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Abstract 

The 28 amino acid hormone, ghrelin has been found to have various effects on metabolism. This 

review will focus on the pathways integrated into ghrelin’s effect within the hypothalamus, pancreas 

and adipocytes. The identification of molecules and pathways that regulate ghrelin mediated lipid 

retention could establish new mechanisms underlying cellular energy homeostasis. The impact of 

acyl-ghrelin on glucose metabolism and lipid homeostasis may allow for novel preventative or early 

intervention therapeutic strategies to treat obesity related type 2 diabetes and associated metabolic 

dysfunction.  
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1 Introduction 

Type 2 diabetes mellitus (T2DM) and obesity are both chronic conditions associated with significant 

morbidity and mortality predominantly from associated chronic diseases. The World Health 

Organisation (WHO) states that obesity is a global epidemic, with over 1.9 billion obese adults. 

Obesity results from the dysregulation of energy expenditure resulting in an accumulation of white 

adipose tissue due to adipogenesis or lipid retention 1. Therefore, the function of adipocytes, which 

includes the secretion of various hormones linked to the modulation of metabolism, is central to the 

development of obesity. A key hormone of interest, that is known to regulate cell proliferation and 

lipid retention, is the gastrointestinal peptide ghrelin 2. The focus of this article is to review the 

mechanism(s) underlying ghrelin mediated lipid retention in adipocytes and its relevance to the 

aetiology of T2DM. The identification of new molecules modulating ghrelin mediated lipid retention 

in adipose tissue may be a therapeutic strategy for improving glucose homeostasis associated with 

obesity and T2DM. 

2 Ghrelin 

In 1999, Masayasu Kojima first described a 28 amino acid peptide hormone located in the stomach, 

with a distinctive N-octanoylated serine 3 residue 2. This peptide was named ‘ghrelin’, from the Latin 

word ‘Ghre’ which means ‘grow’ due to its role as a growth hormone releasing peptide 2, 3. The novel 

peptide was isolated from the gut of both human and rat as the endogenous ligand of the growth 

hormone secretagogue receptor (GHS-R) 4. GHS-R is transcribed in humans from the growth 

hormone receptor 1 (GHR1) gene, which encodes the full length functional receptor (GHS-R1α) and a 

splice variant truncated non-functional isoform (GHS-R1β) 5, 6. GHS-R1α mRNA is expressed at low 

levels over a wide tissue distribution but it predominantly expressed in the anterior pituitary gland 5. 

The highest levels of ghrelin are secreted from the X/A- like cells of the oxyntic glands located in the 

gastric fundus, with lower levels widely distributed throughout the body 7, 8. Ghrelin is secreted 
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direct into the local gastric circulation and transported to the brain directly, requiring it to either 

cross the blood-brain barrier via a saturated transport system or via the blood stream to enter areas 

of the brain that are not protected by the blood brain barrier 9. Ghrelin also modulates the 

hypothalamic arcuate nucleus (ARC), in an indirect manner, via activation of the vagus nerve and 

brain stem nuclei 9, 10. Ghrelin circulates in two major forms; acylated (approximately 5% of total 

ghrelin) and desacyl (95% of total ghrelin) 11. Previous work has demonstrated that the protein 

coding gene, membrane bound O-acyltransferase 4 (MBOAT4) is vital in the activation of ghrelin 12. 

The human gene, MBOAT4 is located on chromosome 8 (8p12) and contains 6 exons. MBOAT4 

transcribes a protein that was later termed ghrelin O-acyltransferase (GOAT), as this is the only 

enzyme known to post translationally acylate ghrelin. Both forms of ghrelin are observed to cross 

the barrier in a blood to brain direction. However, desacyl-ghrelin had reduced ability in crossing the 

barrier in a brain-blood direction 13. Ghrelin’s ability to cross the blood-brain barrier is the result of a 

combination of three systems; non-saturable, saturable blood-brain transport and saturable brain-

blood transport, all of which are dependent on the unique post translational acylation and primary 

structure 13-15. In the last 16 years research has demonstrated that ghrelin has various peripheral 

effects and caused a great interest into the manipulation of the ghrelin system as a pharmacological 

tool. Ghrelin has a homeostatic role that encompasses multiple areas of the body, with actions that 

include; downregulation of brown adipose tissue thermogenesis16-18, modulation of non-

hypothalamic brain regions producing an increased taste sensation19 and stimulation of gastric 

emptying and motility6, 20. The actions of ghrelin may contribute to the development of T2DM and 

obesity6 however this review will focus, in detail, on three main sites of ghrelin action; the 

hypothalamus, adipose tissue and the pancreas (Figure 1). 
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2.1 Ghrelin & the hypothalamus  

2.1.1 Obesity 

Ghrelin gene expression and plasma ghrelin levels change with food intake, such that in healthy 

humans acylated levels are elevated before feeding and decreased by feeding 21-23. However, during 

prolonged fasting, plasma levels of acyl-ghrelin are not elevated and it is plasma desacyl-ghrelin 

levels that double 24, 25 . Indeed, ghrelin is the only known gastrointestinal hormone whose 

concentration is increased in the blood following calorie restriction. Ghrelin is often termed ‘the 

hunger hormone’ and is an appetite stimulatory peptide 26. The mechanism by which ghrelin 

stimulates feeding is well documented, the route of stimulation has been linked to ghrelin’s 

activation of Neuropeptide Y (NPY) neurons and agouti- related peptides (AGRP). NPY and AGRP 

containing neurons are located in the ARC where they are activated by elevation of intracellular 

calcium via phospholipase C/protein kinase C and adenylate cyclase/protein kinase A pathways 27. In 

rodents, this calcium influx has also been linked to ghrelin’s activation of phosphoinositide 3-kinase 

(PI3K) pathway due to the enhanced phosphorylation of Akt-Ser 473 28. As well as the activation of 

orexigenic neurons, neurons containing anorexigenic peptides (pro-opiomelanocortin) are 

suppressed in the presence of ghrelin 22, 29, 30. Ghrelin’s role in stimulating feeding is reported to be 

the direct effect of circulating ghrelin on the hypothalamus, as orexigenesis is present without intact 

vagal afferent signalling 31. However, there are reports suggesting that vagotomy does result in the 

loss of ghrelin’s orexigenic function 32. This indicates that peripheral ghrelin induces an eating 

stimulatory effect via an intertwined relationship involving the afferent vagus nerve and direct 

endocrine signalling. The cross comparison of published findings, with respect to ghrelin’s paracrine 

vs endocrine signalling method, does require caution in interpretation as alternative results may 

represent varying methodologies. Several published studies have reported an association between 

ghrelin and obesity with a main focus on plasma ghrelin levels being negatively correlated with body 

mass index (BMI) 29. As well as in obese patients, total ghrelin levels are reduced in obese patients 

with T2DM and levels does not fluctuate throughout the day. Therefore, the total ghrelin 



6 
 

concentration does not return to baseline level as it does in lean patients after feeding 11, 33, 34. The 

obese state has attenuated ghrelin levels resulting in abnormal hunger scores, upon the 

administration of acyl-ghrelin in humans, hunger profiles within obese subjects are returned to that 

of lean subjects 35. The supressed level of ghrelin within diet induced obesity (DIO) can be linked to 

the decline in the expression of ghrelin and MBOAT4 in the stomach and GHS-R expression in the 

hypothalamus of mice 36. DIO also has a detrimental effect on the neuroendocrine ghrelin system 

and causes ghrelin resistance in rodents through the down regulation and dysfunction of NPY/ AGRP 

neurons 36. The apparent species-dependent discrepancy in DIO-induced ghrelin resistance warrants 

further research and may prevent the ghrelin system being a useful therapeutic target in DIO 37.   

2.1.2 A role for ghrelin in human obesity? 

Obesity is a multifactorial disease and its origin can span from various avenues including genetics. 

Genetic factors are strongly associated with obesity and cover two areas, monogenic and polygenic 

factors. Prader- Willi syndrome (PWS) is a key example of genetic obesity and is the result of a loss of 

paternal genes in the q11-13 region of chromosome 15. Patients with PWS experience excessive 

appetite (hyperphagia) which is linked to hyperghrelinemia 38. PWS patients have increased fasting 

and post prandial ghrelin levels when compared to non PWS obese or lean patients 38. This indicates 

a potential role for ghrelin as a cause of hyperphagia and obesity in PWS due to either an increase in 

ghrelin gene expression, a decline in transcription inhibitory factors or a reduction in ghrelin 

clearance 39. The inhibition of the ghrelin system may allow for the treatment of individuals 

diagnosed with PWS. This may be achieved by i) ghrelin immunization, ii) MBOAT4 or GOAT 

inhibition, or iii) antagonizing GHS-R.  

Zorrilla et al, demonstrated that ghrelin immunization through a vaccine approach produced a 

significant reduction in weight through metabolic efficiency rather than altering hyerphagia 40. 

Further immunizations were carried out through the use of Spiegelmers, a single stranded mirror 

image oglionucleotide which binds to ghrelin to decrease its half-life 37, 41. However, the use of 



7 
 

Spiegelmers only generated weight reduction on a short term basis 41. Preventing the acylation of 

ghrelin through either the reduction in MBOAT4 transcription or GOAT function will allow for a 

decrease in circulating acyl-ghrelin. The use of an antagonist of the GHS-R, [D-Lys3]GHRP-6, has been 

shown in male mice to allow for an increase in glycaemic control and decrease in body weight 42. The 

reduction in glucose levels was mirrored by a decrease in insulin levels, indicating that GHS-R 

antagonism may be a therapeutic pathway for treating both obesity and insulin resistance 42, 43.  

Controversially, an antagonist is only efficacious when blocking the action of an agonist, yet, as 

previously mentioned, the low levels of circulating ghrelin present in obese subjects may invalidate 

this approach. However, further work has led to the development of GHS-R1α inverse agonists that 

work on the principle that GHS-R1α signals ~50% activity, independent of the presence of ghrelin 44. 

The following inverse agonists; [D-Arg-1, D-Phe5, D-Trp7,9, Leu 11]- substance P, which prevent 

constitutive GHS-R1α activity, were administered intracerebroventricularly in rats, resulting in a 

reduction in food intake and weight gain 45. Han Lee, and colleagues also noted that the neuronal 

depletion of GHS-R abolished ghrelin-induced food intake and was detrimental to the development 

of DIO 46. These finding indicate that GHS-R is a key modulator in energy metabolism and plays a role 

in DIO. We propose that further research is needed to elucidate the possible adipogenic and 

lipogenic role of constitutive GHS-R1α signalling in the context of human obesity.  

2.2 Ghrelin & Adipocytes 

2.2.1 Adipogenesis 

Ghrelin is involved in the regulation of metabolic hormones, with GHS-R’s present within adipose 

tissue 4, 47.  In addition to stimulating growth hormone (GH) secretion and appetite, ghrelin has been 

shown to play a role in adiposity. Adipogenesis is a regulated process involving the differentiation of 

pre-adipocytes into mature adipocytes. This is controlled by specific transcription factors; 

peroxisome proliferator-activated receptor γ (PPARγ) and sterol-regulatory element binding protein-
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1 (SREBP1). SREBP1 is encoded by the SREBF1 gene which is transcribed into two splice variants, 

SREBP1-a and SREBP1-c 48. Upon the addition of acyl-ghrelin and desacyl-ghrelin, PPARγ and SREBF1 

mRNA expression levels increase in human visceral adipocytes during differentiation 11. Therefore, in 

the presence of ghrelin, in vitro and in vivo studies have demonstrated that mRNA levels of PPARγ 

are increased resulting in the differentiation and proliferation of preadipocytes 11. PPARγ activity can 

be influenced by key components that play a role in the mammalian insulin pathway, for example; 

mammalian target of rapamycin complex 1 (mTORC1) and the Akt/ Protein kinase B (Akt/PKB) 

complex 27. In the presence of acyl-ghrelin, mTORC1 and Akt/PKB can enhance PPARγ activation 

promoting adipogenesis 27. The presence of mTORC1 and Akt/PKB highlights ghrelin’s ability to have 

multifactorial effects, with the synergy of acyl-ghrelin’s adipogenic effect and insulin signalling. Both 

desacyl and acyl-ghrelin produce an increase in adipogenesis and a decrease in insulin sensitivity, 

however desacyl-ghrelin’s role is not consistent across studies (Table  1) 27.  The elevation of SREBF1 

was accompanied by a significant increase in lipid accumulation in visceral adipocytes 11. This 

administration of ghrelin directly stimulated intracytoplasmic lipid accumulation via the increased 

production of various fat storage promoting enzymes including carboxylase, acetyl CoA, fatty acid 

synthase and lipoprotein lipase 11.   

2.2.2 Lipid retention 

Following chronic intravenous administration in mice, ghrelin has also been shown to increase mRNA 

expression of genes which promote the retention of cholesterol 49. The reverse cholesterol transport 

pathway, the removal of excess cholesterol from peripheral tissues back to the liver for excretion 

and catabolism, is critical due to the pathways role in defence against atherosclerosis 50-52. This 

cholesterol efflux is dependent upon the ATP binding cassette (ABC)A1 and ABCG1 50, 53. ABCG1 and 

ABCA1 are members of a superfamily of transporters that functions to transport cholesterol to the 

cell surface for removal by high density lipoproteins (HDL) 50, 52. PPARγ induces the expression of ABC 

via nuclear cholesterol sensors, liver X receptors (LXR) i.e. LXRα and LXRβ 52. LXR acts as a 
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transcription regulator for the genes associated with cholesterol efflux, which is activated when total 

cellular cholesterol levels are high 54. However, when total cellular cholesterol levels are low, SREBP 

induces cholesterol biosynthesis 54.  So in the presence of ghrelin, SREBP1-c expression is increased 

whilst ABCG1 and LXRβ expression is decreased 49. Even though these results indicate ghrelin has a 

role in increasing lipid retention within adipocytes, the relationship between cholesterol efflux, 

biosynthesis genes and ghrelin is disputed among studies. The hypothalamic activation of GHS-R1α 

in mice and rats results in the activation of Sirtuin 1 (SIRT1) to deacetylate the tumour suppressor 

gene p53, increasing phosphorylation of AMP-activated protein kinase (AMPK) which in turn 

inactivates fatty acid biosynthesis and activates fatty acid oxidation 55-57. In vivo, administration of 

ghrelin to p53 null mice demonstrates a decrease in lipid metabolism modulating gene expression 

i.e. SREBP1c, indicating that p53 is essential for the action of ghrelin on adipose tissue 55.  Ghrelin 

administration has also been reported to activate the PPARγ-LXR-ABC pathway in a dose dependant 

manner, where ghrelin results in an increase in LXR and ABC expression in human THP-1 

macrophages 58. An increase within cellular fat mass could result in an increase in lipogenesis and 

substrate uptake and a decrease in lipolysis and export 1. These processes could alter the intrinsic 

regulation of free fatty acids and cholesterol biosynthesis pathways that could lead to 

hypertriglyceridemia and other complications 59. Due to the diversity of published data and various 

doses of acyl-ghrelin administered, further research into ghrelin mediated lipid retention especially 

within humans is needed.  

2.3 Ghrelin & the pancreas 

2.3.1 Glucose homeostasis 

The process of glucose homeostasis is dependent on the liver and gut as sources for circulating 

glucose and adipose tissue as a peripheral organ for glucose utilisation. Ghrelin and GHS-R1α RNAs 

are expressed within the pancreas and β-cells, suggesting a possible relation for ghrelin in affecting 

glucose homeostasis via insulin function. In humans acyl-ghrelin has direct metabolic actions at a 
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peripheral level, influencing endopancreatic function and altering glucose’s diabetogenic action 60, 61. 

As well as acyl-ghrelin, desacyl-ghrelin has been shown to alter glucose metabolism, the intravenous 

administration of desacyl-ghrelin in humans has been demonstrated to promote a favourable 

influence on glucose metabolism, insulin sensitivity and the inhibition of lipolysis 60, 61. The 

expression of GHS-R and ghrelin within the pancreas suggests local regulation of insulin secretion 62, 

63, with acyl-ghrelin supressing insulin secretion both in vivo and in vitro. Dezaki and colleagues 64 

reported that endogenous acyl-ghrelin supresses insulin secretion via a restriction on glucose 

induced cytosolic calcium concentration and insulin release within islet β cells of mice and rats. 

Furthermore, ghrelin inhibits glucose-induced membrane excitability, supressing cellular signalling 64. 

However, the mechanism in which acyl-ghrelin regulates pancreatic islet function remains unclear 

with few studies in humans. Ghrelin’s role in the attenuation of glucose stimulated insulin secretion 

was elucidated recently, indicating that ghrelin action on β cells may be through a non-direct 

manner. DiGruccio and colleagues demonstrated that the presence of GHS-R1 on δ cells mediated 

indirect ghrelin action on β cells 65. Thus, GHS-R1a+ δ cells, promoted the secretion of intermediate 

products such as somatostatin through a calcium ion cascade that blocked insulin secretion 65.   

Studies in humans has shown that the acute intravenous administration of acyl-ghrelin via bolus 

injection and infusion are associated with an increase in plasma glucose levels in both healthy and 

obese patients, and this ghrelin mediated increase was seen to enhance second phase insulin 

response 8, 26, 66, 67. In fasted mice this direct, non GH-mediated hyperglycaemic effect was blunted by 

the oral administration and intraperitoneal injection of a GHS-R antagonist, stabilising blood glucose 

levels 68. Broglia et al 26 noted that acyl-ghrelin’s initial stimulation of somatostatin levels caused an 

inhibition of insulin release. Further work by Arosio and colleagues 69 noted a similar relationship 

between acyl-ghrelin, somatostatin and glucose metabolism. However, the simultaneous rise in 

somatostatin and glucose indicates that ghrelin’s effect on glucose metabolism is still unclear. The 

effect of ghrelin is suggested to be direct yet the query remains as to whether this effect is via the 

promotion of glycogen breakdown and/or the inhibition of glucose uptake. Upon longer term 
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administration of acyl-ghrelin in healthy men, at a constant infusion rate lasting 180 minutes at 5 

pmol/Kg, glucose levels were raised but glucose-induced insulin secretion was blocked, with the 

blockage only being restored when ghrelin supply ceased 70. However, acyl-ghrelin infusion in 

healthy humans caused peripheral insulin resistance post administration raising the possibility that 

insulin resistance may be attributed to raised GH and free fatty acid (FFA) secretion 63.  

 The literature indicates that acyl-ghrelin plays a detrimental role in glucose homeostasis, 

however studies indicate that desacyl-ghrelin plays a beneficiary role. In rodents and humans, 

desacyl-ghrelin was proven to enhance insulin levels in response to glucose load and shown to 

counteract acyl-ghrelins diabetogenic effect 71-73. This a role for desacyl-ghrelin as a potent 

secretagogue reiterates the importance to consider desacyl and acyl-ghrelin as separate entities and 

a possible therapeutic pathway may lie within the desacyl-ghrelin and acyl-ghrelin ratio.   

2.3.2 A role for ghrelin in type 2 diabetes? 

An important contributor to the pathophysiology of T2DM is the failure of glucose uptake into the 

peripheral tissues such as adipose, skeletal muscle and liver. Decreased ghrelin levels within patients 

with T2DM are associated with an increase in abdominal adiposity and insulin resistance 74. As 

previously mentioned ghrelin has a demonstrated role in fat metabolism and glucose homeostasis, 

and cross talk between lipid and glucose metabolism may result in a physiological role for ghrelin in 

insulin resistance. Cellular lipid accumulation that is observed upon ghrelin administration will have 

a knock on effect on glucose homeostasis. There are two hypothesese in place regarding lipid 

mediated insulin resistance. The first is an excess of visceral adiposity triggers the release of FFA into 

the circulation. An increase in hepatic FFA oxidation triggers insulin resistance and an increase in 

glucose output from the liver 75, 76. Acyl-ghrelin infusion in humans has been associated with a rise in 

circulating FFA levels 35, this could result in a decrease in insulin sensitivity 76. These findings suggest 

a causative role in the reported insulin resistance that occurs in healthy volunteers when given an 

acyl-ghrelin infusion 70, 77. The second hypothesis is related to enlarged fat laden adipocytes 
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associated with release of FFA, physical stress and reactive oxygen species (ROS) production 78, 79. 

Prolonged elevation of ghrelin increases visceral adiposity in mice and attenuates the transcription 

of LXRβ and ABCG1 which increases adipocyte volume due to a reduction in lipid export 49. LXR 

isoforms have been reported to have anti-inflammatory properties, LXR ligand activation causes the 

inhibition of NFκB dependant induction of inflammatory genes 80. This could allow for altered 

immune function, due to an increase in ROS and the release of damaging inflammatory agents such 

as tumor necrosis factor α (TNFα).  When Lxrab-/-  mice are placed under bacterial lipid peroxidase 

stress there is an increase in the expression of interlukin 1β, TNFα  and nitric oxide synthase 81.  

This indirect immuno-modulatory response may lead to insulin resistance and T2DM due to TNFα 

ability to induce the inhibitory phosphorylation of insulin receptor substrate (IRS)-1, leading to 

systemic insulin resistance 79. The association between obesity and T2DM is well documented, 

allowing for ghrelin signalling to play a potential pharmacological role in its prevention and/or 

treatment. YIL-781  is a piperidine substituted quinazolinone derivative with a selective affinity for 

GHS-R1α, it is a competitive antagonist for GHS-R1α resulting in the blockage of the ghrelin binding 

domain 82. Upon YIL- 781 oral administration at 3 mg/kg to insulin resistant DIO rats it was shown to 

reduce fat mass, enhance glucose stimulated insulin secretion and promote weight loss 82. Ghrelin’s 

ability to cause hyperglycemia through GHS-R1α could underpin a therapeutic pathway that can 

alter insulin secretion and prevent glucose intolerance in T2DM 68. The attenuation of rat islet β cells 

in the presence of ghrelin indicates that a ghrelin blockade may result in an increase in previously 

supressed glucose-induced insulin release. This will enable pancreatic islets to function at a higher 

yield, producing more insulin and restoring the body to normoglycemia 83. However, the published 

data regarding the mechanism between ghrelin and insulin secretion is varied within humans. Tong 

et al 84, infused 12 healthy volunteers with ghrelin at 0.3, 0.9 or 1.5 nmol/kg/h, and show that ghrelin 

can reduce glucose stimulated insulin secretion. The range of ghrelin in this study fall within the 

physiological range in the circulation which may not be a true representative of the lower 
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concentration of ghrelin found in β cells 85. Further insight in humans or human cells need to be 

explored in order to investigate species-dependent effects.  

Exploration of novel research into ghrelin’s relationship with obesity, lipid retention and glucose 

homeostasis may elucidate novel strategies to treat and prevent T2DM. As well as therapeutic 

avenues in T2DM, the treatment must take into consideration the physiological roles that ghrelin has 

in other regions of the body. The blocking of GHS-R1α may seem beneficial for obesity but may 

cause detrimental effects in other organs. Recently published data demonstrates that ghrelin has an 

AMPK-dependent protective role in substantia nigra dopamine neurons in a mouse model of 

Parkinson’s disease 86. Furthermore, acyl-ghrelin promotes new neurone formation and enhances 

cognition in the brains of adult rodents 87, 88. With ghrelin reported to have effects on multiple 

organs in the body it is clear that new ghrelin-based therapies for T2DM need to consider potential 

adverse consequences, particularly for brain function.       

 

3 Future work 

In order to establish a possible therapeutic role for ghrelin within human obesity and T2DM previous 

research findings must be amalgamated and developed further to delineate ghrelin-specific 

pathways. The examination of the use GHS-R1α inverse agonist to prevent DIO will require the 

optimisation of dosage to ensure that blocking the receptor will not have detrimental effects on the 

other important actions of ghrelin.  An in vitro study in human adipocytes would determine the 

effect that a physiological range of desacyl and acyl-ghrelin has on lipid retention and would allow 

for the molecular characterisation of this effect. This will lead to a better understanding of the 

cellular mechanisms involved, potentially leading to novel treatments for complications associated 

with atherosclerosis and hypertriglyceridemia.  For instance, translating previous findings by Davies 

and colleagues 49,  is important as it could provide evidence for the speculation that ghrelin 

immunization may prevent lipid retention within adipocytes. As previously mentioned the resultant 



14 
 

fat laden adipocytes could be detrimental and result in the development of T2DM, so in essence we 

envision that the prevention of lipid accumulation within adipocytes will prevent the indirect 

immune modulating response that may be leading to insulin resistance and T2DM. In addition, this 

area of research requires further insight into whether the effect of ghrelin on adipocytes is 

dependent on acylation of the hormone. 

 4 Summary 

This review considers the important roles that ghrelin plays in regulating lipolysis, lipogenesis and 

adipogenesis within adipocytes. However, the studies compared in this review were performed in 

different species and predominantly in rodents. Further work is essential to understand the role of 

ghrelin in cellular energy balance within human adipocytes. Current literature report variations in 

route of administration, dosage and model species, allowing for the potential misinterpretation of 

ghrelin’s physiological role. An expansion of this work using healthy and diseased humans and 

human cellular models treated with physiological levels of acyl and desacyl-ghrelin will increase our 

current knowledge of the pathways associated with glucose and lipid metabolism. Human studies 

will also allow for the elucidation of the therapeutic potential of ghrelin in various metabolic 

disturbances but in particular, DIO and its complications.  
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Figure 1. Ghrelin peripheral effects on specific tissues.  
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Model Dose Treatment Effect  Reference 

Healthy humans 1 μg/kg  
Acyl ghrelin  

Intravenous Decreased Insulin 
Sensitivity 
Reduced serum 
insulin levels 

26
 

Healthy humans Bolus;  
Des acyl ghrelin 
[1.1 µg/kg] 
IV;  
Des acyl ghrelin 
[4.0 µg/kg/h] 
 

Bolus injection followed 
by continuous 
intravenous infusion 

Des acyl ghrelin 
had no effect on 
insulin secretion 

89
 

Male C57BL/6 
mice 

5 nmol/day  
Des acyl ghrelin 
& Acyl ghrelin 

Chronic 
intracerebroventricular 
infusion  

Hyperinsulinemia 
90

 

Human 
macrophages 
(THP-1) 

1, 10 & 100 nM 
ghrelin  

Treated PMA-
differentiated THP-1 
macrophages with 
increasing doses of 
ghrelin  

Promotes 
activation of the 
Akt/PKB pathway 
 

58
 

3T3-L1 Acyl ghrelin 1-
100 pmol, 
Des Acyl ghrelin 
1-100 pmol  

Preadipocytes incubated 
with des acyl ghrelin and 
acyl ghrelin for 24 hours 

DAG and AG 
stimulated 
adipogenesis, fatty 
acid uptake and 
inhibited lipolysis 

91
 

C57BL/6NHsd 
mice 

100 nM Ghrelin Wild type mouse 
pancreatic islets 
incubated with ghrelin  

Reduced glucose 
stimulated insulin 
secretion 

65
 

Table 1. Effects of ghrelin treatment on insulin secretion and adipogenesis.  

 


