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MULTISCALE FINITE-VOLUME CVD-MPFA FORMULATIONS ON
STRUCTURED AND UNSTRUCTURED GRIDS

ELLIOT PARRAMORE!, MICHAEL G. EDWARDS!, MAYUR PAL$, AND SADOK
LAMINEY

Abstract. This paper presents the development of finite-volume multiscale methods for quadri-
lateral and triangular unstructured grids. Families of Darcy-flux approximations have been developed
for consistent approximation of the general tensor pressure equation arising from Darcy’s law together
with mass conservation. The schemes are control-volume distributed (CVD) with flow variables and
rock properties sharing the same control-volume location and are comprised of a multipoint flux
family formulation (CVD-MPFA). The schemes are used to develop a CVD-MPFA based multiscale
finite-volume (MSFV) formulation applicable to both structured and unstructured grids in two-
dimensions. The basis functions are a key component of the MSFV method, and are a set of local
solutions, usually defined subject to Dirichlet boundary conditions. A generalisation of the Cartesian
grid Dirichlet basis functions described in [20] is presented here for unstructured grids. Whilst the
transition from a Cartesian grid to an unstructured grid is largely successful, use of Dirichlet basis
functions can still lead to pressure fields that exhibit spurious oscillations in areas of strong het-
erogeneity. New basis functions are proposed in an attempt to improve the pressure field solutions
where Neumann boundary conditions are imposed almost every where, except corners which remain
specified by Dirichlet values.

Key words. Multiscale Finite Volume Method & MSFV & Control-volume Distributed Multi-
point Flux Approximation & CVD & MPFA

AMS subject classifications.

1. Introduction. Subsurface reservoirs generally have complex geological and
geometrical features, such as faults fractures, pinchouts, shales and layers defined on
varying length scales. In addition the effect of heterogeneity leads to further multiscale
features that cannot be modelled with desired precision on relatively coarse meshes.
This has led to development of a variety of multiscale methods, both non-iterative and
iterative with analysis, on structured and unstructured grids and applications includ-
ing fractures over the last decade e.g. [17, 20, 21, 10, 3, 16, 19, 22, 27, 14, 1, 26, 30],
and with the exception of [28, 29], all other unstructured grid MSFV formulations that
we are aware of are based on a 2-point flux. In this work we present the generalisation
of the Cartesian MSFV method first presented in [20] to unstructured grids in two
dimensions using the CVD-MPFA formulation. The formulation is non-iterative. The
basis functions and finescale solutions are computed using a CVD-MPFA formulation
which is consistent on structured and unstructured grids without any K-orthogonality
requirement. Two types of basis function are considered; the first results from using
Dirichlet boundary conditions and the resulting MSFV method reduces to precisely
that of [20] when on a Cartesian grid, the second results from employing essentially
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Neumann boundary conditions (except at corners) leading to a new type of basis
function, and MSFV variant. The unstructured MSFV framework and new basis
functions were first proposed in [28, 29] and proved to be beneficial in extending the
MSFV method to unstructured grids. This paper contains a substantial revision of
[28, 29] together with significant further work.

In recent years several discretisation methods that can treat unstructured grids to-
gether with discontinuous and anisotropic permeability fields have been developed.
These schemes include the finite volume schemes, e.g., [2, 9, 8, 24, 23, 11, 31, 12, 13]
and references therein, while other methods e.g. [4, 7, 6, 18, 5, 15, 25] (and references
therein) offer an alternative these methods involve more degrees of freedom. In this
paper we employ cell centred families of continuous Darcy-flux approximations that
have been developed for consistent approximation of the general tensor pressure equa-
tion arising from Darcy’s law together with mass conservation [9, 13]. In particular
the symmetric positive definite scheme of [13] is the main scheme used here for un-
structured grids. These finite-volume schemes are control-volume distributed (CVD)
with pressure and rock properties sharing the same location in a given control-volume
and are comprised of a multipoint flux family formulation (CVD-MPFA), employing
a single degree of freedom per control-volume. These schemes are used to develop
CVD-MPFA based multiscale finite-volume formulations, applicable to both struc-
tured and unstructured grids in two-dimensions. An example using MSFV with a
two-point flux approximation versus MSEFV with CVD-MPFA on a non K-orthogonal
grid is presented, the results motivate the need for the development of MSFV based
on the CVD-MPFA formulation presented below.

Performance of the CVD-MPFA based multiscale formulations is presented for a range
of grid types on both structured and unstructured grids. The methods are applied to
domains with homogeneous and heterogeneous permeability fields involving a range
of test cases.

The choice of basis functions is found to be crucial in the multiscale finite-volume
formulation. Boundary condition constraints and consequences of basis function for-
mulation, together with implications of scheme and grid type are presented. The
development of a CVD-MPFA based multiscale formulation leads to a novel approach
for fine scale modeling on unstructured grids. The results presented include pres-
sure fields, and transport of tracer concentration for heterogeneous examples, and
demonstrate the benefits of the new formulation.

After a brief review of the flux continuous finite volume schemes employed, the new
multiscale formulation is presented, followed by results and conclusions.

2. Pressure Equation Formulation. Here we focus on the discretization of the
elliptic partial differential equation for pressure encountered in reservoir simulation
arising from Darcy’s law and mass conservation for single phase flow. This is also
representative of the form of the pressure equation for multi-phase flow. We now
consider the elliptic pressure equation

(2.1) ~V - (KV¢) =0,

on a domain 2 where ¢ is the pressure and K is an elliptic permeability tensor
(divided by a constant viscosity) that can be spatially varying and heterogeneous.
The Darcy velocity is given by v = —KV¢. Eq.2.1 is solved here subject to Neumann
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and/or Dirichlet conditions, specified typically on exterior or interior boundaries (6€2).
Pressure is specified at least at one point in the domain €2 or on the domain boundary
0€) and similarly for subdomains (when multiscale) to ensure that the problem is well
posed.

3. Flux-continuous Approximation. Finite volume schemes are derived by
first integrating each flow equation over a control-volume and then introduce an ap-
proximation of the normal control-volume face flux, which ensures that local conserva-
tion is guaranteed. The control-volume definition depends on the fundamental choice
between being cell-vertex and cell-centred. Here we use a cell-centred approximation.
The cell-centred control-volume is defined by the primal grid cell, details of the dis-
cretizations are outlined below, we refer to [9, 13] for full details. The primal grids
considered in this paper are comprised of triangular and quadrilateral meshes. Eq.2.1
is integrated over each cell-centred control-volume ¢ =1, ..., Ng, to yield

(3.1) - ]gﬂ_(Kw) - fidS =0,

by the Gauss Divergence theorem, where 6€2; denotes the boundary of the it" grid cell
(control-volume) Q; and 7 is the outward normal vector with respect to the boundary
0€); and dS is a boundary face increment. The discrete boundary integral is performed
over the boundary segments of 6¢2;. A discrete normal flux approximation is formed
with respect to the faces of each grid cell. The fluxes are expressed in terms of a local
approximation of the general tensor T operating on local discrete pressure differences
such that normal flux continuity is preserved as discussed below.

3.1. Cell Centred, Control-volume Distributed (CVD). In a cell-centred
formulation the primal grid cells act as control-volumes over which the Gauss diver-
gence theorem is applied and approximated. Following [13], each grid cell is assigned
a grid point (nodal point) x;, usually equal to the cell centre. Flow variables and
rock properties are distributed (assigned) to the grid cells and are therefore control-
volume distributed (CVD). The value of the numerical solution in the cell is denoted
by ®; = ¢(x;). Two adjacent grid cells are termed neighbours if they share the same
cell interface or cell edge. The permeability (conductivity) tensor K is assumed to be
piecewise constant, with respect to cell values (see Fig 1(a)).

3.1.1. Cluster and Dual-Cell. A cluster c; is defined by the N]J; cells attached
to a common grid vertex j. A dual-cell is defined as follows: For each cell edge k
attached to the vertex of the cluster, connect the edge mid-point my to the grid
cell centres of the two neighbouring cells within the cluster that share the common
edge. The dual-cell is defined by the resulting polygon comprised of the contour
segments connecting the N]Jc cell mid-points as indicated by the shaded red area in
Fig 1(b). An analogous definition of the dual cell is used in the multiscale finite
volume method.
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(a) (b)

Fic. 1. (a) Illustartion of piecewise continuous permeability across each cell (b) Corresponding
dual cell (shaded red) for the cluster

Sub—Cell and Sub—inter face. Subcells result when the dual-cells overlay the primal
triangular or quadrilateral grid. Each primal quadrilateral is then comprised of four
quadrilateral sub-cells and each triangle is comprised of three quadrilateral sub-cells,
again note Fig.1(b) where each primal cell has a quadrilateral subcell for every cluster
they are attached to. The edge midpoint my, divides a cell interface into two segments
or sub-interfaces.

3.2. Flux and Pressure Continuity Conditions. One of the main advan-
tages of the CVD-MPFA formulation is that it involves a single degree of freedom per
control-volume, in this case the primal grid cell pressure ®;, while maintaining con-
tinuity in pressure and normal flux across the control-volume faces. This is achieved
by introducing local auxiliary interface pressures on control-volume faces that are
expressed in terms of the global pressure field via local algebraic flux continuity con-
ditions, which are imposed across the control-volume faces, prior to matrix assembly
and solution process. This leads to the generalisation of the classical 2-point flux
approximation with transmissibility coefficient proportional to the harmonic mean of
adjacent permeabilities, [?], and again we refer to [13] for more details.

Local Interface Pressures

Here point-wise pressure continuity is imposed by introducing an auxiliary interface
pressure on each control-volume sub-interface. For the cell centred formulation the
continuity point is placed on the sub-interface between the primal cell edge mid-point
and edge vertex, yielding N} interface pressures per j** dual-cell. The quadrature
point is parameterized by the variable ¢ where 0 < ¢ < 1, and leads to a family of
schemes, ¢ = 1 being the default quadrature at the triangle edge midpoint.

3.2.1. Triangle Pressure Support TPS. In these schemes the pressure as-
sumes a local piecewise linear variation over each resulting pressure sub-triangle de-
fined inside a subcell. The cell-centred pressure sub-triangle is defined by joining
the primal triangle cell centre, interface pressure point on the primal triangle right-
edge, interface pressure point on the primal triangle left-edge and back to the primal
triangle centre, leading to triangle pressure support (TPS) Fig.2. Triangle pressure
support (TPS) is defined over the sub-triangle by the three pressure points ®;, <I>{ , <I>£
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and the local TPS pressure approximation is defined by
(3.2) ¢=(1-& — &) + 62 + 625

where <I>{ , <I>£ are local interface pressures and ®; is the cell-centred primal pressure
for cell i. The position vector shares an analogous approximation over each sub-
triangle with ¢ replaced by r in Eq.3.2. The quadrature point ¢ = 2/3 indicated in
Fig.2, yields the optimal symmetric positive definite scheme [13], and has been used
here.

Fic. 2. Triangle Pressure Support (TPS): illustrated quadrature ¢ = 2/3 for a cell centred
formulation

3.2.2. Local Algebraic Flux Continuity. The discrete subcell Darcy velocity
is obtained by substitution of the sub-triangle approximation of Eq.3.2 and analogous
position vector approximation into the velocity vector

(N (o ve w1 (4
(33) 'Uh—<v>_ K(—Qj£2 Te, >|J|<¢§2)

where | J | is the local discrete Jacobian. Resolution of the discrete velocity onto the
sub-interface outward normal vector 71 = ((Yy — Ym, )s —(Tw — Tm,)) leads to a flux
approximation

(34) F'Ul my — Uh " = 7(T111¢51 + T112¢§2)|11),m1

)

where it is understood that the coefficients T}, T}, result from local discrete flux
resolution, and are local subcell approximations of the general elliptic tensor coeffi-
cients T defined via the Piola transform (see e.g. [4]) where T =| J | J7'KJ T and
be; = (@; — ®;),7 = 1,2 are the resulting potential differences between the interface
pressures and cell-centred pressures [13].

Therefore the two resulting discrete normal sub-interface flux components per subcell
are expressed as

(3.5) Fi = —(Ti10¢, + Tio0¢,)|i=1,2

where ¢ = 1, 2 are the local flux indices. Eq.3.5 is the subcell view of the fluxes. This
formulation applies to arbitrary polygonal grids resulting from any combination of
quadrilateral and or triangular grids.

Continuity of discrete pressure and normal flux across each sub-interface is satisfied
locally within each dual-cell by construction. The respective N } interface pressures
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per j' dual-cell and corresponding cell centred pressures located on the dual-cell
perimeter are used to define QN} subcell fluxes c.f. Eq.3.5 per subcell, which are used

in turn to form N7 normal flux continuity conditions over the N ]]c sub-interfaces. The
flux continuity conditions are written as

Fy = —(Tuide + Tizdy) | = (To1d¢ + Toady) [+,

(3.6) i=1,.,N]

where the superfixes 7 and i + 1 indicate the respective left and right hand subcells
either side of sub-interface i for ¢ = 1, ..., IV JJC, with respect to an anticlockwise view of
the cluster 3.6 then when i = Ny, ¢ + 1 is set to unity, closing the loop.

The N ij sub-interface pressures are expressed in terms of the cell-centred pressures

via the corresponding N j]c normal flux continuity conditions of Eq. 3.6 and are thus
locally eliminated from the system in each cluster prior to the global pressure solve
[13].

3.3. Flux Approximation. The discrete flux F' across a cell sub-interface is
(after application of the continuity conditions) written as a linear combination of grid
cell centre values ®; associated with the dual cell:

i€EN

where N f; is the set of grid points involved in the flux approximation. All consistent
discretizations satisfy the condition ), niti=0 [13]. The net cell centred flux across
each cell-interface (triangle-edge) is comprised of two sub-interface fluxes, calculated
by assembly. The zero divergence approximation of Eq.3.1 over each primal cell is
achieved by local assembly of sub-interface fluxes, yielding a global N x N matrix,
acting on the primary pressure vector of length N (number of primal grid cells).

4. Multiscale Formulation. The multiscale formulation employs a coarse grid
and a fine grid and is a two grid level formulation. The coarse grid is comprised of
a number of coarse cells that may be structured or unstructured. A coarse dual grid
is then defined from the primal coarse grid, where each coarse dual-cell is defined
relative to a primal coarse grid vertex. The coarse dual-cells are each comprised of
a contour that joins coarse cell centres that surround a common primal coarse grid
vertex, where the contour connects adjacent coarse cell centres via the common coarse
cell-edge midpoints, Fig.1(b).The fine grid is defined via a specified refinement of the
coarse cells. The coarse cell refinement is constrained to conform to the resulting
boundary segments of the respective contours in each coarse cell. The presence of
two grids is exploited by the use of both fine-scale and coarse-scale operators in the
multiscale method. The fine scale operator results from the approximation of Eq.3.1
using the above outlined TPS formulation, denoted here now by

(4.1) Lnén =0

where ¢y, is the fine scale solution. The coarse scale operator is derived as an approx-
imation of Eq.3.1 on a coarse grid, via a basis function formalism described in sec.4.1
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below and denoted

(4.2) Lyéy =0

where ¢ is the coarse scale solution. The multiscale procedure can be described by
three main steps;

1. Basis functions are defined over each coarse dual cell by a set of local fine scale
solutions, computed according to a prescribed set of independent boundary
conditions per dual cell. One basis function is defined for each coarse cell
centred node belonging to a dual cell. The basis functions provide the link
between coarse and fine grids, and are used to determine a coarse grid oper-
ator.

2. A coarse grid solution of the reservoir problem is then computed on the coarse
grid using the coarse operator.

3. The coarse grid solution is then used to define Neumann boundary conditions
with normal flux prescribed on the boundaries of each coarse cell ensuring
flux is continuous between neighbouring coarse cell boundaries. A fine scale
pressure and flux field is then computed over each coarse cell, subject to
the Neumann flux conditions resulting from the coarse grid solution, with
pressure specified at each coarse cell centre.

The original MSFV formulation has been developed for Cartesian grids and follows
[20, 16]. We introduce an unstructured grid generalisation of the Cartesian Dirichlet
boundary conditions presented in [16]. This boundary condition treatment requires
that grid cells overlay the coarse dual-cell boundaries such that boundary nodes be-
come cell centres. Special boundary meshing is introduced to achieve this, and is
discussed further below with reference to Fig’s. 3, 6. The advantage here is that
boundary conforming Dirichlet boundary conditions are imposed without requiring
special boundary discretization or ghost points, and the unstructured method gener-
alises naturally for multiscale approximation. We refer to the resulting basis functions
as embedded Dirichlet conditions.

4.1. Basis Functions. A cell-centred formulation is considered here. After def-
inition of a coarse grid, the coarse cells are refined so as to preserve the boundary
contour of the dual cell, as illustrated by the dark shaded region in Fig. 3(a,b), where
conventional dual-cell boundary conforming grids are shown. Thus dual grid cells are
defined with respect to the (coarse grid) cluster vertices.
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A
WA
W2

(b) (c)

Fic. 3. Coarse grid cluster with dual-cell boundary conforming fine scale grid (a) Cartesian
grid (b) Unstructured grid (c) Unstructured grid with embedded coarse dual-cell boundary

Standard MSFV basis functions are derived following the Multiscale Finite Element
(MSFE) basis functions proposed by [17] and are used to determine effective trans-
missibilities for the coarse grid operator and for fine grid boundary operators. Fine
grid boundary (flux) conditions are defined on the boundaries of each coarse dual
cell from the coarse grid solution, using transmissibilities that are consistent with the
coarse grid operator and lead to local conservation between neighbouring dual cells.
For every coarse dual cell, there are NV JZ basis functions, one for each coarse cell center
node belonging to the coarse dual cell. The basis function boundary conditions for the
standard MSFV method are identical to those used in MSFE basis functions where
either a bilinear interpolation is used to define dirichlet boundary data, or a ‘reduced
boundary condition’ is used to define the boundary dirichlet data [17, 20, 16]. The
reduced boundary condition is obtained by solving a reduced elliptic problem along
each edge of the coarse dual boundary. Currently MSFV basis functions have been
defined over Cartesian grids where the dual grid is also uniform [20, 16]. The primary
focus of this work is on the development of MSFV on quadrilateral and triangular
unstructured grids together with appropriate basis functions.

For the purpose of this paper, the basis functions proposed in previous MSFV work
are referred to as “Dirichlet basis functions” and are described in the next section,
4.1.1, along with the embedded generalisation to unstructured grids. A new type
of basis function is introduced in Section 4.1.2 and referred to as “Neumann-D basis
functions”. Neumann-D basis function boundary conditions are simpler to implement,
and yield stable results on any grid type and for highly heterogeneous permeability
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4.1.1. Embedded Dirichlet Basis Functions. The Dirichlet basis functions,
denoted @7, are essentially bilinear for each homogeneous quadrilateral dual cell over
a regular domain Fig.5(a). Generalised Dirichlet basis functions involve specifying
P on the boundary of each coarse dual cell. A Dirichlet basis function is defined for
each coarse cell-centered node belonging to a cluster. For the i‘" basis function ¢ (x)
(where x is the position vector), at the i*" coarse cell-centred node (corner) of the
dual cell P (x;) = 1 and at all other cell centre nodes j of the dual cell ¢ (x;) = 0 for
j # 1, with linear interpolation defining specified Dirichlet data on the fine cell edges
that lie on the coarse dual cell grid boundary between all adjacent corners, Fig.5(b).

There are two aspects to be addressed in the generalisation of Dirichlet basis functions
to cell-centred duals on unstructured grids.

1) Since the boundary of an unstructured dual is not a straight line between cell
centers, Fig.1b, interpolating the dirichlet data along the dual-cell boundary can be
achieved in several ways. The method used here involves interpolation over the entire
arc length, that is the combined edge length of the boundary between two coarse
centers, (corners of the dual). The arc length is mapped to a straight line of length
equal to the arc length, Fig.4, which is used to define the interpolation of dirichlet
data. This allows any grid geometry to be used.

2) For a cell centred method, imposition of Dirichlet boundary conditions is usually
achieved, either via the use of ghost cells, or by defining values at cell edge mid-points
(for those cell-edges laying on the boundary). Ghost points do not generalise naturally
on unstructured grid dual-cell boundaries as they are not boundary conforming, while
edge based Dirichlet boundary conditions require a special discretization at boundaries
[28, 29]. In order to address the boundary alignment issue, a different method of
meshing is used, motivated by that used in [16] for Cartesian grids, but now generalised
to any dual-cell boundary geometry that may result from an unstructured grid. In
contrast to the boundary aligned meshing initially described, Fig.3, the fine scale grid
is generated such that the boundary of each coarse dual-cell is ‘straddled’ or overlaid
by the finescale primal grid Fig.6a, such that boundary nodes correspond to the cell
centres of the overlaying boundary cells. In an unstructured grid this requires hybrid
meshing, where both triangular and quadrilateral finescale cells are used such that
the coarse scale dual-cell boundary is embedded in the set of finescale dual mesh
perimeter cells. This also places a further constraint on the finescale meshing of
each coarse cell. The Dirichlet basis function boundary conditions however, are much
easier to implement as they can now be set directly on boundary cell centres rather
than faces Fig.6b. An example fine grid with embedded finescale dual mesh perimeter
cells is shown in Fig.11. This unstructured boundary condition treatment generalises
naturally for multiscale approximation. We refer to the resulting basis functions as
embedded Dirichlet conditions.

Eq. 4.1 is then solved on the fine scale grid, defined over the coarse dual cell, subject
to the embedded Dirichlet boundary conditions, using the cell-centred CVD-MPFA
method. Thus the pressure and flux field for the i** basis function is calculated. The
process is repeated for each basis function corresponding to each corner node of the
dual cell. The resulting solutions define the embedded Dirichlet basis functions, an
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example is shown in Fig.6c,

The resulting basis function solutions yield coefficients that satisfy the consistency
condition . yi t; = 0 for local coarse and fine transmissibilities, (discussed fur-
F

ther in the flux consistency section below) and lead to stable reconstructed finescale
pressure fields in most cases c.f. (Section 5).

1
c /
NG
AN

=

FiG. 4. Dirichlet interpolation along an unstructured coarse dual edge. From top to bottom:
Coarse dual edge (arc length) is mapped to a straight line, dirichlet data is interpolated between 0
and 1, interpolated data is mapped back to arc length.

-

(a) (b)

Fic. 5. Embedded Dirichlet basis function example across a dual cell: (a) Cartesian grid (b)
Delaunay grid
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(©)

Fic. 6. Alternative ‘embedded’ fine scale meshing : (a) unstructured grid with embedded coarse
dual-cell boundary (b) Embedded Dirichlet Boundary condition implementation (c¢) Example basis
function pressure field

4.1.2. Neumann-D Basis Functions. Neumann-Dirichlet basis functions ¢V»
are now defined over the coarse dual-cells. Away from coarse cell centre nodes
Neumann-Dirichlet basis functions involve the specification of zero flux on dual cell
boundaries, which basically replaces the (Dirichlet condition) basis function bound-
ary data interpolant specification almost everywhere, except at the corners of the dual
defined by the cell centres, where ¢™VP remains specified by pointwise Dirichlet data.
We shall refer to these basis functions as Neumann-D basis functions, to reflect the
primarily Neumann nature of these basis functions together with (coarse cell-centre)
point-wise Dirichlet conditions, and denote the basis functions by ¢V?. A Neumann-D
basis function is defined for each cell-centered node belonging to a cluster.

For the ' basis function ¢2'” (x), belonging to the i*" coarse cell-centred node (cor-
ner) of the dual cell ¢” (x;) = 1 is set in the associated fine grid corner cell centre,
and for all other coarse cell-centred nodes j, of the dual-cell ¢'P(x;) = 0 in the
respective associated fine grid corner cell centres for j # ¢, while zero normal flux
is imposed over the rest of the boundary of the dual cell apart from the specified
cell-centre values, Fig. 7a. Eq. 4.1 is then solved on the fine scale grid, defined over
the dual-cell, using the above cell-centred method. Thus we solve

(4.3) —V - (KV¢™P) = 0.

over each dual-cell 2p subject to —KV¢~P.fi = 0 on boundary 9Qp\{x1, X2, ...XN; }
where x1,X2, ...XN, are the Ny associated fine cell centres of the corner nodes belong-
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ing to the dual-cell, and for the i*” basis function corresponding to the i** coarse cell
centre node ¢)P(x;) = 1 while ¢)¥?(x;) = 0 for j # i. The definition is repeated
for all coarse cell-centre corner nodes of each dual-cell and the solutions define the
Neumann-D basis functions.

4.2. Fine Scale Operator.

Once basis function solutions are determined the procedure for defining the local
transmissibility matrix is the same for either basis function type and is an unstructured
generalisation of the procedure for the standard MSFV method [20, 16]. For each basis
function solution a set of fine scale fluxes is computed over each of the coarse scale
sub-interfaces and denoted by f with respect to the it" coarse sub- interface in the
coarse dual cell. The number of components of the vector of fine scale fluxes f is
equal to the number of fine cells on a coarse cell subinterface inside a dual cell. The
vector of fine scale fluxes on the i*" coarse subinterface is expressed in terms of the
coarse dual cell-centred pressures as

* N *
(4-4) fi = Zj:fﬂfi,jd)Hj

where {7 ; is the corresponding vector of transmissibilities, summation is over the
coarse cell nodes of the dual cell. The ¢}, are then determined from Eq.4.4 via the
basis functions, and setting ¢, = 1 and ¢y, = 0 for j # i when using Neumann-
D basis functions, with f/ computed via the CVD-MPFA operator acting on the
corresponding known i*" basis function (fine grid) solution, (replace qbiv P by ¢P for
embedded Dirichlet basis functions). Starting with coarse sub-interface 1, the t] ; are
determined via the local flux vector calculated on the interface for each basis function
j =1,..Ng¢. The process is repeated for each interface i = 1,...N; which determines
the flux coefficients for the N faces, and gives rise to the transmissibility matrix of

fine scale coefficients

* * . *
1,1 1,2 1n
* * *
. o1 tao -0 to,
(4.5) ™= 7 ,
* * *
tn,l n,2 tn,n

such that every component ‘¢ ;" of Eq.4.5 is a vector of flux values corresponding to
the sub interface i as influenced by the cell centre j.

4.3. Flux Consistency: Necessary Condition. The flux consistency condi-
tion of the multiscale method discussed here is a necessary condition for a consistent
operator, and follows from the principle of linear superposition. The sum of the basis
function solutions is unity at any point in the domain, thus the sum of basis function
fluxes at any interface is zero by linear superposition and therefore from Eq. 4.4 the
sum of the fine scale flux coefficients is zero when ¢, = 1 for all j, so that

Ny
(4.6) St =0

As discussed below, the coarse operator is constructed from a linear combination of
the fine scale operator coefficients and consistency of the coarse operator follows from
consistency of the fine scale operator. Both embedded Dirichlet and Neumann-D basis
functions have proven to be quite effective, a basis function solution is illustrated in
Fig. 7b.
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(a) (b)

Fic. 7. (a) Boundary conditions for Neumann-D basis functions (dirichlet pressure set at
associated fine grid corner cell centre, thick red line indicates no flow boundary) (b) Example basis
function solution

The results obtained from using embedded Dirichlet and Neumann-D basis func-
tions are presented and compared in a number of examples in the results section
sec.d.

Neumann-D and embedded Dirichlet basis functions lead to two unstructured grid
MSFV formulations. The consistency condition is always satisfied by both formu-
lations and grid complexity does not appear to affect the solution in most cases.
Embedded Dirichlet basis functions provide a natural extension of the original basis
functions to distorted quadrilateral and triangular unstructured grids. The boundary
conditions of the Neumann-D basis functions offer a natural flow based boundary
condition which force zero flux around each dual-cell perimeter uniformly. The same
imposed zero flux is seen by each dual, while for the Dirichlet basis functions neigh-
bouring dual cells see discontinuous fluxes. In that sense the Neumann-D formulation
may be viewed as a natural counterpart to what happens in the multiscale method
at the reconstruction stage, where flux is continuous between neighbouring coarse cell
boundaries and pressure is discontinuous.

4.4. Coarse Scale Operator. The Neumann-D and embedded Dirichlet coarse
grid operators have been compared on a number of problems by solving equation Eq.
4.2 for well known test cases with a known solution; linear flow, piecewise linear
flow, quadratic flow, piecewise quadratic flow on Delaunay and other grid types. The
Neumann-D and embedded Dirichlet coarse operator results are both comparable
with TPS applied directly to the coarse grid in each case. The coarse operator is
assembled from the above local fine scale transmissibility matrices. Each component
of the vector of fine flux values of Eq.4.5 from the respective fine scale basis function
solutions, are summed to give a total coarse flux per coarse sub-interface with coarse
operator transmissibility coefficients resulting in

f1 tin tie - tig om,

fa ta1 toa 0 lagn OH,
(4.7) . oo . )

fn tn71 tn,2 e tn,n ¢Hn
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where f; = > f are the coarse interface fluxes and ¢; ; = > ¢ ; where summation
is over the respective column vectors. As a result, the coarse grid operators satisfy
the necessary consistency condition, together with a zero row sum matrix on general
unstructured grids comprised of triangles and/or quadrilaterals.

The fluxes of Eq.4.7 are assembled into the global coarse grid operator matrix. The
pressure equation is next solved over the global reservoir on the coarse grid using
the locally conservative coarse grid operator, subject to the actual reservoir problem
boundary conditions.

4.5. Fine Scale Flux and Pressure Reconstruction. After solving for the
coarse grid pressure field ¢y over the global reservoir via the coarse grid operator,
the resulting coarse grid solution is used to define projected specified flux boundary
conditions on to locally refined coarse cell boundaries via

* * * *
1 1,1 1,2 77 1,n ¢H1
s Bl | e Ba o . || om
f;zk 2,1 2,2 T t:,n ¢Hn

where the fine scale transmissibility matrix operates on the known coarse solution
vector c.f. Eq.4.8. The locally conservative fine scale solution is then reconstructed
by solving Eq. 4.1 over each refined coarse grid cell using the CVD-MPFA method,
subject to Neumann conditions defined by Eq.4.8 together with pressure specified at
the centre of each coarse cell, also using the coarse grid solution.

Fia. 8. Ezample boundary fluxes derived from basis functions from the encapsulating dual cells

5. Computational Examples. Several test cases are now presented on grids
with increasing complexity in order to show the performance of the Neumann-D and
embedded Dirichlet basis functions. Pressure field solutions are displayed as isosur-
faces. We also show streamlines and tracer concentration fields for cases 3 and 4,
involving heterogeneous SPE10 data. Note that the concentration field is updated
via a first order upwind finite-volume method, which with the exception of fluxes on
refined coarse cell boundaries, involves an otherwise standard explicit update. The
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fine cell-face tracer concentration on a refined coarse cell boundary, is defined by up-
winding, with cell-face concentration set equal to the left or right adjacent fine cell
concentration value, according to the sign of the projected conservative flux on the
common boundary c.f. Eq. 4.8. The resulting locally conservative fine cell-face tracer
flux is then defined by the product of cell-face concentration multiplying the projected
conservative flux on the boundary.

In all of the multiscale results presented pressure remains discontinuous on coarse
cell boundaries. This is to be expected and is consistent with the original multiscale
methodology, where only flux continuity is enforced on coarse cell boundaries and no
iteration is employed as is the case here.

Comparisons of the respective multiscale methods using embedded Dirichlet and
Neumann-D basis functions on a Cartesian grid show that multiscale with either
of the generalised basis functions described here are able to reproduce the resolution
of the original MSF'V.

For all other grid types considered multiscale with Neumann-D and embedded Dirich-
let basis functions consistently yield relatively well resolved solutions.

In this section we shall now refer to multiscale with embedded Dirichlet basis functions
by MSFVd, and multiscale with Neumann-D basis functions as MSFVn.

The grids used range from simple Cartesian grids Fig.9a, quadrilateral grids Fig.9b,
equilateral grids Fig.9¢ and fully unstructured triangular grids Fig.9d. These grids are
used to help show a transition from the basic Cartesian grid to generic unstructured
triangle grids.

NNNNNNNN
AT

\VAVAVAVAVAVAVAVAY

(a) (b) (c) (d)

Fi1G. 9. Coarse grids used: (a) Cartesian (b) Distorted Cartesian (c) Equilateral (d) Unstruc-
tured tri. Green and red cells represent domain and ghost cells respectively to distinguish between
cells that are used in boundary pressure specification and those being solved for.

When internal boundaries are present the structured and unstructured grids are
boundary aligned.

The reconstructed fine scale solutions computed using MSFVd and MSFVn are shown
for each test case. The coarse grids used for each test case are shown in Fig. 9.

ZIS

F1G. 10. Delaunay grid used for heterogeneous examples
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Fic. 11. Ezample fine grid from refined coarse cells

Case 1. This example involves a discontinuous diagonal isotropic tensor field with
permeability jump in magnitude from 100 to 1 half way across the domain with a
piecewise linear exact solution. The reference solution shown in Fig. 12a highlights
the effect of permeability discontinuity in the field, aligned horizontally across the
centre of the domain. The permeability tensor above and below the discontinuity is
100 0
[ 0 100
boundary conditions for the test problem. The reconstructed fine scale solutions,
computed on a Cartesian grid, resulting from multiscale with embedded Dirichlet and
Neumann-D basis functions respectively are shown for reference, Fig. 12b,12¢. For all
other grid types both MSFVn, Figs.(13,14,15)a and MSFVd, Figs.(13,14,15)b, results
are good approximations of the finescale reference solution. We point out here that
results, particularly on equilateral triangle grids may appear inaccurate or distorted,
MSFVn has some oscillations on boundaries, while MSFVd has less oscillation on
boundaries, in particular Fig. 14, though the effect of the particular viewing angle
being used in combination with the resulting jagged boundary edge of the grid also
has an effect.

} and [ (1) (1) respectively. The exact solution is used to define Dirichlet
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Fic. 12. Case 1, (a) Reference solution, Fine scale Cartesian grid Fig.9a reconstruction :

MSFVn (c) MSFVd
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Fic. 13.  Case 1, quadrilateral grid Fig.9b, Reconstructed pressure fields :
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(a) (b)

Fic. 14. Case 1, equilateral triangle grid Fig.9c, Reconstructed pressure fields : (a) MSFVn

(b) MSFVd

() (b)

Fic. 15. Case 1, unstructured triangle grid Fig.9d, Reconstructed pressure fields : (a) MSFVn
(b) MSFVd

Case 2. This problem has a piecewise quadratic solution [9] where the discontinuity is
aligned vertically along the centre of the domain. Here the permeability tensor to the
left and right of the discontinuity is [ 500 (1) ] and [ (1)
ample involves a discontinuous anisotropic tensor with variable grid geometry leading
to stronger full-tensor effects. The exact solution is used to define Dirichlet boundary
conditions for the test problem. The reference solution is shown in Fig. 16a, with the
respective reconstructed fine scale solutions for each basis function type computed on
a Cartesian grid, shown in Fig.16b and 16¢ indicating comparable performance. We
note that as before, particularly on equilateral triangle grids that MSFVn has some
oscillations on boundaries, while MSFVd has less oscillation on boundaries Fig. 19.
Though generally on irregular grids both the MSFVn, Figs.(17,19,20)a and MSFVd,
Figs.(17,19,20)b, solutions give good approximations of the finescale reference. Fi-
nally we note the result of using a two-point flux approximation (TPFA) in MSFV
on a non K-orthogonal quadrilateral grid in Fig. 18(d) and planar view in 18(f),
compared to the exact solution in Fig. 18(a) and planar view in Fig. 18(b). As
expected the method yields a solution with inherent grid orientation due to the well
known inconsistency of the approximation on such grids e.g. [9]. The results from the
consistent CVD-MPFA method are shown along side in Fig. 18(c,e) and motivate the

100 ] respectively. This ex-
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need for the development of MSFV based on the CVD-MPFA formulation, presented
here.

(b) (c)

Fic. 16.  Case 2: (a) Reference solution, Fine scale Cartesian grid Fig.9a. Reconstruction :
(b) MSFVn (¢) MSFVd

(a) (b)

Fic. 17.  Case 2, quadrilateral grid Fig.9b, Reconstructed pressure fields : (a) MSFVn (b)
MSFVd
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Fic. 18. Case 2, quadrilateral grid Fig.9d, (a) Exact solution (b) Planar view: exact solution.
Reconstructed pressure fields : (¢c) MSFVd using CVD-MPFA (d) MSFVd using TPFA (e) Planar
view: MSFVd using CVD-MPFA (f) Planar view: MSFVd using TPFA
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(a) (b)

Fic. 19. Case 2, equilateral triangle grid Fig.9c, Reconstructed pressure fields : (a) MSFVn
(b) MSFVd

16

Ny ™

() (b)

Fic. 20. Case 2, unstructured triangle grid Fig.9d, Reconstructed pressure fields : (a) MSFVn
(b) MSFVd

Case 3. This case involves a heterogeneous permeability field taken from SPE10
data commonly used as a benchmark for pressure/transport solvers. The permeabil-
ity data is taken from the Tarbert layers section. For each grid type the Cartesian
index system used in the SPE10 data set is projected onto the fine scale grid by
locating nearest points Fig.2la. This can lead to very slight variations in the per-
meability field between grid types but still serves as a good comparison of each grid
type. Boundary conditions involve specification of high pressure on the left hand
boundary and low pressure on the right hand boundary of the rectangular domain,
together with zero normal flux conditions specified on the top and bottom walls re-
spectively. The tracer concentration is initially zero in the field and specified to be
unity on the left hand boundary. The fine scale reference solution is shown in Fig.
22b. The reconstructed fine scale solution for both basis function types is shown in
Fig.22¢ and 22d on Cartesian grids, where both methods yield physically meaningful
solutions. Both the streamline, Fig.(23 and tracer plots Fig.24, demonstrate good
agreement between the multiscale results and the finescale reference solution. The so-
lutions for other gridtypes: quadrilateral grid Fig’s.25,26,27, equilateral triangle grid
Fig’s.28,29,30 and Delaunay grid Fig’s.31,32,33, show that the generalised MSFVd
and MSFVn multiscale methods also yield good comparative performance for the ex-
ample SPE10 data. On close inspection there are only minor differences in small areas
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between the MSFVn and MSFVd results.

Fia. 21. Case 3: Logarithmic z Permeability field within the Tarbert layer

(b)

Fic. 22. Case 3, Cartesian grid Fig.9a,
MSFVn (¢) MSFVd
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04
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0.1
o

(c)

(a) Reference solution, Finescale reconstruction : (b)
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(b) (c)

Fic. 23. Case 3, Cartesian grid, Finescale streamline plot (Coarse grid shown) (a) Reference
(b) MSFVn (c) MSFVd

(b) (c)

FiG. 24. Case 3, Cartesian grid, Tracer plot at 0.8 PVI (a) Reference (b) MSFVn (¢) MSFVd
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(a) (b)

Fic. 25.  Case 3, quadrilateral grid Fig.9b, Reconstructed pressure fields : (a) MSFVn (b)

MSFVd
(a)
(b) (c)

F1c. 26. Case 3, quadrilateral grid, Finescale streamline plot (Coarse grid shown) (a) Reference
(b) MSFVn (c) MSFVd

a
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Fic. 27. Case 8, quadrilateral grid, Tracer plot at 0.8 PVI (a) Reference (b) MSFVn (¢) MSFVd
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Fic. 28. Case 3, equilateral triangle grid Fig.9c, Reconstructed pressure fields

(b) MSFVd

: (a) MSFVn
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(a)
(b) (c)

Fic. 29. Case 3, equilateral triangle grid, Finescale streamline plot (Coarse grid shown) (a)
Reference (b) MSFVn (¢c) MSFVd

a

(a)

ﬂ

(b) (c)

Fic. 30. Case 3, equilateral triangle grid, Tracer plot at 0.8 PVI (a) Reference (b) MSFVn (c)
MSFVd
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Fic. 31. Case 3, Unstructured triangle grid Fig.9d, Reconstructed pressure fields : (a) MSFVn

(b) MSFVd
(a)
(b) (c)

F1c. 32. Case 3, Unstructured triangle grid, Finescale streamline plot (Coarse grid shown) (a)
Reference (b) MSFVn (¢) MSFVd

a
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S
™

(b) (c)

Fi1c. 33. Case 3, Unstructured triangle grid, Tracer plot at 0.8 PVI (a) Reference (b) MSFVn
(¢) MSFVd

Case 4. A second case using data from the SPE10 permeability field, this time from
the more challenging Upper Ness layers is presented. This example was chosen to
challenge the methods in the presence of strong heterogeneity Fig.34a. Boundary
conditions again involve specification of high pressure on the left hand boundary and
low pressure on the right hand boundary of the rectangular domain, together with
zero normal flux conditions specified on the top and bottom walls respectively. The
tracer concentration is initially zero in the field and specified to be unity on the left
hand boundary. This case then follows the same format as case 3. The solutions for
the four gridtypes are given in: cartesian grid Fig’s.35, 36,37; quadrilateral grid Fig’s.
38,39,40; equilateral triangle grid Fig’s. 41,42,43 and Delaunay grid Fig’s. 44,45,46.
We note that the MSFVd method (using embedded Dirichlet basis functions) exhibit
very large spurious oscillations in the reconstructed pressure field in Fig’s.35, 38, 44.
In contrast the MSFVn method (using Neumann-D basis functions) copes with the
strong heterogeneity. Although there are some differences in the respective MSFVn
tracer plots when compared to the finescale reference solution, the larger part of the
respective MSFVn solutions share the character of the reference solution. However, we
also note that the MSFVd pressure field oscillations are located at coarse cell bound-
aries. In contrast oscillations are not seen in the corresponding MSFVd streamline
and tracer plots, which is attributed to the use of the specified flux condition on the
coarse cell boundaries. The respective MSFVd tracer solutions Fig’s. 37c, 40c, 43c,
46¢, are seen to capture the features of the reference grid tracer solution shown in
Fig’s. 37a, 40a, 43a, 46a.
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The MSFVd and MSFVn schemes are compared in terms of condition number ratios
(MSFVd/MSFVn) below for the SPE10 Upper Ness test case.

Basis Function | Coarse Operator
Cartesian Grids 1.16 1.03
Distorted Quadrilateral Grids 0.076 1.682
Equilateral Triangle Grids 0.810 0.671
Delaunay Grids 0.921 0.641
TABLE 1

SPE10 Upper Ness. Condition number ratios (MSEFVd/MSFVn): Fine-scale Operator of Basis
Function, and the Coarse Operator for each grid type

The ratios show that similar condition numbers are obtained by the two types of basis
function both in terms of average number for the basis functions, and for the respective
coarse grid operators, except for the quadrilateral grid. The most notable difference
is for the quadrilateral grid, where the Neumann-D basis function operator has an
order of magnitude larger condition number than the Dirichlet operator, although the
coarse grid Dirichlet operator condition number is slightly larger than the respective
Neumann-D operator.

Fic. 34. Case 4: Logarithmic x Permeability field within the Upper Ness layer
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Fic. 35.  Case 4, Fine scale Cartesian grid Fig.9a, (a) Reference solution, finescale recon-
struction : (b) MSEFVn (¢c) MSFVd (d) MSFVd with Capped errors
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(b) (c)

Fi1c. 36. Case 4, Fine scale Cartesian grid, Finescale streamline plot (Coarse grid shown) (a)
Reference (b) MSFVn (¢) MSFVd

(b) (c)

Fic. 37. Case 4, Fine scale Cartesian grid, Tracer plot at 0.3 PVI (a) Reference (b) MSFVn
(c) MSFVd
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Fic. 38.  Case 4, quadrilateral grid Fig.9b, Reconstructed pressure fields : (a) MSFVn (b)

MSFVd (¢c) MSFVd with Capped errors
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(c)
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Fic. 39. Case 4, quadrilateral grid, Finescale streamline plot (Coarse grid shown) (a) Reference
(b) MSFVn (c) MSFVd
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(b) (c)

Fic. 40. Case 4, quadrilateral grid, Tracer plot at 0.8 PVI (a) Reference (b) MSFVn (¢) MSFVd
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Fic. 41. Case 4, equilateral triangle grid Fig.9c, Reconstructed pressure fields : (a) MSFVn
(b) MSFVd
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(b) (c)

Fic. 42. Case 4, equilateral triangle grid, Finescale streamline plot (Coarse grid shown) (a)
Reference (b) MSFVn (¢) MSFVd

(b) (c)

Fic. 43. Case 4, equilateral triangle grid, Tracer plot at 0.8 PVI (a) Reference (b) MSFVn (c)
MSFVd
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Fic. 44. Case 4, Unstructured triangle grid Fig.9d, Reconstructed pressure fields : (a) MSFVn

(b) MSFVd (c) MSFVd with Capped errors
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F1c. 45. Case 4, Unstructured triangle grid, Finescale streamline plot (Coarse grid shown) (a)
Reference (b) MSFVn (c) MSFVd



36 E.PARRAMORE ET AL.

(b) (c)

Fi1G. 46. Case 4, Unstructured triangle grid, Tracer plot at 0.8 PVI (a) Reference (b) MSFVn
(¢) MSFVd

6. Conclusions. Novel multiscale finite volume methods are presented for quadri-
lateral and triangular unstructured grids in two spatial dimensions using a CVD-
MPFA formulation. A comparison between MSFV with a two-point flux approxima-
tion versus MSFV with CVD-MPFA on a non K-orthogonal grid motivates the need
for a CVD-MPFA based MSFV formulation.

The currently established multiscale Dirichlet basis functions are generalised for MSFV
on quadrilateral and triangular unstructured grids using the CVD-MPFA formulation.
The generalisation of Dirichlet basis functions to quadrilateral and triangular unstruc-
tured grids involves generating fine grids over coarse dual-cells, with the coarse dual-
cell boundaries being embedded in the fine grid perimeter cells, leading to natural
imposition of embedded Dirichlet boundary conditions.

Neumann-D basis functions are also proposed which lead to a novel multiscale variant.
Both the embedded Dirichlet basis functions and the Neumann-D basis functions yield
(necessary) consistent transmissibility coefficients.

Several test cases are presented including anisotropic permeability tensors and het-
erogeneous permeability fields. In all cases except the SPE10 upper Ness layer, the
embedded Dirichlet and Neumann-D based multiscale methods are both able to yield
results of resolution that is comparable with the original Cartesian grid multiscale
method, with similar resolution obtained on quadrilateral and triangular structured
and unstructured grids. For the SPE10 upper Ness layer test case, the embedded
Dirichlet based multiscale method captures more of the flow field features. While
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some flow field discrepencies are observed between the respective Neumann-D and
embedded Dirichlet based multiscale method flow field results, the Neumann-D based
multiscale method yields pressure fields that do not suffer from the excessive oscilla-
tions that occur with the Dirichlet based method on both structured and unstructured
grids.
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