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Abstract

The microstructure and mechanical properties of 316L steel have been examined for parts built by a
powder bed laser fusion process, which uses a laser to melt and build parts additively on a layer by
layer basis.

Relative density and porosity determined using various experimental techniques were correlated
against laser energy density. Based on porosity sizes, morphology and distributions, the porosity was
seen to transition between an irregular, highly directional porosity at the low laser energy density
and a smaller, more rounded and randomly distributed porosity at higher laser energy density,
thought to be caused by keyhole melting. In both cases, the porosity was reduced by hot isostatic
pressing (HIP).

High throughput ultrasound based measurements were used to calculate elasticity properties and
show that the lower porosities from builds with higher energy densities have higher elasticity moduli
in accordance with empirical relationships, and hot isostatic pressing improves the elasticity
properties to levels associated with wrought/rolled 316L. However, even with hot isostatic pressing
the best properties were obtained from samples with the lowest porosity in the as-built condition.

A finite element stress analysis based on the porosity microstructures was undertaken, to
understand the effect of pore size distributions and morphology on the Young’s modulus. Over 1-5%
porosity range angular porosity was found to reduce the Young’s modulus by 5% more than rounded
porosity. Experimentally measured Young’s moduli for samples treated by HIP were closer to the
rounded trends than the as-built samples, which were closer to angular trends.

Tensile tests on specimens produced at optimised machine parameters displayed a high degree of
anisotropy in the build direction and test variability for as-built parts, especially between vertical and
horizontal build directions. The as-built properties were generally found to have a higher yield stress,
but lower upper tensile strength and elongation than published data for wrought/hot-rolled plate
316L. The hot isostatically pressed parts showed a homogenisation of the properties across build
directions and properties much more akin to those of wrought/hot-rolled 316L, with an increase in
elongation and upper tensile strength, and a reduction in yield over the as-built samples.

Keywords: Powder Bed Laser Fusion, 316L steel, Porosity, Hot Isostatic Pressing, Tensile, Ultrasound
Measurements of Elasticity, Finite Element Analysis



1 Introduction

Additive Layer Manufacturing (ALM) based on the melting of pre-alloyed metal powders is a
processing route which is rapidly evolving from rapid prototyping with the capability of producing
functional net-shape parts with the strength characteristics of wrought parts [1]. It is ideally suited
to low-volume production, and can be cost-competitive or cheaper than CNC machining or processes
where the capital outlay for items such as dies are high [2]. However, as with all powder-based
processes, such as sintering [3], net-shape hot isostatic pressing [4], and powder compaction [5], as
well as other net-shape manufacturing methods such as casting [6], there is an inherent porosity
associated with the process.

The literature is rich in studies reporting on specific combinations of alloys, ALM techniques and
applications. Titanium alloys, such as Ti-6Al-4V are being examined for use as critical aerospace and
biomedical applications such as orthopaedic devices, and dental implants, and are understandably
receiving a large proportion of the effort.

Typically the material/process development cycle will start by studying the links between porosity
and tensile strength, as exemplified for powder bed fusion processes, of which selective laser
melting (SLM) generally referrers to processes specifically using optical based lasers, [7], wire-feed
processes [8] and electron beam processes, [1], [9]-[11]. Common conclusions from this type of
work are that anisotropic mechanical properties occur to a varying degree, and that there are also
various levels of porosity which have a detrimental effect on ductility, accompanied by high levels of
hardness and yield strength.

The effects on mechanical properties of surface finishing, heat treatments and hot isostatic pressing
are then examined, and for Ti-6Al-4V this is done for powder bed [7], [12] and for electron beam
[11]. Due to the relatively rough surfaces of additive processes, surface finishing such as polishing or
machining can improve mechanical properties, particularly fatigue strength [4], [11], [13].

For Ti-6Al-4V, heat treatments such as aging and annealing for stress reduction are found to have
relatively small effects on mechanical properties, slightly increasing ductility and reducing
anisotropy, with some reduction in the yield strength. Generally, more aggressive heat treatments
and hot isostatic pressing give a larger reduction in sometimes both yield and upper tensile strength,
and are accompanied by an increase in ductility and a reduction in build direction anisotropy, often
associated with the adequate closure of small porosity in the case of hot isostatic pressing. This is
also the case for nickel alloys such as Inconel 718 [14], [15], although in the case of this alloy the
ductility can be reduced with heat treatment as a consequence of an acicular 6-phase migrating to
grain boundaries. Nickel alloys have also been subject to studies with intended applications in
aerospace, concentrating on the microstructural characterisation and effects on mechanical strength
of parts build by the powder bed fusion process with Inconel 718, [16] and Nimonic 273, [17], both
examining the post-modification by heat treatment of the as-built part.

Heat treatments have significantly more effect on commonly used aluminium alloys such as AlSi10
[18]—-[22] and AISi12 [23], often intended for automotive and electronic applications, and much of
the current focus of powder bed based ALM research using aluminium has been on the Al-Si casting
alloys, such as AlSi10, [19], which although possibly easier to process than high strength aerospace
Al-alloy grades due to narrower freezing ranges, still pose significant challenges when compared to



steels and other higher melting point alloys. High strength aluminium alloys (5XXX and 7XXX-series)
are also being considered [24] for aerospace applications for powder bed ALM, and modified
compositions such as with higher scandium content,[25] are showing acceptable porosity and
promising strength and ductility characteristics. Porosity fractions of aluminium alloys can be
reduced to less than 0.5%, certainly comparable to casting routes with fewer inclusions and defects,
however, pore sizes tend to be larger than with other ALM alloys, with overall static strength tests
showing higher tensile and fatigue strength than cast materials, [22].

Fatigue strength requires longer term tests, which tend to come later in the material/process
development cycle, and fatigue studies have been reported for Ti-6Al-4V in [20], [26], [27], steels
[13], [28] and aluminium alloys [20], [22]. Generally the findings are that while heat treatments and
hot isostatic pressing can improve fatigue strength, that mostly these still be below 60-75% of an
equivalent wrought, annealed material.

Although much work has already been done on duplex steels such as 304 and 316L on a variety of
powder bed systems, [29], [20], [30]-[38], the published data covers a wide range of preparation
routes, machine settings and laser powers, different mechanical testing methodologies and various
post-process heat treatments. Unlike higher strength H13 and maraging steels such as 18Ni-300, [39]
which are used in injection moulding tools and dies, and aeroengine applications, the lower strength
316L is widely used but does not have any one single critical application possibly explaining the wide
range of research interests. However, this poses a difficulty in setting a baseline for the required
tensile properties of 316L, as demonstrated by the limited validation in the publications comparing
ALM with other processes such as hot rolling, wrought or casting.

As pointed out in [20], the proliferation and progress of additive processes means that the
mechanical characterisation even for standard alloys struggles to keep pace with the machine
developments. This is very evident in the case of 316L steel where even recent publications are
reporting tensile properties for samples built with the previous generation of powder bed systems,
with low laser powers (85-200W) and line speeds (down to 200 mm/s), and wider ranges of porosity
(1-3%). Laser powers of 500W and line speeds of 2-3000 mm/s are the norm in the current
generation of machines, resulting in lower levels of porosity (0.1-0.5%) expected across all alloys.

The work reported herein aims to add to the body of knowledge on 316L with an in-depth
characterisation of the material for a 200W laser machine, at line speeds in the 600-1000 mm/s
range. The claim to be in-depth is based on a thorough description of the measurement
methodologies (density, porosity and tensile properties), for both as-built and hot isostatically
pressed samples, to be a baseline for future researchers. It also introduces the use of ultrasound
testing which has seen a limited amount of use in ALM materials characterisation even though it is a
more rapid method of getting elasticity properties than through tensile testing. It is thought that
ultrasound techniques can contribute to process improvement, such as by reducing directional
variations across the build plate. Another objective of this work is in understanding how porosity
distributions and morphologies change with hot isostatic pressing, and, using FE analysis derive
empirical relationships for the Young’s modulus, [40]. These empirical relationships in conjunction
with the non-destructive and fast ultrasound testing, will lead to future improvements of
equipment, lasers and powders. Looking ahead, It may also be possible to use similar empirical



relationships for tensile and fatigue strength properties versus porosity - reducing the time taken to
prepare and optimise a new material on a given powder bed process.

2 Materials and experimental procedure
2.1 Processing parameters and material specification

All components in this study were made using the powder bed laser fusion process of the Renishaw
AM250 machine. This uses an Ytterbium fibre laser in Q-switched mode with a maximum power of
200 W and nominal laser spot diameter 70 um. There are a wide range of parameters that can be
varied in order to change the part properties and include but are not limited to, material specific
parameters, laser parameters, scan parameters and environmental parameters.

The material used in the current investigation was the austenitic metastable 316L stainless steel
powder with a nominal size range 15 to 45um, spherical morphology manufactured via gas
atomisation as shown Figure 1 (a). The specification and actual composition (as supplied) of the alloy
are shown in Table 1. Actual powder size distributions were D(10)=18.86 um, D(50)=29.21 um,
D(90)=45.10um. Both the powder morphology and particle size distributions have been shown to be
important to the densification characteristics, and ultimately to the level of laser power which needs
to be delivered at each layer [34], and to this extent the powder used in this study had similar
characteristics.

A driving parameter of the densification of ALM parts is the Energy Density (E4) [J/mm?®] is typically
given by, [34]:

Piaser
Eq = : : (1)
Vscan'SHatch'tLayer

However, as the laser on the AM250 is RF modulated, so the following relationship has been used:

exposure time
Lawer Powerx( - - )
_ hatch space xpoint distance
Eq = (2)

layer thickness

In equation (2), the exposure time (ET), point distance (PD), hatch space (HS), layer thickness (LT)
and power of the laser (P) are machine settings which define the laser energy density in the powder
bed laser fusion process. The dimensions for the point distance, hatch space and the meander hatch
pattern are shown in Figure 1 (b). The nominal settings as recommended by the machine
manufacturer for the specific 316L powder used were an exposure time of 110 ps, a point distance
of 65 um, a laser power 180 W, a layer thickness 50 um and a 124um hatching space.

For the density and elasticity part measurements cubes with 12mm sides were built in which the
exposure time varying between 70-150 us and the point distance varying between 25-105 um over 3
levels, resulting in the 3X3 test parameter matrix given in Table 2. Each parameter combination was
repeated three times giving a total of 27 cubic samples as shown in Figure 2. For each set of repeats,
the laser energy density has been calculated using equation 2 giving laser energy densities ranging
from a minimum of 19 J/mm? to a maximum of 175 J/mm?, with the nominal settings corresponding
to an input energy density of 49 J/mm?®. Line speeds are also given in Table 2, and range from 166 to
1500 mm/s, with the nominal line speed of 590 mm/s.



It is important to note that the exposure time and point distance ranges examined are much wider
than are normally used for parameter optimisation, and this was done purposefully to create a wide
range of resulting porosity over which to the effects of hot isostatic pressing could be examined.

Throughout the build process, the ambient temperature was maintained at 21°C and O, levels within
the chamber are minimised by combining a -960mbar Vacuum and back-filling to a +10mbar above
atmospheric argon atmosphere resulting in O, below 100 ppm.

2.2 Tensile test specimen preparation

Two different specimen geometries and machines were used for the tensile tests, for which the
sample geometries are shown in Figure 3. These specimens were manufactured using the nominal
machine settings given in the previous section corresponding to a line speed of 590 mm/s and a laser
energy density of 49.13 J/mm?°.

1) 42 Rectangular tensile bars — These specimens were built net-shape with a 3 mm thickness,
a 40 mm gauge section and a 100 mm total length, as shown Figure 3 (a). This specimen
geometry complies with the suggested sizes specified by the ASTM Additive Manufacturing
standards committee (ASTM-F42) which has adopted ASTM E8 sub-specimen standard for
metals, [41]. It also complies with the BS EN ISO 6892-1:2009 specimen dimension, [42]. A
preliminary set of 42 test bars were built directly from the CAD in various orientations to the
wiper (0°, 45° and 90°) on the build plate, and in a vertical (V), horizontal (H) and at 50°
direction to the vertical (V50°) as shown in Figure 4 , requiring a variety of support
structures. 21 of these specimens underwent the HIP cycle described in the next section.

2) 6 Cylindrical tensile bars — In the same build, 3 cylindrical rods were built vertically (100mm
long and with a diameter of 20mm) with 1 rod undergoing the HIP cycle defined in the next
section. Each rod was cut in half, each machined to 10mm diameter, with a 10mm long
thread added to each end and then machined to a 5.65mm diameter along the 25mm gauge
length. This yielded a total of 6 specimens (4 as-built and 2 hot isostatically pressed), as
shown Figure 3 (b). The geometry for these specimens complied to ASTM E8 sub-specimen
standard, [41].

2.3 Hot isostatic pressing

The hot isostatic pressing cycle was done at TTI Groups’ HIP facility in Letchworth, United Kingdom.
The entire cycle lasted about 14 hours, with the samples (tensile test bars and cubes) heated to a
temperature of 1125°C for 4 hours at 137MPa. The soak temperature was reached in 17 hours, and
then allowed to furnace cool for 6 hours. For reference, the nine cubes which were hot isostatically
pressed (Al1l-1, C1-1, C2-2, A3-1, A2-2, B3-2, C3-3, B2-2) were measured for density using the
Archimedes’ based methods prior to being hot isostatically pressed, and re-labelled (A1-1H, C1-1H,
C2-2H, A3-1H, A2-2H, B3-2H, C3-3H, B2-2H) for post-HIP density measurement and microscopy
analysis of porosity.

2.4 Metallographic preparation of sectioned cubes

The cubes underwent a series metallographic preparation routes depending on the analysis
requirement, including optical images of grain structure and porosity, scanning electron microscope
images of porosity and compositional Energy Dispersive X-ray (EDX) Analysis and polished surfaces
for ultrasound testing. In all cases, to ensure that the surfaces were a representation of the bulk



material, approximately 1mm of material was removed by grinding the surface using a coarse grade
SiC P240 paper, using a micrometer before and after polishing to ensure that at least 1 mm of
material was removed during polishing.

Samples were prepared using standard metallographic techniques and etched to reveal the grain
structure, after fine polishing the samples were etched in a solution (100 mL ethanol, 100 mL HCl, 5
g CuCl,) for 7-9 minutes. SEM samples were mounted in conductive bakelite.

Some preliminary low magnification images of the cubes with little or no metallographic preparation
are shown in Figure 5. Individual melt pool tracks traversing in a meander hatch pattern can be
distinguished in Figure 5 (a), (b), (c) and (e). Note the poorer track consolidation for (a) sample C1-3
and (d) C1-2, in which powder particles can be seen in the voids. Figure 5 (f) shows sample A1-3
from the side, and semi-sintered powder can be seen still attached to the sample.

2.5 Gravimetric measurements of bulk density

The three methods to calculate bulk density by gravimetric methods were:

a. Callipers used to get approximate dimensions and volume divided by weight
b. Archimedes principle weighing in and out of distilled water with a modified weighing scale
c. Archimedes principle using a tensiometer Attension Sigma 700/701

The results of these measurements are given in Table 3. Published values of the theoretical density
of 316L steel range from 7.95 g/cm? [43] to 8.00 g/cm?, so for the relative density a value of 7.99
g/cm3 was used which matches previous work [44]. In the water immersion tests, lacquer was
applied to the cubes to minimise ingress into open porosity at the surface of the sample for the
more porous samples.

2.6  Optical image analysis to determine porosity levels

Optical microscope images were used to observe and quantify the porosity of selected polished
samples, for as-built and hot isostatically pressed cubes. For each cube, five different locations on
the sample cross-sections were imaged at about 100X magnification, giving an area coverage of 20%
of the sample, and sufficient pixel resolution to establish porosity down to 2-5um.

Image analysis was undertaken on these images using the Imagel software to quantify the level of
porosity of the cubes. This was done by adjusting the brightness threshold of the image, and
converting them to a black and white binary. In some instances the images were de-speckled and
smoothed to reduce the occurrence of artificial porosity identification. The porous area fraction can
then be calculated automatically on the basis of the contrast between dark porosity and light solid
material.

2.7 Elasticity measurements using ultrasound

Sound velocity measurements were made using an Olympus D38 pulse echo precision thickness
gauge, with two transducers, one for the longitudinal wave (10 MHz broadband longitudinal
transducer) and the other for the shear modes (5 MHz normal incidence shear wave transducer).

The cube samples tested with ultrasound were in the as-built and hot isostatically pressed
conditions, as described in section 2.1. Opposite faces were ground and fine polished, as described



in section 2.4, to ensure a good ultrasound signal was transmitted into the wall and reflected off the
opposite surface. The accuracy of the depth gauge was benchmarked against two mild steel plates of
6mm and 10mm thickness. Subsequently, the distances between cube faces being sampled was
measured using callipers, and then the transducer was applied to one surface, with appropriate
specialised ultrasonic coupling fluids (glycol and high viscosity shear gel) applied to the sample face,
for each of the longitudinal and shear velocity tests. The gauge returns sound velocity based on:

Thickness (m)

Velocity (m/s) = (3)

0.5 X Round trip transity time (s)

According to the ASTM Standard Practice 494 for Measuring Ultrasonic Velocity in Materials,[45] the
formula to calculate Poisson’s ratio from the longitudinal and shear velocity values:

2
vr
1_2(VL)
2
Vr
=

Where, Vi = Shear (traverse) velocity, and V; = Longitudinal velocity of sound, both in

(4)

Poisson’s Ratio (v) =

metres per second (m/s).

Using these values in conjunction with a measured density, it is possible to calculate the effective
Young’s modulus (GPa) from:

Vi2p(1+v)(1-2v)
1-v

Young's Modulus (E) = (5)

Where p = density (kg/m3). Finally, the shear modulus can be obtained by using the following
expression:

Shear Modulus (G) = Vrp (6)

3 Results
3.1 Bulk density and porosity measurements

The average of the bulk density as measured using the gravimetric methods described in section 2.5
are given for both the as-built and hot isostatically pressed samples in Table 3. The average is a
result of a minimum of three repetitions using each of the three gravimetric methods. This was used
to calculate the relative density which using the gravimetric analysis gave values ranges from 77% to
98% for the as-built samples with up to 1.48% standard deviation, and from 80% to 99% for the hot
isostatically pressed with up to 2% standard deviation. For one particular sample (C11) inter-
connected porosity was visible by eye, leading to water ingress even with the lacquer coating. This
was clearly captured by the tensiometer which is sensitive enough to capture changes in forces
arising from surface tension as the sample is immersed in the test fluid.

Also given in the same table are calculated relative densities from the optical porosity
measurements for comparison, which give values of relative density ranging from 59.5% to 99.64%
for the as-built samples, with a 8.44% standard deviation and 87% to 100% with a 3% standard
deviation for the hot isostatically pressed samples. The measured values and averages of the image-
based measurements are given in Table 4.



Shown in Figure 6 is the relative density as measured by the different methods plotted against laser
energy density, including the relative density estimated from the optical measurements. The data
follows a clear trend with the least dense samples corresponding to the lowest laser energy density
samples, followed by a steep rise in density to an optimal density which falls in in the range of 49-79
J/mm? laser energy densities.

Comparing the methods of density measurement, a couple of aspects stand out. The optical
measured values of porosity have higher levels of standard deviation than the gravimetric
measurements, but generally lower values than the porosity derived from the gravimetric tests. The
accuracy of the optical method for measuring porosity is directly related to the total area covered by
the micrographs, which in the current work only accounted for 30-40% of the entire sample cross-
section (144 mm®). On the other hand, the gravimetric methods have a lower standard deviation for
the less dense samples.

The average relative density across all measurements techniques is compared between the as-built
samples and the hot isostatically pressed samples in Figure 7. As can be seen, the same trend occurs
for both sets of samples in that the relative density increases with laser energy density up to a
certain optimal level and then decreases. For the as-built samples this optimal energy density occurs
in the 60-81.29 J/mm?®range, whilst for the hot isostatically pressed samples it is in the 49-60 J/mm®
range. After this the relative density of the as-built samples starts to decrease with higher laser
energy density, whereas for the hot isostatically pressed samples the relative density remains
relatively constant at 98.89%.

3.2 Microstructural characterisation and porosity morphology

The trends in relative density are corroborated and better understood by looking at the optical
micrographs showing the porosity in Figure 8. What should be noted, is that for the as-built samples
in Figure 8 (a-f), there is a transition between a jagged more angular porosity at the lower laser
energy density, which clearly shows incomplete laser coverage of the layer, through to overall lower
levels of porosity at an optimal laser energy density (sample A1-2 with 81.29 J/mm?). At this point
the trend is reversed and an increasing level of more rounded/circular porosity evolves with
increasing laser energy density beyond 81.29 J/mm”.

This reversal of the densification trend with laser energy density for 316L has been seen before, see
for example Kamath et al [46], and is even more apparent at higher laser power of 400W. Possible
causes such as a transition to keyholing are examined in more detail in the discussion section.

What can also be seen from Figure 8 (g-I) is that the hot isostatic pressing process is highly effective
at closing the porosity, especially the more rounded porosity which appears to have completely
closed at the higher laser energy density input.

Shown in Figure 9, are the porosity micrographs laid out in a matrix giving an overview of the effect
of the variance of the point distance along the columns (A - 25 um, B - 65 pum, C - 105 um) and the
exposure time along the rows (1 - 70 ps, 2 - 110 us, 3 - 150 ps). This clearly shows that the larger
point distance has the greatest contribution to the lack of proper coverage whereas the increasing
exposure time widens the melt tracks, but is also strongly involved in the formation of the more
rounded porosity (e.g. A3-1) associated with high laser energy densities.



The Feret diameter, also called the calliper diameter, is the distance between the two parallel planes
restricting the particle (or pore) to that direction. The circularity index (0-100%) of the pore is taken
as:

Circularity (%) = 471% (7)

Where, P is the perimeter (um) and A is the area of the pore (um?). Both the Feret diameter and the
circularity are prone to higher levels of error in the smaller pore size ranges (<5um) due to
microscope magnification, pixel sizes and metallographic preparation.

The distributions of Feret diameters of pore sizes for as-built samples are shown in Figure 11 and for
the hot isostatically pressed samples are shown in Figure 12. Both distributions quantify what can
clearly be seen from in Figure 9, namely that the whilst 30-40% of the pores have Feret diameters
below 20um, it is the C1 to C3 samples with the high point distances which have significant number
of pore diameters in larger size fractions. When comparing the distributions of the as-built to the hot
isostatically pressed samples it can be seen that the hot isostatic pressing is shifts the distributions
towards the sub 20um range, as well as lowering the number of larger pores sizes, as would be
expected and visible in Figure 9. Plotting the maximum Feret diameter of the pores as a function of
the laser energy density in Figure 13 shows the significant reduction in maximum pore sizes which
results from the hot isostatic pressing.

Average distributions of circularity of the porosity are shown in Figure 14 for the number of pores in
a given circularity band, where averages have been taken across all as-built and hot isostatically
pressed samples. In comparison with the pore Feret diameters, circularity is not readily identifiable
visible from the micrographs in Figure 8 and Figure 9. There is a narrower distribution in the higher
circularity bands for the as-built samples, whereas the hot isostatic pressing makes for a broader
distribution with a lower circularity index. This is counter intuitive as common understanding would
suggest that hot isostatic pressing would close and make all pores more rounded. These results
should be taken lightly as in the smaller porosity bands there are up to 40% of pores with
circularities above 100%, an artefact of image pixel resolution. However, if this result is accepted a
possible explanation is that deformation during hot isostatic pressing is itself affected by the
directionality of the porosity occurring along adjacent melt tracks hence the porosity is preferentially
closed in a direction perpendicular to the track, resulting in final smaller porosities with higher
aspect ratios.

Scanning Electron Microscope (SEM) images in Figure 15 show typical morphologies of the pores.
Figure 15 (a) and Figure 15 (b) show large pores (>200um) due to incomplete track coverage with
unmelted semi-sintered spherical powder particles still in the voids for the C1-2 sample (low energy
density of 19.36 J/mm?). More complete track coverage of the surface is seen in sample B2-3
(medium-low energy density of 49.13 J/mm?), with smaller, angular 25-50um pores which seem to
be left at the junctions of tracks, as shown Figure 15 (c) and (d). The types of pores found in A1-2
(optimal laser energy density of 81.29 J/mm®) are rounded and much smaller 10-25um, as shown
Figure 15 (e) and (f). Finally, the pores found in the sample A3-2 (high energy density of 174.19
J/mm? are shallow, rounded, but slightly larger (up to 100um) and more frequent, as seen in Figure
15 (g) and (h). Unlike pores in the other samples, the porosity in A3-2 shows no un-melted particles
or junction-type pores, but there appear what look like tide lines within the void.



Etched microstructures are shown in Figure 16 specifically for two samples with an equivalent level
of laser input in the as-built (B23) and hot isostatically pressed (B22) conditions. At the higher
magnification, the as-built sample reveals a convoluted microstructure with smaller less- well
defined grain boundaries, consistent with the higher cooling rates expected from the melt pool
solidification. Also, there is evidence of micron or sub-micron inter-grain cellular structures
suggesting columnar growth in the build direction (out of plane direction) (see also Figure 15 (f)).
According to [47], these cellular columnar growths also occur in cast and welded 316L but with much
larger crystal columns 30-40um, related to the cooling rates. A number of different formation
mechanisms including compositional driven mechanisms due to supercooling, interfacial instabilities
and Maragonni convection, but none of these have yet been proved.

In comparison, the hot isostatically pressed images, shown in Figure 16 (d-f), show a more
homogeneous microstructure with larger grains and sharply defined grain boundaries. Also, in Figure
16 (d) and (e), annealing twins can clearly be seen between grains in the hot isostatically pressed
microstructure, which is known to occur during re-crystallisation of austenitic steels , see [48], [49].
Both these features are consistent with the lower cooling rates of the HIP cycle.

There is also possible evidence of sensitization in the hot isostatically pressed samples, in Figure 16
(d), which is a precipitation of chromium carbides from the annealing twins to the austenitic grain
boundaries, [50]. This is sometimes linked to improper heat treatment as 316L stainless steels are
often chosen for corrosion resistance and rely on chromium to reduce corrosion, and sensitization
leads to areas of locally depleted chromium which in turn leads to corrosion along grain boundaries.
The sensitization can be removed by heat treating to 980°C and rapidly cooling to dissolve the
carbides in the austenite.

Further analysis is required on the samples to determine levels of ferrite and austenite using XRD,
EBSD, as these strongly determine the yield strength and ductility achievable for 316L.

3.3 Tensile test results

Tensile tests were performed on two different machines. The rectangular cross-section test bars,
Figure 3 (a), were tested in the Materials Research Centre on a Hounsfield universal testing machine
with a 25kN load cell, and an extensometer measuring up to 12.5mm elongation. The circular cross-
section specimens, Figure 3 (b), were tested on a UKAS calibrated ESH 100kN universal testing
machine with hydraulic wedge grips under stroke control and a 25mm extensometer. In both cases,
the strain rate was set at 1 mm/min.

As an example of the results for the rectangular cross section test bars, engineering stress-strain
curves are shown in Figure 17 for the bars built at 50° to the vertical, the as-built yield stress is about
475-520MPa with a UTS of 500-550MPa, whereas for the hot isostatically pressed specimens the YS
comes down to 250MPa with the lowered UTS ranging of 530-600MPa. The elongation of the as-
built samples ranges from 1-8%, which increases to 37-47% for the hot isostatically pressed samples.

Stress-strain curves for the circular cross-section bars, for both the as-built and hot isostatically
pressed test bars are shown in Figure 18. In this case, the results show greater strength and ductility
for both the as-built and hot isostatically pressed samples. For the as-built specimens the YS ranges
from 510-540MPa, the UTS ranges from 550-600MPa and the elongation falls between 5-14%. For
the hot isostatically pressed samples the YS are lower at about 270MPa and the UTS are higher at
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600MPa, with elongation ranging from 50-60%. The stress-strain curves have been compared
directly to those of Malloy et al [51], which show very similar YS, UTS and elongation values for non-
irradiated room temperature tensile tests.

When comparing the stress-strain curves and tensile properties for the cylindrical and rectangular
test bars, it is clear that the cylindrical test samples give much better material properties, with
higher UTS, YS and elongations much closer to properties of 316L plate and wrought materials, [32],
[52]. This improvement when using machined samples is well known to give results more
representative of the bulk material, stemming from the removal of the skin layer from which cracks
can initiate.

The stress-strain curves are not shown for all 42 rectangular cross-sectioned samples, but rather the
YS and UTS averages are summarised from 3 samples in each of three orientations to the wiper and
3 orientations to the vertical, for both as-built and hot isostatically pressed samples, as shown in
Figure 19. Across all build orientations, hot isostatic pressing increases the average UTS from
524MPa to 542MPa and lowers the standard deviation from 68MPa to 48MPa. Hot isostatic pressing
lowers the YS from an average of 385MPa to 227MPa, but generally homogenises the YS across all
build directions and orientations with a standard deviation of 5MPa.

For all the vertically built samples, the average UTS in as-built condition is 469MPa with a standard
deviation of 72MPa, and the average UTS of hot isostatically pressed samples is 513MPa with a
standard deviation of 49 MPa. For all the horizontally built samples, the average UTS in the as-built
condition is 577MPa with a standard deviation of 13 MPa and the average UTS when hot isostatically
pressed is 566MPa with a standard deviation of 9MPa.

In terms of the orientation to the wiper, there is no clear pattern to the results within the overall
levels of deviation, but generally the parts built with sides either parallel or at right angles to the
wiper are stronger than those built at 45°.

The average elongation across all hot isostatic pressed samples is 40.89% with a standard deviation
of 9%, which is a significant increase over the as-built sample average of 21.83% with a standard
deviation of 12.4%, as shown in Figure 20. However, there is a significant difference between the
horizontally built samples and those built vertically. Even the hot isostatically pressed samples have
a significantly lower elongation (28-29%) for the vertically built samples, and a higher level of
standard deviation.

The fracture surfaces of rectangular specimens are shown in Figure 21, for horizontally as-built
specimen, Figure 21 (a), a vertically as-built specimen, Figure 21 (b), a horizontally built hot
isostatically pressed sample, Figure 21 (c), and for a vertically built hot isostatically pressed sample,
Figure 21 (d). Note the presence of a surrounding skin layer on which can be seen sintered powder
particles as the rectangular samples received no post-build machining treatment.

At a macro-scale, for the circular cross-section samples there was no evidence of the classic cup and
cone fracture surface expected from ductile materials like 304 and 316L steels, [53], although for the
rectangular as-built samples the fracture surfaces were generally flat and the hot isostatically
pressed samples showed 45° fracture planes.
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At a micro-level, there is evidence of dimple-like structures which would indicate local ductile
behaviour, [30], [32] for both the as-built, see Figure 22 and Figure 24(a), and the hot-isostatically
pressed samples, see Figure 23 and Figure 24(b). A spherical dimple-like formation indicates
microvoid formation prior to crack initiation. The as-built samples show a finer, more-jagged dimple
structure, whereas in the hot isostatically pressed test bars a much clearer dimple formation is seen
akin to that of wrought/hot rolled plate fractures, [52], albeit in both cases with smaller dimple sizes.

3.4 Elasticity measurements using ultrasound

The measured longitudinal and shear wave velocities for the range of as-built and hot isostatically
pressed cube samples are given in Table 5, which together with the average measured density can
be used to derive Poisson’s ratio, the Young’s modulus and the shear modulus. These are plotted as
a function of laser input energy are shown in Figure 25, and can be seen to be closely related to the
densification curves, as one would expect from the equations used (5 & 6). The highest measured
Young’s modulus for the as-built samples is 195.54 +7.0 GPa, and the highest measured value for the
hot isostatic pressed sample is 202.23 +12.4 GPa. There is a clear increase in Young’s modulus with
hot isostatic pressing.

For cross-reference, the average Young’s modulus obtained from the tensile stress-strain curves for
the horizontally built bars was 139+47 GPa (as-built) and 179172 GPa (hot isostatically pressed), and
for the vertically built bars was 78+4 GPa (as-built) and 122+32 GPa (as-built). The ultrasound testing
had significantly lower levels of standard deviation in the Young’s modulus than the tensile tests,
which is thought to be due to machine sensitivity. Other researchers have used tensile testing
measurements to obtain Youngs modulus for 316L SLM samples, such as Mower et al, [20] who
measured values in the 180-193 GPa range, and Zhang et al., [30] who measured values in the
151+13.1-194+14.5 GPa range.

The Poisson’s ratio is plotted as a function of the laser energy density in Figure 26 and although
noisier than the elasticity moduli, at higher density values it generally falls in the range of published
values. This is important, because unlike the elasticity moduli, it does not depend on the measured
density of the sample, so is purely a function of the ultrasound measurements.

3.5 Empirical relationships and Finite Element Analysis

A comprehensive review of the relationships between Young’s modulus and porosity is given by
Choren et al, [40], specifically for the type of porosity arising from additive manufacturing processes.
They conclude that the wide range of empirical formulations which have been developed for other
processes (e.g. powder metallurgy or casting) are either based too much on theoretical pore
morphology with an idealised microstructure or demonstrate too wide a disparity to be useful.

These empirical correlations typically take the form used by Chawla et al. [3], using a formulation
derived by Ramakrishnan et al. (R—A), [54], which gives the effective Young’s modulus of a material,
E, with a given fraction of porosity, p, as:

E=E, [%] (8)
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Where, E is the standard or nominal value of Young’s modulus (210GPa) for 316L at room
temperature. An alternative empirical relationship for E as a function of porosity is given by Roberts
et al,[55]:

(9)

p 1223
E=E, [1 - —]

0.5
Finite element (FE) analysis was also undertaken to derive effective Young’s modulus and compare
with measured and empirical correlations for the elasticity parameters, specifically as a function of
porosity. The FE analysis allowed the relationship between the size, morphology and distributions of

porosity to be better understood.

The FE stress analysis (ANSYS Mechanical Workbench 15) consisted of a transient elasto-plastic
analysis in which a velocity of 1.667 mm/s was applied along a top boundary, whilst the lower
boundary was kept fixed in all directions, as shown in Figure 27. For the elastic regime of the FE
analysis, standard values of Young’s modulus (210GPa), Shear modulus (77 MPa) and Poisson ratio
(0.29) were used. A multilinear isotropic hardening curve was used to describe the non-linear
plasticity regime based on the experimental data of Malloy et al., [51], with a yield strength value of
300 MPa to determine the onset of plasticity in the model.

Two types of geometry were analysed:

o The first type of geometry used arrays of regularly distributed pores (circular and rhomboidal) as
shown in Figure 28, which shows typical Von Misses stress distributions on the deformed
geometry. Shown in Figure 29, are a number of the FE meshes as an example of the pore
arrangements examined. Also shown are elasto-plastic strain contours and contours of
equivalent or Von-Misses stress for porosity formed for geometries with an increasing circular or
rhomboidal porosities.

e The second type of geometry used pore distributions derived by digitizing porosity obtained
from a micrograph (2.7mmX1.97mm) imported through CAD into ANSYS, and extruding it in the
z-direction to create a 3D body. In both cases relatively fine meshes were used to capture the
details of the porosity. This was done for two micrographs namely for sample A32 (4.18%
rounded porosity) and for sample B13 (12.94% jagged porosity), and some of the results are
shown in Figure 31.

The stress-displacement curves from the FE analysis are summarised in Figure 32, for all geometries.
As can be seen there is a decrease in the yield stress and the effective Young’s modulus as the
porosity increases, whereby the effective yield stress goes from 300MPa at 0% porosity down to
75MPa at 44.2% porosity. The decrease in yield stress due to the sharper rhomboidal porosity (blue
lines) is much more severe, with a drop to 75MPa at 30% porosity.

In the same graph are the stress-strain curves for porosities derived from micrographs. It should be
noted that the more rounded micrograph (A32) with 4% porosity has a similar level of yield stress at
about 230-250MPa as circular porosity at 7.1% and rhomboidal porosity at 2.5%. The micrograph
B13 has a higher porosity level (12%) which is more angular and results in lower predicted yield
strength of 160MPa, similar to the predicted yield strength for circular porosity at 15.9%, and
rhomboidal porosity at 11%.
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The effective Young’s modulus is compared to the empirical, FE results and measured data values in
Figure 33. This shows that the exponential trend of the empirical equations is matched by the FE
simulations over a wide range. There is a clear distinction in the FE results between regular angular
pore geometry (rhomboidal) and the circular porosity, with the sharper pores giving clearly higher
stress concentrations and earlier failure.

The normalised Young’s modulus (E/ Eo) is plotted against the relative density over a smaller range of
porosity in Figure 34, for the empirical, FE results and measured data values. What is clear is that the
measured hot isostatically pressed samples are closer to the trends for the circular FE and empirical
equations, and that the as-built samples lie below and are close to the angular FE and empirical
equations.

4 Discussion
4.1 Discussion on the bulk density and porosity measurements

In this work, it has been shown that components made by powder bed laser fusion have a degree of
porosity which is closely related to the level of laser energy used in building the component. An
optimal set of machine parameter values exist (in this case laser point distance travel and laser
exposure time), which, for the 316L steel powder studied here gives a minimum porosity of 2% in
the as-built part. It should be pointed out that the machine parameters were varied over a wider
range than is typically considered to get a good fundamental understanding of how they affect the
build, and that in production, the machine would never be run at such extreme cases.

The porosity has been shown to be highly directional in nature at low levels of laser energy density
less than 49 J/mm?, and the resulting bulk porosity is much higher (up to 22%) and at the
microstructural level, the porosity tends to follow the hatch pattern and build layers, with wide
(>150um), irregular-shaped, sometimes deep jagged pores, with evidence of un-melted powder
particles inside the pores. The predominant porosity mechanism would appear to be from a lack of
laser coverage, but may be also influenced to a lesser extent on balling/surface tension effects in the
melt pool.

What is interesting is that while the optical micrographs of the densest parts which have been hot
isostatically pressed suggest that the porosity is hardly visible (<0.1%), the gravimetric
measurements suggest that the parts are not 100% dense. To this extent, a conclusion might be that
there is remaining amount of very small, highly dispersed pores not captured at the used
microscopic magnification, or that some of the Argon gas has become dissolved into the solid
lowering the bulk density. A counter argument to this conclusion is that the current data is
inconclusive due to the levels of measurement error is too high. Furthermore, the optical analysis
was only carried out on horizontal surfaces of the samples i.e. in the plane of the build, although it is
known that there are also significant differences in the porosity structure and distributions parallel
to the build direction. Higher resolution and microscopy coverage would be needed to examine this
further.

At the other extreme, at increasing laser energy densities higher than the optimal one of 49 J/mm?,
porosity re-appears in the as-built samples, but in this case the porosity is shallow and highly
spherical in nature, and typically no bigger than 20-30um diameter, with an overall porosity no
higher than 2-3%. It is believed that this type of porosity may arise from keyholing as seen in laser
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welding and more recently in powder bed laser fusion [46], [56], [57]- when temperatures in the
melt-pool rise above the vaporisation temperature of the various alloy components and a plasma is
formed, enhancing laser absorption. The plasma would absorb and re-emit laser radiation in such a
way that it essentially can bore its way through sublayers, already previously solidified. When the
keyhole solidifies, the entire keyhole is filled in with melt-pool and would probably only be
evidenced by small dimples which are quickly filled over by the next layer of the build. The material
within these dimples contain a level of entrapped argon or oxide films which upon metallographic
preparation gives the spherical shaped porosity seen in the current work.

King et al, [56] have derived a criteria for the transition between conductive and keyhole melting
which is based on the normalised enthalpy as

% = hS\/:—ZW > 6 (10)
Where, A is the absorptivity (for steel = 0.4), P is the laser power (W), h, is the enthalpy at melting
(1.2X10° J/kg), D is the thermal diffusivity (5.38X10™° m?/s), u is the beam velocity (m/s) and o is the
beam spot radius (m). The normalised enthalpy has been calculated for all the machine parameters
used in this study and is given in Table 2 alongside the laser energy density. Based on this criterion,
samples A2 and A3 with the high exposure times are close to the transition criteria, suggesting that a
keyhole melting regime is possible.

Much effort is being made to understand the fundamental physics of powder melting at the micro-
level, [58]-[61], and this includes the transition and formation of the keyhole melting regime, as it is
generally accepted that this regime is best avoided to minimise detrimental effects on mechanical
properties.

4.2 Discussion on the elasticity measurements using ultrasound

Published data on 316L wrought and rolled steel using ultrasound methods, see [62]-[65], have
given Youngs moduli in the order of 195-196GPa, shear moduli in the 75.2-75.7 GPa and Poisson
ratio in the order of 0.293-0.294, which are in pretty close agreement with the measured properties
in the current work. Shankar et al [66] give values of Young’s modulus as 196.79+0.41 GPa, shear
modulus of 76.10+0.3 GPa and Poisson ratio of 0.293+0.001, and interestingly mention that
microstructural variations arising from heat treatment can affect the properties, especially through
the formation of chromium nitrides. It is interesting to note that the density in these publications is
slightly lower at 7.79-7.97 g/cm?® than that the 7.99 g/cm? used herein for the calculation of relative
density. It is thought that small variations in the chromium and nickel content of the 316L alloy may
be the cause of this difference, which would also imply that the .

Aside from Fischer et al, [67], for Ti-6Al-4V, and Stowinski et al., [68], for a Co-Cr alloy, no other
publications were found in which ultrasound had been used to determine the elasticity properties of
materials fabricated using powder bed processes.

This is surprising as the technique is relatively simple and high throughput giving rapid information
on the elasticity properties of the as-fabricated and heat treated parts.
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4.3 Discussion on the tensile test measurements

The tensile properties obtained in this work should be compared to results from other researchers
who have examined the tensile properties of 316L steel using other powder bed fusion systems.
Mower et al [20] used a DMLS EOS M270 (195W and 750 mm/s) laser to build test bars in horizontal
and 45 degrees directions in a nitrogen gas environment giving a YS (496-473 MPa), UTS (717-680
MPa), E(180-193 GPa) and elongation at failure (28-30%) — no density given. Zhang et al, [30], use a
SLM250 Realizer with a continuous Nd:YAG laser (100W and 300 mm/s), with densities in the 98-
99.7% ranges, YS (), UTS (500-600 MPa), E (150-194 GPa) and as-built elongations in the 10% range.
Carlton et al, [32], use a Concept laser M2 (100W and 222 mm/s) to produce tensile specimens with
a range of densities from 83-98%, giving as-built YS (590 MPa17), UTS (705 MPa%15) and
elongations (44%z7), and annealed properties of YS (375 MPa11), UTS (635 MPat17) and an
elongation of (51%+3).

The orientation of the test bars with respect to the build plate plays a significant role in the
maximum tensile test properties. In common with Tolosa et al [69] and some of the authors given in
Table 6, vertically built samples generally were found to have a lower tensile strength than
horizontally built samples, and significantly higher levels of standard deviation, and highly variable
levels of elongation. Hot isostatic pressing generally homogenised the strength, and reduced
standard deviation, but less so for the vertical test bars.

When comparing the current work to 316L material originating from wrought, sheet or rolled plate,
hot isostatically pressed stress-strain curves have been compared directly to those of Malloy et al
[51], and show very similar YS, UTS and elongation values. The tensile properties obtained in this
work have also been compared to 316L prepared from solution treated and hot rolled plate, such as
that tested by Song et al, [52], who find YS (220-245 MPa), UTS (565-585 MPa) and elongations in
the 61-64%. Carlton et al, [32], also test a wrought specimen and find a UTS 545MPa, YS of 245MPA
and an elongation of 55%. Generally, YS and UTS are slightly lower in this work, but pretty similar for
the hot isostatically pressed samples. However, the current results show elongation is 14-20% lower,
and there is a higher level of standard deviation.

A comparison with previous work would not be complete without a reference to as-cast samples.
The only available recent studies on the mechanical properties of 316L are from studies conducted
by ITER in the extensive study on 316L and the equivalent castable alloy for the ITER shield modules
or diverter cassettes, [70]-[72]. In fact, Busby et al, [71] state that cast 316L did not meet these
requirements , but a modified casting alloy, namely CF-3M was needed to capture the very specific
mechanical requirements needed, which included a minimum high temperature, irradiation
resistance and fatigue. It should be pointed out that CF-3M has a slightly different composition with
higher allowable N and Mn, and N is known to be a solid solution

The hot isostatically pressed results in the current work fall within the range of YS and UTS of cast
316L and CF-3M as given by [73] and the ASM handbook, [74], if with a slightly lower ductility.
However, there are high levels of scatter for mechanical property data for 316L prepared by both
casting and laser melted, so to this extent it is not possible to make any categorical comparisons
between the two.
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4.4 Discussion on the empirical and Finite Element Analysis

It has been possible to use the empirical and FEA analysis to fit the measured elasticity data
(particularly Young’s modulus) onto curves which could be used in future to predict the values.
However the porosity ranges examined here (1%-40%) were much higher than would naturally occur
in the daily running of the powder bed machine, where porosities in the 0.5 to 1.5% are more
typical. Due to this only a relatively small number of samples were tested. As the next generation of
machines become available and the variations of porosity and build quality are improved, a larger of
samples can be tested to come up with a more definitive equation for the Young’s modulus/porosity
relationship.

As the Young’s modulus in metals is directly related to the atomic bonding and fatigue crack growth
is the accumulated breakage of inter-atomic bonds, [75], [76], thus the fatigue threshold is also
proportional to Young’s modulus. To this extent, the same Young’s modulus/porosity relationship
could be used as a high-throughput method to predict fatigue strength variations across the build.

4.5 Final remarks

In this work, comparison has been made of the mechanical properties for samples as-built with
those treated by a post-build hot isostatic pressing cycle. The effect of hot isostatic pressing on the
density of the cubes showed that hot isostatic pressing both closed the porosity and generally tried
to make it more spherical. The highest rates of porosity reduction were on samples with porosity
higher than 6%, typically those resulting at the extremes of low-and high laser energy input.
However, in the case of the latter, porosity was reduced to 1% after hot isostatic pressing, whilst the
former remained at 17% porosity even after hot isostatic pressing. The sectioned SEM images show
that in the high porosity cubes, the inter-laser hatching porosity had reduced in size, but still had
relics of powder particles trapped within the voids.

Although it is possible in some applications to live with a level of porosity, it is accepted that the
lowest level of porosity is required, and indeed in many applications, especially in aerospace, the
tolerance of porosity is low. In casting, porosity is differentiated between micro- and macro-porosity
(pores >100 um), with macro-porosity affecting general tensile failure through localised stress
concentrations, but micro-porosity has a strong influence in fatigue resistance [77] and is often
manifested in reduced elasticity, i.e. lower Young’s modulus.

At the current stage in the development of the powder fusion process, there has been a move to
higher power lasers in 400-500W range, which coupled with other process improvements such as in-
line monitoring is leading to higher levels of density. While increases in laser power allow higher line
speeds and hence faster build times for components, there may be constraints on the efficiency of
the melting based upon the conductive to keyhole melting mode transition. Variations in process can
come from a number of sources, at the level of the metal powder/ laser interaction, obscuration of
lasers and focussing lenses, segregation of powder size distributions, uniform deposition of powder
layers and gas flow uniformity are all areas under intense scrutiny and development.

Having said that, it is particularly clear in looking at the range of results available for tensile
properties of 316L, that a direct comparison between castings, wrought and powder fusion is not a
particularly useful exercise. Depending on applications which are extremely broad powder bed
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material properties can be better, equal to or worse than these other processes, with possibly a
larger amount of scatter which can be reduced with an appropriately optimised heat treatment.

5 Conclusions

To summarise, a number of general trends have been seen for 316L manufactured by a powder bed
laser fusion process, which match other workers in that:

e Two distinct types of porosity are formed as the laser energy input is increased, but the overall
as-built porosity can be below 1-2% at the optimal laser energy input;

e Hot isostatic pressing is able to reduce the porosity to below 1%;

e Hot isostatic pressing marginally increases the peak UTS values and lowers the standard
deviation;

e Hot isostatic pressing significantly reduces the yield strength but increases the elongation, in
both cases lowering standard deviation;

e Upper tensile strength is higher for horizontally built samples, than for vertically built samples;

e After hot isostatic pressing, there is still a 100MPa difference in UTS between samples built in
vertical and horizontal directions;

e Improvements in ductility are reflected in the fracture surfaces of the hot isostatically pressed
samples;

e Relationships between porosity and elasticity properties, such as Young’s modulus have been
examined through ultrasound measurements and are also directly related to the laser energy
input

o The relationship between porosity and effective Young’s modulus has also been examined
through the use of finite element micro-models, and the results indicate that there is a similarity
with empirical equations used for sintered parts

Further work needs to be done to understand:

e The root cause of the occurrence of porosity at high input laser energy for the densification of
the parts which may be singular to 316L.

e Whether the standard hot isostatic cycle used was in effect the optimal cycle for 316L parts built
by this particular powder bed laser fusion process.

e The relationship in as-built and hot isostatically pressed parts between porosity, elasticity and
fatigue properties.
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Figure 1 — (a) Virgin 316L powder from Renishaw (b) Meander path pattern, point distance

(d1) and hatch space (d3) (Arrow displays direction of laser movement).
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Figure 2 — (a) Layout of machine parameter array on the build plate and (b) as-built

sample labels.
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Figure 3 —Geometry of test samples used in tensile tests (a) rectangular cross-section (b)
circular cross-section.

25




Wiper (Back)

Figure 4 — Layout on the build plate of the rectangular and cylindrical test bars.
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Figure 5 — Low magnification optical and SEM images of the top and sides of the cube
samples.
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Figure 8 — Microstructure of cube samples before (left) and after hot isostatic pressing
(right). Note the higher fraction of porosity, as well as larger, more irregular pores at the

lower density.
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Figure 9 — Changes in porosity (%) measured using optical image analysis due to hot
isostatic pressing for varying point distance (A - 25 um, B - 65 um, C - 105 um) and
exposure time (1-70 ps, 2 - 110 ps, 3 - 150 ps).
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Figure 10 — Suggested pore closing mechanism during hot isostatic pressing resulting in
elongated porosity
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Figure 11 — Distributions of Feret diameters of pore sizes for as-built samples.
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Figure 13 — Maximum Feret diameter of the pores as a function of laser energy density for
both as-built and hot isostatically pressed samples.
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Figure 15 — Close-up images showing morphology of as-built porosity taken on the SEM.
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Figure 16 — Etched microstructure comparing as-built and hot isostatically pressed cubes.
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Figure 17 — Tensile test results for bars built at 50° to the vertical and using rectangular
cross-section test bar, as-built versus hot isostatically pressed.
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(d) ) Fracture surface of vertically built test bar tested after hot isostatic pressing

Figure 21 - Fracture surfaces taken from tensile test, (a) horizontally as-built (v) vertically
as-built, (c) horizontally built and hot isostatically pressed and (d) vertically built and hot
isostatically pressed.
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SEI 20kV WD10mmSsS63
MACH1 Swansea University Jun 24, 2016

—

SElI 20kV WD10mmSS63
MACH1 Swansea University Jun 24, 2016

(b)

Figure 22 - Fracture surfaces taken from as-built tensile tests (a) horizontal and (b)
vertical.
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SElI 20kVn WD8mm SS63
MACH1 Swansea University

SElI 20kV. WD10mmSS63
MACH1 Swansea University Jun 24, 2016

(b)

Figure 23 - Fracture surfaces taken from hot isostatically treated tensile test bars (a)
horizontally built and (b) vertically build.
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SElI 20kVn WD10mmSS63
MACH1 Swansea University

SElI 20kV. WD10mmSS63 x3,000 Spm
MACH1 Swansea University Jun 24, 2016

(b)

Figure 24 - Fracture surfaces taken from tensile test bars (a) horizontally as-built (b)
horizontally built and hot isostatically pressed (3000X magnification).
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Figure 25 - Young's modulus and shear modulus as calculated using the ultrasound
measurements.
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Figure 26 — Poisson’s ratio as calculated from ultrasound measurements comparing the as-
built and hot isostatically pressed cubes.
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Figure 27 — Typical finite element mesh and boundary condition for the stress analysis of the
microstructure.
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Figure 28 — Typical stress results and a deformed geometry (x10).
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Figure 29 — FEA simulations of geometries with an ordered and increasing porosity.
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Figure 30 — FE analysis results for porosity derived from the optical microscope images for
samples A32 (4.18% porosity).
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(c) Von Misses stresses

(d) Equivalent plastic strain
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Figure 31 — FEA simulations with porosity derived from the optical microscope images for
samples B13 (12.94% porosity).
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Figure 32 - Finite element based stress-strain curves for ordered circular (0-44% porosity)
and rhomboidal porosity (2.5-30% porosity), and porosity derived from A32 (4.18%
porosity) and B13 (12.94% porosity) micrographs.
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Figure 33 — Young’s modulus as a function of relative density, comparing theoretical,
measured and finite element results.
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Figure 34 — Normalised Young’s modulus (E/EO) as a function of relative density,
comparing theoretical, measured and finite element results.

Table 1 — Composition (in wt.%) of 316L powder used in this study.

Grade 316L Fe C Si Mn P S Cr Ni Mo N Cu (0]
Min Bal - - - - - 175 12,5 2.25 - - -
Max 0.03 0.75 2 0.025 0.01 18 13 25 01 05 0.1

Actual 0.019 0.67 1.45 0.019 0.006 179 12.7 236 0.06 0.2 0.022

Table 2 — Parameter settings with corresponding laser energy density (Equation 2 -
J/mm?), laser line speeds (mm/s) and normalised enthalpy (Equation 10, [56]).

Point Distance (um)
A -25pum B - 65 um C-105 um
f::::s(:rse) Ref | J/mm® | mm/s Ah—f Ref | J/mm® | mm/s Ah—I: Ref | J/mm® | mm/s Ah—}:
70 ps Al 81.29 357 44 | Bl 32.27 928 27 | C1 19.35 1500 | 2.1
110 ps A2 127.74 227 5.5 B2 49.13 590 3.4 C2 30.41 954 2.7
150 ps A3 | 174.19 166 6.4 | B3 65.41 433 40 | C3 40.49 700 3.1
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Table 3 — Relative density measurements of the 316L cubes for as-built and post HIP cycle
(1200C, 100MPa, 4 hours). The absolute density of 316L steel is taken as 7.99 g/cm?.

Pre-HIP Post-HIP
Laser Pre-HIP Relative density (%) density Post-HIP Relative density (%) density
input (g/cm’) (g/cm’)
Sampl energy Average sample Average
e ref. 3 Average from ref. Average from
(J/mm ravimetric Average from from ravimetric Average from from
) miasurements image analysis measuremen miasurements image analysis measureme
ts nts
Al1-1 81.29 98.35% +0.52 7.859+0.04  Al-1H 98.23% +0.78 100.00% +0.00  7.848 +0.06
A1-2 81.29 98.29% +0.37 99.63% +0.40 7.854 +0.03
A1-3 81.29 98.27% +0.51 7.852 +0.04
A2-1  127.74  95.96% +0.77 7.667 +0.06
A2-2 12774  96.21% +0.33 7.687#0.03  A2-2H 98.20% +1.04 100.00% +0.00  7.846 +0.08
A2-3  127.74  96.95% +0.64 98.02% +2.40 7.746 +0.05
A3-1 17419  93.61% +1.28 7.480+0.10  A3-1H 98.39% +0.93 100.00% +0.00  7.861+0.07
A3-2 17419  93.63% +1.48 95.82% +2.66 7.481 +0.12
A3-3 17419  92.86% +1.41 7.420 +0.11
B1-1 31.27 89.60% +0.73 7.159+0.06  B1-1H 89.22% +0.87 93.39% +1.12 7.129 +0.07
B1-2 31.27 89.60% +0.59 7.159 +0.05
B1-3 31.27 89.51% +0.66 87.06% +1.88 7.152 +0.05
B2-1 49.13 98.15% +0.92 7.842 +0.07
B2-2 49.13 97.81% +1.23 7.815+0.10  B2-2H 98.02% +0.78 99.99% +0.00  7.832+0.06
B2-3 49.13 98.16% +0.91 99.18% +0.50 7.843 +0.07
B3-1 67.00 98.35% +0.89 99.64% +0.21 7.858 +0.07
B3-2 67.00 98.31% +0.74 7.855+0.06  B3-2H 98.00% +0.69 99.99% +0.01 7.830 +0.06
B3-3 67.00 98.29% +1.01 7.853 +0.08
c1-1 19.35 77.97% +0.09 6.230+0.01  C1-1H 80.60% +2.00 87.92% +3.03 6.440 +0.16
C1-2 19.35 78.25% +1.06 59.53% +8.44 6.523 +0.47
C1-3 19.35 77.09% +0.28 6.160 +0.02
C2-1 30.41 90.14% +0.72 85.24% 5.82 7.202 +0.06
C2-2 3041 89.57% +0.68 7.157+0.05  C2-2H 89.18% +0.99 94.13% +0.97  7.125+0.08
C2-3 30.41 88.65% +0.75 7.083 +0.06
C3-1 41.47 96.39% +1.15 7.702 +0.09
c3-2 41.47 96.22% +0.98 97.31% +0.93 7.688 +0.08
C3-3 41.47 95.48% +0.80 7.629+0.06  C3-3H 95.03% +1.78 97.65% +0.98  7.593 +0.14
Table 4 — Porosity measurements from microscope image analysis taken from 5 positions
per sample.
samole % average porosity on various positions Average Average Average Average Feret
P P1 P2 P3 P4 porosity (%) Perimeter (um) Circularity (%) Diameter (um)
A1-2 0.13% 051%  0.08% 0.13% 1.01% 0.37 +0.40 20.24 91.84% 6.51
A2-3 6.17% ~ 1.30%  0.34%  0.48%  1.63% 1.98 +2.40 49.39 88.90% 14.89
A3-2 3.22%  7.41%  2.35%  1.36%  6.55% 4.18 +2.66 47.73 83.90% 15.36
B1-3  14.01% 14.51% 14.34% 11.37% 10.46%  12.94+1.88 79.45 72.80% 18.75
B2-3 1.29%  1.18%  0.30% 0.27%  1.08% 0.82 +0.50 17.69 88.70% 5.27
B3-1 0.49% 0.17%  0.09% 0.56%  0.47% 0.36 +0.21 22.74 88.30% 6.40
Cl-2  40.34% 54.07% 30.87% 38.57% 38.51%  40.47 +8.44 54.88 79.80% 16.43
C2-1  21.83% 6.00% 16.66% 16.26% 13.06%  14.76 +5.82 118.91 74.90% 26.59
c3-2 2.50%  2.03%  1.64% 3.78%  3.50% 2.69+0.93 90.29 78.40% 21.32
Al1-1H  0.00% 0.00% 0.00% 0.00%  0.00% 0.00 +0.00 12.97 74.20% 337
A2-2H  0.00% 0.00% 0.00% 0.00%  0.00% 0.00 +0.00 11.73 74.20% 3.39
A3-1H  0.00% 0.00% 0.00% 0.00%  0.00% 0.00 +0.00 11.17 76.00% 3.16
Bl1-1H 5.80% 8.05% 539% 637%  7.48% 6.61+1.12 71.68 72.20% 18.65
B2-2H  0.02%  0.01%  0.02% 0.01%  0.01% 0.01 +0.00 11.85 77.80% 4.85
B3-2H  0.02% 0.01% 0.01% 0.01%  0.02% 0.01 +0.01 13.32 87.00% 4.51
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C1-1H
C2-2H
C3-3H

10.34%

4.28%
3.80%

9.82%
6.75%
2.85%

1438% 16.23%  9.65%
5.67% 6.22% 6.42%
1.52% 2.10% 1.48%

12.08 +3.03 128.34
5.87 +0.97 101.89
2.35+0.98 62.51

71.60%
70.70%
75.30%

29.82
28.76
18.32

Table 5 — Average measured longitudinal and shear wave velocities as measured with the
ultrasound gauge for as-built and hot isostatically pressed cubes (LOS = Loss of signal).

Laser Poisson’s Shear
Energy Density Relative Average VL . Young's
Sample Density (kg/m?) density (m/s) Average VT (m/s) ratio modulus (GPa) modulus
3 v (GPa)
(J/mm°)
A3-3 174.19 7480.57 93.62% 5460.50+50.29 2943.00+25.02 0.295 +0.001 166.63 +4.0 64.08 £1.3
A2-1 127.74 7668.02 95.97% 5595.75+41.74 2964.75+£125.36 0.305 +0.022 174.34 £14.7 66.71 £6.7
Al-3 81.29 7842.51 98.15% 5645.00+12.41 3099.25+40.38 0.284 +0.007 194.57 +4.5 75.88 £2.2
B3-3 67.00 7824.60 97.93% 5661.50+47.13 3066.75161.60 0.292 +0.006 191.19+7.0 74.02 £3.1
B2-1 49.13 7796.09 97.57% 5546.50+85.96 3121.25+20.45 0.268 +0.007 195.54 £7.0 76.21 1.2
B1-2 31.27 7104.61 88.92% 4440.00+85.97 2667.25+45.88 0.218 +0.008 124.78 £6.2 50.48 1.9
C2-3 30.41 7052.31 88.26% 4347.50+72.38 2629.75+£26.85 0.211 +0.008 119.68 +4.6 48.71+1.1
C3-1 41.47 7629.79 95.49% 5387.75+25.01 3091.00+68.34 0.255 +0.013 184.65 6.4 73.69£3.3
C1-3 19.35 6144.86 76.91% LOS LOS LOS LOS LOS
Al-1H 81.29 7885.70 98.69% 5681.25+46.31 3147.75+40.34 0.288 +0.009 202.23 £12.4 76.94 £2.3
C1-1H 19.35 6624.52 82.91% 3387.00+80.29 2043.25+22.41 0.210 +0.001 66.48 £3.6 27.44 £1.5
C2-2H 30.41 7136.79 89.32% 4754.75+290.96 2855.75+£128.52 0.218 +0.020 141.23 £19.7 56.01 £5.2
A3-1H 174.19 7912.35 99.03% 5724.75+15.82 3140.50+72.73 0.295 +0.003 201.53 +13.9 77.15 4.6
A2-2H 127.74 7897.91 98.85% 5694.00+30.84 3098.50+27.72 0.297 +0.013 199.26 +14.7 74.83 t1.4
B3-2H 67.00 7893.70 98.79% 5659.25+32.43 3201.75+80.39 0.272 +0.012 201.02 £9.7 78.92 t4.6
C3-3H 41.47 7709.97 96.50% 5403.75+47.85 3119.75+45.75 0.255 +0.016 180.84 +9.0 71.97 £4.5
B2-2H 49.13 7901.79 98.90% 5644.50+17.02 3182.25+66.64 0.271 +0.007 201.79 £10.4 78.53 £3.7
Table 6 — Tensile properties for 316L from other publications
Laser . Young’s Yield Upp'er Elongation
Heat Relative tensile A
Reference Process power / i modulus Strength at failure
treatment iy density (GPa) (MPa) strength (%)
P (MPa) °
. 180W
This work AM250 None 98.04% 195.54+7.0 385 524 22%
600 mm/s
. HIP 1125°C 180W .
+ ()
This work AM250 137MPa 600 mm/s 98.90% 201.79+10.4 227 542 41%
Mower et EOS 195W
N - 180-1 496-47 -717 28-309
al., [20] M270 one 750 mm/s 80-193 96-473 680 8-30%
Zhang et 100W 98-
SLM250 N - - 500-600 10%
al., [30] one 300mm/s  99.7% °
Carlton et Concept 85W
N 7.69 - - 40112 449
al., [32] M2 one 400mm/s  O70% >40£120 %
Carlton et Concept 85W
Al led 97.6% - 375 490 51%
al., [32] M2 nneaie 400 mm/s ° °
Carlton et Concept 85W
N .99 - +17 705+ 449
al,, [32] M2 one 222 mm/s 99.9% 590 05+60 %
Carlton et Concept 85W
A led 99.9% - 375 555 51%
al., [32] M2 nneaie 222 mm/s ° °
Spierrings 104W
etal., [13], Concept None 99% - 640 760 30%
450 mm/s
[34]
Tolosa et SLM 250 200w 1000
. N 99.9% - -
al., [69] Realizer one mm/s ?
EOS 190W 800
iedi, [47 As-buil 69 - 4 7 459
Saiedi, [47] M270 s-built mm/s 98.6% 56 03 5%
Saiedi, [47] EOS Annealed 190W 800 98.6% - 419 674 51%
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Saiedi, [47]

Tolosa et
al., [69]
Yadolahi et
al., [33]
Ledbetter
etal., [62]
Shankar et
al., [66]
Song et al.,
[52]
Song et al.,
[52]
Kurgen et
al.,
ASM
Handbook,
[74]
Busby et
al., [71]
ITER

M270
EOS
M270

Wrought
LENS
Hot rolled
Hot rolled
Hot rolled

Hot rolled

P/M cold
compact

Cast CF-
3M

Cast CF-
3M

HIP

None

None

None

None

Treated

As-rolled

None

1045°CWQ

None

mm/s
190w 800
mm/s

360W
8.5 mm/s

99.7%

7.849

194-195

196.79+0.4

220

220-270

405-415

245

220

262

261428

570

520-680

620-660

585

565

300

552

555.6+24

54%

40-45%

32-40%

61.20%

64.50%

55%

55.1%+0.4
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