouraged by policy14,15 subject to technical and ethical 

considerations.16–21  

 

An important distinction is made between structured information and 

unstructured text – the former being simpler to analyse, albeit that clinical 

uncertainties are often poorly coded. 22–26 Here, text mining may need to be 

employed alongside structured information to better define groups.18,27 



Structured information on patients requiring specialist care has been collected 

systematically by the NHS since 1981 through Hospital Episode Statistics in 

England, the Scottish Morbidity Record and Patient Episode Data for Wales. 

These are available to researchers as linked-data and are published in open-

access aggregated form,28,29 along with primary care data related to the Quality 

Outcomes Framework and Increasing Access to Psychological Therapies.30 

Despite concerns about the speed and accuracy of these data,31–33 these 

resources may prove valuable for measuring real-world outcomes and assessing 

their mediators and predictors.  

 

In 2013 electronic medical record linkage was given further impetus by the 

founding of the UK Farr Institute for Health Informatics Research. It has the aim 

of harnessing health data for patient and pubic benefit by facilitating the safe 

and secure use of electronic patient records and other population based data 

sets.  

 

CRIS  

The Clinical Record Interactive Search (CRIS) application was developed at the 

South London and Maudsley NHS Foundation Trust (SLAM) in 2007 as a means 

of rendering the large volumes electronic mental health record data available for 

research.34,35 CRIS at SLAM accesses mental health case records from around 

260,000 patients within a south London geographic catchment of approximately 

1.2m residents; replications of CRIS have recently become operational 

elsewhere in London, Oxford and Cambridge. Key to the development are not 

only the data structuring and de-identification pipeline afforded by CRIS itself, 

but also the wider data security and governance model which has been patient-

led from the outset.36 Research applications have included searches to help 

identify and characterise rare scenarios for further investigation,37,38 and data 

linkage projects to characterise physical health outcomes.39,40 Recent 

enhancements include the development of natural language processing 

applications to derive structured information from the text fields present in the 

electronic mental health record. These include recorded diagnoses, cognitive test 

scores, pharmacotherapy and symptom profiles.41–46 

 

Child Mental Health: The Child Outcomes Research Consortium approach 



The Child Outcomes Research Consortium (CORC) is a practice research network 

of >50% of all child mental health providers in the UK (~70 organisations) with 

collaborators in Scandinavia and Australia. Members of this not-for-profit 

collaboration share pseudonymised child-level data annually, which are held by 

CORC centrally and consist of ~250,000 care episodes over ten years. The 

collaboration includes health and education providers and the voluntary sector. 

There is an initiative supported by the Department of Health to support closer 

data linkage between these datasets in future.47 The CORC approach is an 

example of both the opportunities and the challenges in collecting and using 

routinely collected data from mental health service providers, and the use of 

‘deep domain knowledge’. CORC is committed to use of the data to inform 

“Precision Mental Health”48 whilst also being mindful of the complexities, 

limitations and flaws in the data.49 CORC draws on this data to support clinical 

decision-making, performance management, quality improvement and specific 

research studies.  

 

Linkage to ‘real-time’ health data and wearable devices 

The increasing use of wearable devices, such as activity monitors, smartphones 

and watches has provided a vast new source of health data. One of the main 

advantages is the rapid availability of ‘real-time’ data (e.g. steps and sleep 

patterns), which can include contemporaneous measures of heart rate, mood, 

diet, sleep and biochemistry. Access to personally generated data can be 

provided through smartphone or web-based applications that collect data from 

individuals, analyse them and provide consent to external researcher’s data 

requests. Companies such as Apple (Healthkit and Researchkit) and Google 

(Alphabet) are developing health based applications and wearable devices, as 

part of a wider array of environmental sensors, ‘The Internet of Things’, and 

health application developer toolkits. This field is at an early stage and there are 

good examples of such initiatives in psychiatry. For example, Truecolours 

(https://oxfordhealth.truecolours.nhs.uk/www/en/) is a platform that has been 

developed to capture continuous patient-generated data with the required 

usability and acceptability to permit reliable longitudinal follow-up. It is our 

opinion that wearables and real-time data have the potential to transform 

disease monitoring, the relationship between patients and their healthcare 



providers and provide new insights into the phenotype and neurobiology of 

mental disorders.   

 

PUBLIC TRUST AND CLINICAL GOVERNANCE 

Government administrative and healthcare data represent major resources for 

research and health service improvement. However, public support, public trust 

and governance arrangements are fundamentally important if their full potential 

is to be realised. There is a need for researchers, clinicians and policy-makers to 

engage with patients and the public in discussions about the potential benefits of 

research and risks of identification or privacy breaches. Several organisations 

are leading projects in the UK, including the Farr Institute (#datasaveslives), the 

European Data in Health Research Alliance (datasaveslives.eu) and 

Patients4Data (patients4data.co.uk). These campaigns engage with the public 

and policymakers to promote the power of patient data and influence regulatory 

authorities to allow continuing use of data for patient and public benefit. These 

initiatives have the potential to shape research questions and ensure these are 

meaningful for communities and patient groups, and will help to ensure 

sustainability. Such activity also sets the work within a wider public context and 

will improve visibility, transparency, and acceptability. 

 

Health data are personal and sensitive, and attitudes research suggests that 

mental health data are among the most sensitive.50,51 Existing initiatives 

demonstrate that substantive patient involvement from the start (in the design, 

implementation, use and development of data-sharing initiatives), can help to 

ensure that meaningful progress is made.35 It is important to attend to the 

growing body of research that helps us to understand the diverse reasons why 

people might be reluctant or unwilling to consent to the use of their data for 

mental health research.52,53 Studies indicate, encouragingly, that a majority of 

mental health service users agree to the use of their health records for research 

– particularly when efforts to engage in on-going communication about their use 

and potential benefits are made.35,54 There may be lessons to be learned from 

cancer research, which has been transformed from being characterised by 

stigma and under-funding into a highly successful global research movement.  

  



Safe and transparent models of governance for re-use of mental health data are 

essential for developing and maintaining public trust. Systems have successfully 

been developed that protect privacy whilst enabling research in the public 

interest. In the future, innovations that allow the public further control over their 

data may offer further opportunities, such as dynamic models of consent55 and 

crowdsourcing (e.g. www.PatientsLikeMe.com). The recently established Farr 

Institute includes a programme of public engagement with a focus on the safe 

and transparent use of patient and research data. 

 

The ‘Scottish Model’ 

Scotland is known to have some of the best administrative and care data in the 

world. In recent years, Scotland has developed an approach which has 

successfully delivered a number of informatics projects involving academia, 

industry and health service providers. One major reason for this success is the 

Community Health Index (CHI) - a unique identifier for approximately 99% of 

the population, facilitating pseudonymised linkage between health and 

administrative data (Figure 1). 

 

Figure 2. National level data resources in Scotland56 

 

Insert Figure 2 here 

 

The ‘Scottish model’ is an exemplar of how to ensure trustworthy data 

governance and engage with the public to drive forward health informatics 

research. Since 2002, the Scottish Government have had an engagement group 

to ensure public input into activities such as reviewing grant applications, 

providing lay research summaries and wider dissemination activities. 

Consultation work since then suggests that the public is content to offer support 

for the use of administrative and health data in research, provided there are 

robust processes to ensure that data security and limited access to trusted 

personnel conducting research for public benefit. It appears that the public is 

more supportive of academic and clinical research than work conducted by 

commercial organisations.50,57  

 



All the outputs generated are scrutinised to ensure they do not identify 

individuals or breach privacy before being released. Plain English summaries of 

research are published online and open access publication is a condition of all 

research. Support to researchers throughout this process is provided by a 

‘research coordinator’ within an eData Research and Innovation Service.56 The 

key elements of the Scottish model are illustrated within Figure 2. 

 

The role of medical research charities 

The role of research charities in the evolution of data access and utilisation is 

still emerging. Recent activity, led by the Association of Medical Research 

Charities has been focused at the national and international level, advocating for 

clearer statutory guidelines on oversight and accountability for NHS England as 

well as ensuring access to data for research purposes in European Union Data 

Protection legislation. As facilitators of a UK-wide discussion of research 

opportunities and challenges in mental health data science, MQ is working with 

charities and government to ensure that mental health is represented in critical 

discussions.  

 

 

TRAINING, RESOURCE AND CAPACITY IMPLICATIONS 

 

1. Technological resource 

The capacity of data storage and access, and the personnel to collect and 

analyse data (and financing to maintain these) are rate-limiting steps in the 

ongoing development of data science. Routinely-collected ‘administrative’ and 

health data tend to be centrally financed by government but have limited 

phenotypic coverage and have, until recently, been used mainly for planning. 

More detailed phenotyping is possible in routine clinical data, such as CRIS in 

London and PsyCIS in Glasgow,58 and large scale genetic, ‘-omics’ and 

neuroimaging studies generate huge volumes of data that pose tractable data 

storage issues. The combination of these datasets is very challenging and 

requires data harmonisation and for compatibility issues to be addressed.  

 



Databases need to gather and hold data, and enable users to search for and 

access data of interest to them. Agreements about data sharing and how to 

facilitate collaboration and innovation are key issues for data scientists. In 

practice, data generation projects are deciding on a case by case basis what 

they they will offer to centralised depositories without offering a coordinated 

solution for how that data will be linked to other sources.  Centralised databases 

can make themselves more attractive to data depositors by offering managed 

data access and trusted analysis environments. Existing examples, focussed on 

genetics, include the Global Alliance for Genomics and Health (GA4GH 

https://genomicsandhealth.org) and RD-Connect (http://rd-connect.eu). 

 

2. Skills resource 

Identifying, training and fostering a generation of clinically-informed data 

scientists from a wide range of backgrounds must be a top priority. This requires 

multidisciplinary training programmes, which expose scientists, informaticians 

and statisticians to commonly used clinical data, diagnoses and treatments, as 

well as a range of relevant methodological approaches. Data scientists will 

usually need further postgraduate training in statistics and computational 

modelling. All trainees will need to be familiar with ethical and regulatory 

requirements as well as prepared to become familiar with the diverse ways in 

which health data are recorded and stored. Given the diversity of resources and 

methodologies, a variety of approaches seems inevitable and desirable. 

Particular care and attention to the career structure of data scientists will be 

needed to nurture early-career researchers and ensure that expensively 

acquired expertise is not lost after training. A spectrum of skills and disciplines 

needs to be present in a data science team and its leadership as well as a 

common understanding of the need for complementary expertise. As data 

science evolves in fields such as engineering and finance, there will be 

opportunities to learn from their experience. 

 

3. National and international collaboration 

There is a need to develop and maintain international and interdisciplinary 

databases and the networks to support their efficient use. There is much work to 

be done in standardising assessments, outcome measures and terminology 

within, let alone between, nations. MQ has recently established UK-based 



research charity with international reach dedicated to mental health 

(www.joinmq.org). MQ and other research charities such as the Wellcome Trust 

and Medical Research Council have an important role to play in matching 

researchers and their research questions to datasets spanning multiple subject 

domains and countries. Routine health record data with detailed mental health 

coverage include those stored by the Information and Statistics Division of the 

Scottish Government, a similar resource in Australia and the exemplary 

Scandinavian systems. Some projects, like UK Biobank, encourage external data 

analysis even as data are being collected, whereas others will not be openly 

shared until the original funder-approved aims have been met. Subject to 

regulatory approvals, it is desirable that systems should be put in place to 

facilitate the incorporation of data from time-limited projects as soon as 

practicable. Intellectual property and resource considerations may make this 

challenging. Fostering collaborations, developing safe havens to facilitate joint 

working and convening advisory groups with wide representation will help  

enhance complementarity across projects and data collections. 

 

OUR VISION OF THE FUTURE 

Against a backdrop of no fundamentally new pharmacologic treatment in the 

past 60 years and a progressive pharmaceutical industry withdrawal from mental 

health Research and Development, an alternative course is essential. Mental 

health remains the leading area of unmet medical need in the developed world, 

and is rapidly acquiring the same status in the developing world.  

 

Combining large healthcare and administrative datasets with real-time 

monitoring, laboratory, genomic and imaging data could achieve a step change 

in the way healthcare is provided and research is organised. In our opinion, data 

science will greatly enhance our ability to conduct discovery science, 

epidemiological studies, personalised medicine and plan services. Without the 

better understanding of mental health problems that will come with use of Big 

Data, longer term visions for self-management, better treatments and learning 

health systems will not be possible. It is thus vital that current initiatives in data 

science recognise and support this need.  
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Legend to Figure 1 What is data science: 

Figure showing the component features of data sciences 

 

Legend to Figure 2: The ‘Scottish’ Model 

Figure shows the linkable data sources available in Scotland, whose 
linkage is facilitated by a unique identifier: the CHI number 
 
Legend to Figure 3: How and where data science can improve 
psychiatric diagnosis and optimise care 
Currently, diagnosis depends upon a self-reported check list following 
DSM and ICD criteria. The patient will normally present in primary care 
and be diagnosed by a GP. The care pathway recommended may vary 
from monitoring only, self-help, counselling or drug prescription. Only a 
minority of patients with a confirmed diagnosis will respond to the initially 
selected intervention.  Severe cases will be referred to secondary care and 
the process refined, but a significant minority will remain treatment 
refractive after testing all available therapies. There are currently no 
robust methods to stratify patients within a given diagnostic category that 
supports treatment choice or predicts treatment outcome. Counselling is 
resource limited and costly compared with drug prescription and this 
influences health practitioner decision making.  The figure highlights in 
bold how data science could provide robust methods to stratify patients 
within a given diagnostic category that can support treatment choice and 
predict treatment outcome (disease stratification and precision medicine). 
The approach builds upon and extends beyond the NIMH Research 
Domain Criteria (RDoC) principles (http://www.nimh.nih.gov/research-
priorities/rdoc/index.shtml ).  Indicative, non-exhaustive data sources are 
listed as inputs towards refined diagnostic classification, optimal choice of 
first line treatment, development of better treatments and monitoring of 
response. Implicit in this refined approach is that a) multiple relevant data 
types and sources are readily available at low cost, b) advance 
epidemiological, statistical, and machine learning data analytics can 
extract the maximally informative variables, c) the chronic and remitting 
course of mental illnesses highlights the added value of objective 
longitudinal and real-time data, for input and feedback to patients, 
practitioners and carers, d) individual personal predictions and care-
pathway monitoring will benefit from similarity matching within patient 
cohorts and against population norms.  
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