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SUMMARY

We propose a new computational framework for the treatment of acousto-magneto-mechanical coupling that
arises in low-frequency electro-magneto-mechanical systems such as magnetic resonance imaging scanners.
Our transient Newton—Raphson strategy involves the solution of a monolithic system obtained from the
linearisation of the coupled system of equations. Moreover, this framework, in the case of excitation from
static and harmonic current sources, allows us to propose a simple linearised system and rigorously motivate
a single-step strategy for understanding the response of systems under different frequencies of excitation.
Motivated by the need to solve industrial problems rapidly, we restrict ourselves to solving problems consist-
ing of axisymmetric geometries and current sources. Our treatment also discusses in detail the computational
requirements for the solution of these coupled problems on unbounded domains and the accurate discretisa-
tion of the fields using Ap —finite elements. We include a set of academic and industrially relevant examples to
benchmark and illustrate our approach. Copyright © 2017 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Magnetic resonance imaging (MRI) has become a widely used and popular tool in the medical indus-
try capable of diagnosis of many medical ailments, such as tumours, damaged cartilage and internal
bleeding as well as its use in neuroimaging. The most popular type of magnet used in these devices
are superconducting magnets, consisting of conducting wire contained within a supercooled vessel
of liquid helium known as the cryostat, which achieve the field strengths required for high-resolution
imaging. Figure 1 shows a typical setup of an MRI scanner, consisting essentially of four main
components: the main magnet coils, secondary magnetic coils, the cryostat (comprised of a set of
radiation shields that encapsulate the liquid helium immersed magnetic coils) and resistive gradi-
ent coils. A set of main magnetic coils produce a strong uniform stationary magnetic field across
the radial section of the scanner, required to align the protons of the hydrogen atoms in the patient
in the axial direction. The secondary magnetic coils are used to minimise the large stray magnetic
fields arising outside of the scanner. The cryostat consists of a set of metallic vessels in vacuum to
maintain the supercooled magnet temperatures and shield the coils from radiation. A set of resistive
coils inside the imaging volume, known as gradient coils, produce pulsed magnetic field gradients
that excite certain regions of the protons to generate an image of the patient.
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Figure 1. Primary components of a simplified clinical magnetic resonance imaging scanner.

Recent developments in MRI scanner design have increased the field strength of the main magnet,
improved the transient gradient coil current signature and considered changes in bore geometry in
order to improve the quality of MRI images. However, this also introduces new challenges because
image quality must also be balanced with the needs of clinical efficiency and patient safety [1].
Transient magnetic fields produce eddy currents in conducting components, which, in turn, perturb
the magnetic field and generate Lorentz forces, exerting electro-mechanical stresses causing them to
vibrate and deform [2]. The vibrations also cause perturbations of the surrounding air, which produce
an acoustic pressure field. These phenomena can have undesired effects causing imaging artefacts
(ghosting), decreased component life and uncomfortable conditions for the patient, because of the
noise from mechanical vibrations. Minimising ghosting effects, keeping noise levels to acceptable
limits and ensuring patient safety are key criteria for new MRI scanner designs.

The consistent exposure to time-varying magnetic fields during a scan procedure has resulted in
patients experiencing ‘tingling’ sensations [3]. During some scans, when patients have been exposed
to high sound levels, adverse effects have also been reported [4,5]. Current guidelines [1] state ‘there
is little risk of a permanent threshold shift in hearing in those exposed to noise associated with MRI
procedures on a one-off or occasional basis’. It goes on to say that, in current low-frequency MRI
scanners, clinically significant effects on hearing are unlikely in most subjects for noise levels below
85 dB(A) of scans lasting less than an hour. Nevertheless, ‘IEC recommend that hearing protection
should be used if equipment is capable of producing more than 99 dB(A)’. Many attempts have been
made to measure the sound profiles of these harmful noise levels [6,7] as well as proposing methods
to reduce them, such as active noise-cancelling technologies [8].

Experimental prototyping and testing of new scanner designs is expensive, and to reduce this cost,
there is considerable interest in the development of accurate computational tools, which can aid the
design process. However, the development of such tools is challenging due to complexity that results
from the coupled physics of electromagnetism, mechanics and acoustics and the non-trivial task of
accurately modelling the complex field behaviour.

Previously, there has been interest in applying commercial multi-physics finite element (method)
(FE(M)) packages, such as COMSOL [9], Ansys [10] and NACS [11], to simulate the coupled nature
of MRI scanners. Rausch et al. have presented an approach based on the FEM-BEM (boundary ele-
ment method) program CAPA [12] for the magneto-mechanical coupling effects of an MRI scanner
using a low-order discretisation [13]. This important three-dimensional simulation was extended to
include acoustic effects in [14] and, to the best of the authors' knowledge, is the only fully coupled
simulation of a complete MRI scanner that has been presented to date. To describe the electromag-
netic forces, they adopt the approach of Kaltenbacher, which employs a layer of elements adjacent
to the conductor for their computation [15]. In our previous work [2,16—18], we advocated an alter-
native approach, which allows us to avoid the direct computation of electromotive forces and instead
work entirely with a physically motivated Maxwell stress tensor. Others have attempted to model
these complex physical effects to aid the design of the MRI magnetic coils [19,20], to analyse the
plane strain effects on superconducting solenoids [21] and the effects of the magnetic field exposure
on the patient [22].

Copyright © 2017 The Authors. International Journal for Numerical Int J Numer Meth Engng (2017)
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The simulation of MRI scanners also builds on the expanding literature devoted to magneto-
mechanics and coupled problems including FEM-BEM coupling [23,24], magneto-mechanical
damping machines [25], magneto-mechanical effects on material parameters [26], enhanced basis
functions for magneto-mechanical coupling [27] and strongly coupled systems [28]. When the cou-
pling includes acoustic effects, careful treatment of the far field boundary is also required and
techniques such as perfectly matched layers (PML), FEM-BEM coupling, infinite elements and
absorbing boundary conditions have been developed for this (see, e.g. [29] for a recent review).

Although commercial codes provide an efficient environment for many problems, our interest lies
in providing a low-cost dedicated industrial design tool. This tool should operate over a wide range of
frequencies more effectively in order to predict the response from an analysis of general gradient coil
time signatures, which can be decomposed by Fourier expansion. As such, not only do we require
a reliable means of treating the coupled nature of acousto-magneto-mechanical problems, but we
also need to be able to accurately resolve the potentially small skin depth in conducting components
as well as accurately resolve the propagation of acoustic waves. The aforementioned commercial
codes are typically designed with low-order FE discretisations in mind, which require dense meshes
for handling the small skin depths and wave propagation at higher frequencies. On the other hand,
hp—FE discretisations offer possibilities for high accuracy on locally refined meshes and have been
shown to accurately resolve the skin depth in the conducting components [30], handle the complex
coupling [16—18] and to resolve the propagation of the acoustic waves [31] and we, therefore, choose
to adopt them here. Furthermore, in the computation of unbounded domains using a PML, they have
also been shown to offer superior performance [32].

Building on the established #p—FEM methodology, the main novelty of our work is to provide
a new rigorous theoretical framework for the simulation of acousto-magneto-mechanical effects in
MRI scanners, which forms the basis of our design tool. We undertake the consistent linearisation
of the transient equations and arrive at a simplified monolithic single-step strategy in the case of
harmonic gradient coil excitations. It greatly improves on our previous work [2], which required non-
physically motivated simplifying assumptions and resulted in a fixed point strategy with a growth
of iterations for increasing frequency. We also extend our framework to incorporate the effects
of the acoustic field and propose a rigorous set of interface conditions, which couple the various
physics together. The entire framework is suitable for three-dimensional geometries discretised by
hp—FEM, but such simulations would be prohibitively expensive for the industrial design cycle. As
our interest lies in the development of a rapid design tool, we focus on the simulation of problems
on axisymmetric geometries.

The presentation of the material proceeds as follows: In Section 2, we outline the governing
equations, the coupling between the fields and present a fully coupled non-linear transient transmis-
sion problem. Section 3 presents the consistent linearisation of the weak form of the transmission
problem, and we derive a simplified monolithic strategy in the case of harmonic gradient coil
excitations. Then, in Section 4, we briefly discuss the reduction to axisymmetric geometry, the
computational far field treatment and the Ap—FE discretisation. Section 5 presents a selection of
numerical case studies to validate each physical field independently and highlights the computa-
tional challenges of small skin depth and high-frequency wave propagation. Then we present a series
of results for complex coupled case studies of industrial relevance before closing with concluding
remarks.

2. COUPLING APPROACH

In the following, we describe the governing equations and coupling methodologies that link the
electromagnetic, mechanical and acoustic behaviour of an MRI scanner. We begin, in Section 2.1,
with the transient eddy current model to describe the electromagnetic response from a conducting
region Q. when illuminated by a low-frequency background magnetic field. This field arises from a
current source J* with support in an unbounded region of free space R3\Q,, as illustrated in Figure 2.
Then, in Section 2.2, we present the corresponding transient mechanical response of Q. resulting
from electromagnetic stresses generated in this region. Finally, in Section 2.3, we present the transient

Copyright © 2017 The Authors. International Journal for Numerical Int J Numer Meth Engng (2017)
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R3\ Q

Figure 2. Conducting region Q. excited by coils contained within the unbounded R3\ Q.. space.

acoustic response resulting from the vibration of . in R*\ Q.. The complete coupled transmission
problem is stated in 2.4.

2.1. Electromagnetic description

For our chosen application, the transient eddy current approximation of Maxwell's equations is valid
[2], where the displacement current terms are neglected because of the high conductivity of the con-
ducting components and the low frequency of the exciting currents. A rigorous justification involves
the topology of the conducting region [33]. Defining E, H, D, B as the electric, magnetic, electric
flux and magnetic flux intensity vectors, respectively, and introducing a vector potential A such that
B = V X A, this model can be described byi

0A ou

Vx(u‘IVxA)=J“+J"+JI=J“—7/E+y§x(VxA) in R, (1a)
V-A=0 in R\ Qe, (1b)
A=O(|x|_]) as |x| - oo, (Ic)

where we assume x to be measured from the centre of €2.. The previous equation assumes the regions

to be homogenous and isotropic, such that B = uH and J° = yE where y denotes the electrical

conductivity and u the magnetic permeability. The solenoidal external current sources J° are assumed

to lie in free space, R*\Q., where y = 0 and y = y = 47 x 10~"H/m. The term J' = you/drx V x A

denotes the Lorentz currents where u is the mechanical displacement in the conducting region €.
The vector potential A satisfies the transmission conditions on the conductor boundary 9€2,

nx[Alo, =0, nX[u'VxAlg =0,

where [-]so, denotes the jump on this interface and # is a unit outward normal vector to dQ..

2.2. Mechanical description

The conducting region €. is assumed to behave elastically and the mechanical displacements u to
satisfy

m . o*u :
V- (c"(w) +0°(A)) = vy in Q, @

#The temporal gauge has been applied in Q. and the Coulomb gauge in R3\Q, [30]. Note we setA = O (|x|’l ) asx — o
according to the mathematical model described by Ammari, Buffa and Nédélec; [33] here, the big O notation implies
that the rate is at least as fast as |x|~! and can be faster in practice; for details, see the aforementioned paper.

Copyright © 2017 The Authors. International Journal for Numerical Int J Numer Meth Engng (2017)
Methods in Engineering Published by John Wiley & Sons, Ltd. DOI: 10.1002/nme



ACOUSTO-MAGNETO-MECHANICAL COUPLING IN MRI SCANNERS

where
" (u) := Mr(em))I + 2Ge(u),

is the mechanical contribution to the Cauchy stress tensor, 4, G denote the Lamé parameters, € :=
(Vu + VuT) /2 the linear strain tensor, I the identity tensor,  the transpose and

o“(A) = <H®H - %|H|21)
=y (v XA®VXA - %w ><A|21>,

is the magnetic component of the Maxwell stress tensor [2]. In Equation (2), we have already used
the fact that the magneto-ponderomotive forcing term can be expressed as f° = V - 6¢. We write
0Q. = 0QP U oQY and fix u = uP on dQP in order to stop the conducting component floating away.

2.3. Pressure description

In free space, 6™ has only a volumetric part 67, := pI = k(V - u)I where p is some pressure field.

This means that (2) reduces to the scalar wave equation with a sourcing term

2P
v2p — C—lza—tf —_V.(V-69 in RA\Q,, 3)

where ¢ := 1/k/p is the speed of sound and x denotes the bulk modulus of the medium. This must
be accompanied by the associated radiation condition

. op . op -1
1 —+—)=0 ) 4
im_ <d|x| az) (lx) “4)

The source term in (3) is only non-zero in the support of J*¥; this can be seen by considering the
alternative form of £ in free space below!
fe=V-0'e=—;40H><V><H=—VXAXJS=—V><AX(V></461V><A), 5)

and thus it follows that in the same region
V. fe=V-(V-06°)= uH -V xXJ = ). (6)

Taking this into account, on the interface d€2. shown in Figure 3, the pressure field, mechanical
displacements and stresses are coupled by the transmission conditions

(6" + 05 n= (I + GE)GQC n,
+ ou|”

= -n:(Vﬁ+V-o-e)|a+Qc-n,

o9,

Note that the latter condition also further reduces to

. *u|”
Vplig =0, i

by ‘n= (Vﬁ+V~o-€)|a+QL ‘n,

oy

in light of the known Dirichlet displacement condition on dQ2 for the mechanical problem.

YHere, we assume Biot—Savart coils. If the coils are instead treated as rigid or deformable conducting bodies, then their
support instead forms part of Q.
TWe recall here the relationship between the curl and gradient operators (VHDH — 1/2V(H - H) = —H x (V x H).

Copyright © 2017 The Authors. International Journal for Numerical Int J Numer Meth Engng (2017)
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Figure 3. Interface conditions at the conductor boundary.

2.4. Coupled transmission problem

Combining the statements from the previous Sections 2.1, 2.2 and 2.3, we arrive at the follow-
ing transmission problem for describing our coupled acousto-magneto-mechanical system in a time
period [0, 7]: Find (4, u, p)(t) € (R? x R? x R)[0, T] such that

0A

V x (v ><A)+yE=J“+y%—l:x(V x A) in R, (Ta)
V-A=0 in R°\Qe, (7b)
m e azu 1
V- (c"(m)+0°A)) = P in Q, (7c)
9%p
V2 — 1op _ _y. (V- 6°(A)) in R\Q,, (7d)
c2 or?
A=0(xI"), (Te)
lim 9 + P\ _ o(x|™H as |x| — oo, (7f)
lx|>c0 \ O|x] ot
u=ub, (7g)
Vp|;QD n=0 on QP (7h)
+62u - A e + N .
pt=— n=(Vp+V-c°A)|}, 'n on 09, (71)
01> oo .
nx[Alxo, =0, (73)
nx[u'V XAl =0, (7k)
(6°(A) + 6" W) 5 n = (PI + 6 (A)|5, 1 on 0Q, (71)
At=0)=0 in R?, (7m)
s 0D .3
pt=0) = E(I =0)=0 in R°\Q,, (70)

where we have chosen to set the initial conditions for the fields to be zero, corresponding to a system
at rest at = 0. An illustration of the fully coupled system is shown in Figure 4.

Copyright © 2017 The Authors. International Journal for Numerical Int J Numer Meth Engng (2017)
Methods in Engineering Published by John Wiley & Sons, Ltd. DOI: 10.1002/nme
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Figure 4. Physical representation of the coupling effects in an magnetic resonance imaging environment.

For our desired application, the system (7) is excited through the current source J°(¢). In practice,
the application allows for the decomposition J*(£) = J” +J*€ (), where J”C corresponds to the static
current source of the main magnetic coils and JA€(¢) the transient current source of the gradient coils
[2]. This decomposition, illustrated in Figure 5, allows us to introduce the following static problem:
find A€, uPC, pPC € R? x R? x R such that

V x (1~'V x AP = JPC in R%, (8a)
V.APC =0 in R3, (8b)

V- (0" @) + 047 = 0 in Q. (8
V2pPC = _v . (V - 6°(APC)) in R°\Qe, (8d)

APC = 0 (1x|7). (8e)

PPC = o(lx|™ as |x| — oo, (8f)

uPC = ub, on 0QP, (8g)

nx AP0 =0, e
nX[u'VxAP o =0, (©D

(V5" +V - o4@P)||-n=0, (&)
(0" ™)+ o5 @) | m= (PT+o @[ n onoQ, o

c c

where we have assumed a similar decomposition of the Dirichlet displacement condition u? =

D D
upe +uAC(t).

3. LINEARISATION

With developing a FE framework for the approximate solution of (7) and (8) in mind, we linearise
weighted residual statements of the transmission problems. To this end, it is convenient to introduce
the following

X :={A € H(curLR®) : V. A=0 inR\Q.},
Y(g) :={uc H'(Q.)’ : u=g onoQP},
Z :={p € H'(R\Q,)},
which will be used to describe the weak solutions to the dynamic and static transmission problems,

where H(curl, R*) and H'(R?) have their usual definitions (e.g. [34]). We start with the treatment of
the simpler static problem (8) and then continue to our approach for the transient system (7).

Copyright © 2017 The Authors. International Journal for Numerical Int J Numer Meth Engng (2017)
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Figure 5. Current source decomposition.

3.1. Linearisation of the static problem

Consider possible weak solutions (A”€, uP€, pPC) € X x Y(ub ) X Z and the associated residuals

RPC(A%;APC) = / 3(/4‘1V x APC .V x A%)dQ — / 3JDC -A%dQ, (9a)
R R

RYC@’; APC.uPC pPC) = / (6" @") + 6°(A")) : Vu’dQ
QL‘
- @I + 6| n™ - u’ds, (9b)
oQN

RYC(p*:APC.pPC) 1= / (VPP Vi’ + (V- 0) - Vp*)dQ, %)
R\Q,

for all (A%, u®, p%) € X x Y(0) x Z. The directional derivatives of these residuals are

DRPC(A% APC)[82¢] = / W'V x 8¢ -V xA%)dQ, (10a)
R3
DRY“@’; AP, uPC, pPO)[87¢] = / p'SAPC,87C) 1 VuldQ
Q(‘
- / 1y SAPC, 809 Tn - ulds, (10b)
oy
DRY“(u®; AP, u”C, pPO)[87] = / 6"(8,°) : Vu’dQ, (10¢)
Q,
DR} (u®; AP, uP, pPO)[60€] = - / 87"n - u’ds, (10d)
p aQy p
DRYC(p%; AP, pPC,)[87T = ~ / (VX 87) xJP9) - VpPde, (10e)
supp(J°©)
DRPC(p%; APCpPO[6PC] = / V&PC . VpodQ, (10f)
14 P RI\Q, P

where n = n* = n~ and we have introduced the linearised electromagnetic stress tensor

Copyright © 2017 The Authors. International Journal for Numerical Int J Numer Meth Engng (2017)
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SAPC,80¢) 1=V xAPC @ VX 8)° + VX 8) @V xAPC — (VxAPC - Vx8))I

At a continuous level, equations (9,10) can be used to introduce the Newton—Raphson iteration: Find
(8,1, 87, 57U € X x ¥(0) X Z such that

DREC(M(S;ADC[’"], uDC[m] ADC[m])[‘SDC[m]]_'_

DR?C(u‘s;ADC[m],uDC[ m) ADC [m )[6DC[m]]+

DRi)C(uﬁ;ADC[mJ, uD [m]’i\)DC )[5ﬁDC[mJ] — _REC(u5;ADC[mJ’ uDC[m]’laDC[m])’ (1 1b)
DR]?C@&;ADC[m]’If)DC[nl])[6§C[M]]+
DR[?C(ﬁ‘S;ADC,f?DC[m])[éI?C[m ] RDC(p5 ADC ADC[ ])’ (llc)

for all (A%, u®, p%) € X x Y(0) X Z where

DC[m+1] __ 4 DC[m] DC[m]
A =Pl 4 ghetm,

uPClm+11 _y, DClm) 65C[m]

ﬁDC[m+]J =ADC[mJ + 5§Clmj.

The initial guesses are such that (AP€1%) 4 PCl01 HDCI0y e (X x ¥ (b ) x Z). To permit the compu-
tational solution of (11), a spatial FE discretisation is required, which we will discuss in Section 4.
However, at this stage, it is already useful to note that, because of the specific nature of the equations,
(11a) can be solved independently, followed by (11c) and then (11b) without iteration. Moreover, if
the system is solved monolithically, the solution will converge to (A€, uP€, pP€) € (Xx Y @b )xZ)
in a single iteration.

In our previous approach [2], we neglected the effects of the static displacement, driven by the
static magnetic field, as we were primarily interested in computing the output power of the system
that depends only upon the transient displacements, which were assumed to be harmonic. However,
in this new formulation, we also include the static effects of the displacements to allow for a rigorous
treatment of the linearised transient scheme and maintain consistency of the physical fields.

3.2. Linearisation of the dynamic problem

Consider possible transient weak solutions (A, u, p)(f) € (X X Y(u o) X 2)[0,T] and the associated
residuals

RA(A%: A, u) :=/ ( IV xA- VxA5+yaA A‘S)dQ— J*-A%dQ
R3 ot R3
ou
ya— x (VxA)-A%dQ, (122)
R’ A, u,p) : /(o )+ c°A)) : Vu5d9+/ Z;’-u‘sdg
- (PI + 6¢(A))| " n~ - u’ds, (12b)
QN
o5 A s oo, 10D e ua
Rpy(p*;A,u,p) = Vp-Vp' + = —-p°+ V-6 Vp® | dQ
RAO\Q, c* ot
Pul
- t=—| -n*p°ds, 12¢
/a Qyp o p (12¢)
Copyright © 2017 The Authors. International Journal for Numerical Int J Numer Meth Engng (2017)
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for all (A%, u?, p%) € (X x Y(0) x Z). The directional derivatives of these residuals are

DRA(A%; A, u)[64] =/ (;rlv X84 - VxA® + y% -A5> dQ

R3
- [ (1% xwxs)-a%ae (132
o \' ot
6 aau F
DRy(A%;A,u)[6,] = — v, X (VxA)-A° ) dQ, (13b)
QC
DR, A, u. p)[5:] = / OIS, 8y | Valde
Q{:
—/ 1y 'S(A, 81) " n” - ulds, (13¢)
oy
1 ~ m . P azau Fy
DR, ’;A,u,p)[,] = 6"(8,) : Vul +p ol dQ, (13d)
QL‘
DRu(u‘S;A,u,ﬁ)[éf,]=—/ 8ptn™ - uds, (13e)
QN
DR;(p%; A, u,p)[84] = — / (Vx84 X (VX (u;'VxA))
supp(J*)
+ VXA X (VX (uy'V x84)) - Vp°dQ, (13f)
e -
DRy(p%; A, u, (8,1 = — / £ 00l g, (139)
oy OF
N A N 1 0% N
DRy(p"; A, u, p)I6p] = Véy - VPP + —=—--p° ) dQ. (13h)
RA\Q, c* ot

In the preceding equations, we have found it convenient to use the alternative form of V - o¢
introduced in (5) when linearising R;.

One strategy for solving the temporal system, after spatial discretisation, would be to adopt a
discrete time integration scheme and then apply the Newton—Raphson algorithm at each time-step to
solve the non-linear equations using the directional derivatives computed previously. However, such
an approach is computationally expensive and, in the interests of developing a fast computational
technique, we adopt a different strategy.

Rather than integrating the equations in time and solving the non-linear equations at each time
step, we choose instead to linearise the full time dependant equations about the static solution. This
linearisation in the context of MRI scanners is motivated by the knowledge that the static DC current
source is several orders of magnitude stronger than the weaker AC time varying source, leading to a
strong DC field and a weaker time varying field. Similar techniques, involving the additive split of a
non-linear problem to a series of linear problems, have been successfully applied to the field of com-
putational mechanics such as analysis of structural membranes [35—37], high-order mesh generation
[38] and in biomedical applications [39]. In this case, the residuals of the dynamic problem become

RIC(A®) 1=Ry (A% AP, u"C) = — / JAC-A%G, (142)
supp(J*)
R @®) :=R,u® AP, uPC, pP¢) = 0, (14b)
RIC(P%) :=Ry(p”: AP, uPC pPC) = — / (VAP X JY) - vp'de, (14c)
supp(J*©)
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and the associated directional derivatives take the form

DRYC(A%)[84] :=DR4(A’; A, uP)[84]

=/ (M—IanA-VXAMy@.A&) dQ, (15a)
R3 ot
DR{“(A%;AP9)[8,] :=DR(A°;A"°, u")[8,] = - / yaa«s: X (V x APC) . A%dQ, (15b)
Q,
DR} (u®; AP)[84] :=DR,u’; AP, u"C, pP)[84] = / u'SAPC, 8y) : VuldQ
QC
- / 1y ' SAPC, 8" n™ - u’ds, (15¢)
QN
DR} ®)[8,] :=DR,u’; A", u"C, pPC)[8,]
m 5 626u 1)
= 6"(8,) : Vul + p—= -u’ ) dQ, (15d)
Q, or?
DRI W®)[85] :=DR,(®; A, uPC, pP)[85] = — / 81tn~ - ulds, (15¢)
QN
DRYC(#5 AP0 -=DR (P54 PN == [ (V%80 xJ") - Ve
supp(J°€)
—/ (VX APE X (VX (uy'V x 8,))) - Vp°dQ, (15f)
supp(J”)Usupp(J*)
-
DRIC(P°)[84] :=DRy(p*: AP, P, pP)[8,] = — / * —aag" -t pds, (15g)
QN

c

DR?C@&)[&[}] :=DR[,(ﬁ6;ADC, ADC)[&[;] =/

0%5;
(v&,», VR + 12—1’ ~f75> dQ.
RO\Q, 2 or?

(15h)

Finally, recalling that AP, uPC, pPC are all time invariant, we see that the residuals and the direc-
tional derivatives in (14) and (15), respectively, are linear in the time dependent terms &4, 8,, 65 and
JAC. This motivates the time harmonic representations

6A N 6A eiwt,
6u N 614 eicor’
it
5[3 —>513€1w R
JAC N JAC eiwt
where @ denotes the angular frequency of the driving current in the gradient coils in the case of a
harmonic excitation. In reality, the gradient coils are driven using non-harmonic excitations, but their
time signals can be decomposed into its different frequency modes and the same approach applied.

The solution of the linear harmonic problem becomes as follows: find (64, 6., 6p) € X X Y(ufc) XZ
such that

DRAC(A%)[84] + DRI (A%, AP)[8,] = — R{€(A°)

= / JAC - A%dQ, (16a)
supp(J*<)

DR (u’; AP)[8,4] + DR ®)[8,] + DR, ®)[85] = — R} (®)
=0, (16b)

DRIC(p%: AP)[84] + DRI (p)[8,] + DRIC(*)I6] = = RIC(p”)
= / (V x AP x JAC . vpodQ. (16¢)

supp(J*©)
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for all (A%, u®, p°) € X x Y(0) x Z where it assumed that ul. — uP . We may then decompose

the full temporal solution into its static and time varying components, which in the case of a single
frequency excitation are given by

A(f) = APC + Re(8,¢'),
u(t) = uP€ + Re(6,¢'"),
p(®) = pPC + Re(5¢™™).

The directional derivatives in Equation (16) explicitly become

DRIC(A%)[84] =/ (H'V x84 VXA’ +iwyd, -A°) dQ, (17a)
R3
DR(A%APC)[8,] = — / iwy 8, x (V x APC) . A%dQ, (17b)
Q,
DRAC(u?; APC)[5,] = / S SAPE,8,) 1 VuddD
QL‘
- / 1y ' SAPC, 8,) " n~ - u’ds, (17¢)
oy
DR (u®)[8,] = / (6™(8,) : VU’ — pa*8, - u’) dQ, (17d)
Q(‘
DR, (u®)[6;] = — / &|Tn™ - ulds, (17e)
oQV
DR (% AP)[84] = - / ((Vx 84) xJ°€) - vpPdQ
supp(J°€)
—/ (VXAPE X (VX (uy'V X 84))) - VHdQ, (17f)
supp(J*)usupp(J*©)
DRIC(p)[6,] = / oo 8" npods, (17g)
oQN
~ 2
DRIC(p°)[65] = / V6, - Vp° — ‘“—(sﬁ -pP) dQ. (17h)
p R3\Q, 2

In the absence of pressure, the formulation previously proposed in [2] for the dynamic case is
identical to that obtained in the preceding equations; however, previously, a number of assumptions
had to be made in order to drop terms to arrive at the considered system, which is now no longer
the case. Moreover, in the preceding formulation, the equations are rigorously established through a
linearisation of the dynamic system and the solutions can be obtained by a single monolithic solve
rather than an iterative fixed point scheme, previously proposed.

4. COMPUTATIONAL TREATMENT

In this section, we discuss the key components for the computational solution to Equations (16) and
(11). This includes the reduction for rotationally symmetric geometries in Section 4.1, the far field
treatment in Section 4.2 and the 4p—FE discretisation in Section 4.3.

4.1. Reduction for rotationally symmetric geometries
The formulation proposed in Section 3 is valid for general three-dimensional domains involving a

conducting region surrounded by an unbounded region of free space containing the current sources.

Copyright © 2017 The Authors. International Journal for Numerical Int J Numer Meth Engng (2017)
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To a first approximation, the geometry of an MRI scanner is close to cylindrical and the strong DC
current source J”¢ has only the component JPC in cylindrical coordinates (r, ¢, z). However, of the
three sets of AC gradient coils, it is only the z-gradient coil that exhibits rotational symmetry, and in
our quest for a rapid industrial design tool, we must neglect the x and y gradient coils. Under these
assumptions, our simplified MRI scanner is rotationally symmetric with respect to the azimuth, the
problem reduces to solving for A = Ay(r, 2)es, u = u,(r,2)e, + u,(r,2)e;, p = p(r,z) [2]. Here e,, ey
and e, denote the standard basis of the cylindrical coordinate system. The reduction of the full three-
dimensional problem to the axisymmetric meridian (r, z) plane Q™ is shown in Figure 6. However,
by projection of this plane, full three-dimensional results are still achieved.

When transformed to the axisymmetric domain, the spaces in which the weak solutions are sought
in the variational statements (16) and (11) must also be adapted. In general, this leads to necessity to
seek for solutions in weighted spaces to ensure the fields are well behaved at the radial axis [40]. To
avoid the complexity of weighted spaces, we transform the fields Ay = rA¢ and u, = ril, according
to that proposed in [2], and note that A¢ € H'\(Q™), @ := [i,,u.] € H'(Q™). The acoustic pressure
presents no difficulty because p(r,z) € H'(Q™). The treatment of the bilinear and linear forms
associated with the terms in (11) and (16) follow similar steps to that presented in [2], and hence, we
only give as an example

DRY“(p)[6y] = 2 /

2
. <vm5[, “Vup® = % b ~ﬁ5> rdQ™, (18)
R Qm

where Q™ is the projection of Q. on to the meridian plane, V,, := [d/0dr,d/0z]" and the factor of 27
results from the integration of the azimuthal direction. This factor similarly appears in the treatment
of all of the other terms in the linear system and therefore cancels.

4.2. Far field treatment

The strong forms of the dynamic and static problems include radiation and decay conditions, which
describe the behaviour of A, APC, p and pPC as |x| - oo. To allow the computational treatment of
the problem, the unbounded free space region R*\Q, is truncated at a finite distance from €, and the
region €, is created, which contains all the current sources. The three-dimensional computational
domain Q := Q, U Q. C R? becomes Q" := Q" U Q" C R? for axisymmetric problems. This
means that integrals over R*\Q. in (11) and (16) become integrals over Q, and then, in turn, Q.
On 0Q™, the static decay of A, APC, pPC is approximated by fixing Q™ to be located sufficiently far
from the region of interest and setting

A=A =Agey = A)Ce4 =0,
pPC =0 on oQ™.

Naturally, the quality of the approximation improves as the size of Q,, (Q2") is increased. However, the
harmonic pressure field, and in particular the treatment of DRA€(p°)[6;], cannot merely be approxi-
mated by truncating the domain and fixing p = 0 at Q™ because this would result in reflections that

'Y
§7

el
e
\ i \\J"\x

Figure 6. Transformation from three-dimensional full scanner to simplified 2D axisymmetric case.
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would pollute the computational domain because of its wave behaviour. The radiation condition (4)
in the continuous problem describes the correct decay of this field, which must also be approximated
computationally. Therefore, we add a PML [32] €, (Q" ) to the exterior of €2, (€}') so that the
computational domain now becomes Q = Q.U Q, U Q,,; (Q" = Q' U Q' U ngl). For terms other

than DR{*C(;A?‘S)[éf,] in (16), Q,,,; can be merely thought of as a free space extension of €2,,. However,
the aforementioned term (18) is treated differently as

~ 2
DR} (p°)[65] = / <vmsﬁ~vmﬁ5—% ,sp5> rdQ,

Qm
n

2
+/ <Alvm5ﬁ . Vmﬁé - % A25ﬁp6> r de,

pml

19)

where Aj, A, are both complex functions of position in the layer and reduce to identity on 0]’ N
0Q" . The coefficients of these functions can be established through a complex coordinate stretching
of the domain €] following the approach in [32]. For the axisymmetric case, this complex stretching
is equivalent to introducing the complex position-dependent functions

’

~
&

2, 0
/!
m 2,2.2r
A] = - ! 7z |» A2 = —
r Slr r
Z/

In the preceding equation, the complex coordinate transform z; is described as a power law in terms
of the distance to the layer d; and thickness of the layer ¢, as illustrated in Figure 7b. The prime
indicates differentiation with respect to the argument, and explicitly, we choose

s 0< |Is| <d

z5(s) = ([ 1sl=d, \° )
5(5) s—1<u) s |s| = di

s

where s = [r, z]. The choice of a power law of degree 5 and user-defined thickness #; is somewhat
arbitrary, provided that the resulting complex field behaviour in Q;”ml is properly resolved. If this is
accomplished, the acoustic pressure field is absorbed without reflection and we can set p = 0 on 9Q™.

4.3. hp—FE discretisation

Building on the previous success in [2], we choose to adopt the ip—FE H' conforming basis func-
tions, proposed by Zaglmayr and Schoberl [41,42], for accurately discretising the fields Ay, #

s
I
4 ]
-
NON RN

N
d,
mo
pml

(A) Effect of complex coordinate stretching (B) Axisymmetric coor-
dinate system

Figure 7. Representation of the perfectly matched layer.
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and p. Denoting their two- d1mens10na1 bas1s function set for trlangular grlds by X, ]p the discrete
static problem becomes (6DC (SDC R (r6DC 5DC + §PClmlg_ sPClmly e

®> Cnp php u_hp php
X(0)n rXmpegy X Y(0) N (thpe, + Xjppe:) X Z0)n Xpp such that
DR¢(A ¢hpe¢,A§,f[j’”Je¢)[5DClmJ o] = —RYC(AY, e A "eg), (20a)
DRY“(@; ; A e, iy ", p " )[55";110 eyl +
RDC(uhp. g}fp[ ]e¢ ﬁZ)C[M]’ADC )[63; 1+
DRDC(uhp’Agth[m] & ﬂZnC[m]’ ADC[m])[5Zle[m]]
= —RYC(@; s Ay e, i M, p ), (20b)
RDC(php Ag}(;}m] ’AZ,C[m])[a,?Cth]e 1+
DRI (Pl A€ Py 65, " = =ROC@p 2 A g ey, ™), (20c)

for all (A¢h €y hp,php) = (rA¢hpe¢, ri®, per+ uzh ez,ph ) € X(0) N rXppes X Y(0) N (rXppe,, Xnpe:) X

Z0)n Xp. In the above we use

X(@) :={Ae€H(ul,Q): V-A=0 inQ,u Qpmi,A = g on 0Q},
Z(g) :={p € H"(Q, U Q). p = g on 0Q},

to account for the domain truncation introduced in Section 4.2. The corresponding discrete linear
harmonic problem for (64 Sess Oinps Ophp) = (o4 JCd> roa,nper + Sunp€s, Opnp) € X(0)n rXppep X
Y(u o) N (rXpe, + Xppe;) X Z(0) N Xjp can be developed analogously. We choose not to give the
exp11c1t formulae for the terms because they can be found by following the approach for axisymmetric
problems, which we have previously described in [2]. The complete algorithm is summarised in
Algorithm 1.

Algorithm 1 Algorithm for the discrete 41p—FE solution to linearised acousto-magneto-mechanical
coupling in MRI scanners.

1: Prescribe an initial guess (APC101 yPCI01 {DCI0L) — (Agc[o]%,ﬁl)c[o],ﬁDc[O]) e (X x
YuBo)x 2).

2: Obtain the discrete solutions (8

3: Set the DC solutions to be

DC DC DC DC|
ADC :Ahp [1] — Ahp [l]e — (A [0] +6 0])e

DC[oe _gPClol gDClo]

Aphp ihp ohp ) by solving the monolithic system (20).

Ad,hp
DC _ . DC[1] _ ~DC[1] ~DC
uhp - uhp - h +8uhp ’
~DC _ ~DC[1] _ ADC[O] DC[O]
php —Php - +8php .

4: Obtain the discrete harmonic AC solutions (84, 4p€s, 8iinp. Spnp)-
5: The complete linearised transient solutions are then

Ahp(l) = (A¢hp + Re(8A¢hp lwt))eqﬁv
(1) = u € 4+ Re@anpe),
php(l) - php + Re(gphp 1wt)
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5. NUMERICAL RESULTS

In this section, we present a series of academic and industrial numerical examples in order to demon-
strate the capabilities of the presented framework. Firstly, we include examples with analytical
solutions to demonstrate the independent validation of the electromagnetic, mechanical and acoustic
fields for uncoupled problems in Sections 5.1. Secondly, we include validation of coupled physics
problems and application to challenging industrial benchmarks in Section 5.2.

In order to analyse the quality of the solutions, we set |le]l.2 = (e,e)'/?, el =
(||e||i2 + ||Ve||iz)l/ 2 for appropriate scalar and vectorial errors respectively, where (e,e)
= /Qe . € dQ is the standard L? inner product where the overbar denotes the complex conjugate.
For mechanical problems, we also consider ||o(e)||sns@) := ||tr(c(e))||2 associated with the sum of
normal stresses to examine the extent to which our formulation can overcome mechanical locking
[16].

5.1. Validation of single-physics problems

5.1.1. Conducting sphere in uniform alternating magnetic field. A closely related problem to the
solution of (1), with J* = J' = 0, is that of a conducting object located in free space excited by a
uniform harmonic background magnetic field of amplitude H and frequency w. In this case, 4 'V x
A — Hj as |x| — oo. For a spherical conductor Q. = {x : |x|*> < R?} of radius R, permeability
u, and conductivity y, as illustrated in Figure 8, an analytical axisymmetric solution is presented in
[43] for Ag.

We consider the case of R = 1m, y, = 10’S/m, u, = py, Hy = ,ug‘eZWb and angular fre-
quencies @ = [5,50,500]rad/s. To simulate this problem, the computational domain is chosen
as Q" = ([0,4] X [-4,4])m? and we solve a suitably simplified version of Algorithm 1 where
Sa,mploa, = Agloa, and we set A;’)p := 64,1y We generate a coarse mesh of 578 unstructured quasi-
uniform triangular elements of maximum size # = 0.5m and use here, and subsequently, a blending
function approach to represent the exact geometry of the sphere's surface [44]. This function avoids
any geometrical error in the solution because of coarse approximation of the boundary. In light of
the smooth nature of the solution, we consider uniform polynomial enrichment corresponding to
p=1,2 ... ,10 on this mesh and plot in Figure 9 the relative error measures ||A4 —AZ”||L2/||A¢||L2,

Ay — As)p llz/1lAgllm against the number of degrees of freedom for varying frequencies of the
alternating magnetic field.

Figure 9a shows the convergence of the error against the number of degrees of freedom on a
logarithmic scale, where each point represents a polynomial refinement and the different curves
correspond to different frequencies and error measures. Each line indicates a downward sloping

140
N =
R T
H,
Pttt

Figure 8. Conducting sphere in a uniform alternating magnetic field: problem setup.
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Figure 9. Conducting sphere in a uniform alternating magnetic field: convergence of ||A4 — AZP 12/ 11Agll 2

and ||Ay — AZ"HH] /|Agll 1 under p-refinement.
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Figure 10. Conducting sphere in a uniform alternating magnetic field: contours of |B| ~ |V X(Agp ey)| around
the conducting sphere at different frequencies.

curve suggesting that the convergence is exponential. This is confirmed by plotting the error on a
logarithmic scale against the number of degrees of freedom raised to the power 1/2 on an algebraic
scale in Figure 9b. After a pre-asymptotic region, each curve becomes a straight line indicating that
convergence of the numerical to the analytical solution is exponential with respect to the square root
number of degrees of freedom for p-refinement of this problem. This corresponds to the expected
rate for smooth solutions, as reported by Babuska and Guo [45]!l. As the frequency of the alternating
magnetic field increases, the gradient of the lines in Figure 9b reduces, indicating that, although
still exponential, the rate of convergence is lower. Physically, this is due to the smaller skin depths
s = 1/2/(wy u), [43] which characterises the depth to which the eddy currents J° = yE ~ ia)yAZp ey
decay to 1/e of their surface value, associated with higher w. It is possible to improve the gradient
in the plots in Figure 9b by using a graded mesh towards the sphere's surface.

I'We have also conducted A-refinement studies, which achieve the expected (and slower) algebraic rates of convergence
for this problem. [45]
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To illustrate the different fields and skin depth effects for different frequencies, Figure 10 shows
the contours of |[B| ~ |V X (A];p e,)| for the various frequencies of the converged solutions. This figure
illustrates the smaller s for higher @ and the need to use higher fidelity discretisations to capture the
solution with the same degree of accuracy.

5.1.2. Mechanical shell. To verify the treatment of the elasticity system, we consider the solution
of equation (2) for 6 = 0 and static displacements u # u(f) for the case of a spherical mechanical
shell @ = Q. = {x : 77 < |x|*> < r3} of inner and outer radii r;, r,, respectively. The inner and
outer surfaces of the shell are subject to traction conditions —p;n and —p,n resulting from internal
and external pressures p;, p, respectively, on different parts of 0Q" as illustrated in Figure 11. This
problem is axisymmetric and has the analytical solution [46], which can be expressed in terms of the
cylindrical displacement components (i, u;).

Specifically, we solve the problem corresponding to ; = 0.5m, r, = 1m, E = 210 X 10°Pa,
v = 0.49, p; = p, = 10*Pa so that the shell is nearly incompressible. As described in Section 2.2,
we must fix part of the boundary of the shell to avoid it floating away. We solve a suitably simplified

Z

Figure 11. Mechanical shell subject to interior and exterior pressure: problem setup.
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Figure 12. Mechanical shell subject to interior and exterior pressure: convergence of ||u — u"||;2/||u]| 2,
lle — u”?||sns/||ulsns under p-refinement.

Copyright © 2017 The Authors. International Journal for Numerical Int J Numer Meth Engng (2017)
Methods in Engineering Published by John Wiley & Sons, Ltd. DOI: 10.1002/nme



ACOUSTO-MAGNETO-MECHANICAL COUPLING IN MRI SCANNERS

version of (20) for a single iteration where we choose to fix the displacements 63}5)[0] = u,e,+ue;,on
a small boundary segment dQP according to the analytical solution. The region of computation corre-
sponds to Q™ = Q" = {(r,7) : rl.z < (r*+7%) < r2}, which we discretise by a quasi-uniform mesh of
68 unstructured triangular elements of maximum size 2 = 0.5m. We perform the same p-refinement
study that was described in Section 5.1.1 and now measure convergence using ||lu — u"?||;2/||u|| 2,
llu — u'P||sns/||ullsns Where " := 8,. The results shown in Figure 12a and 12b illustrate similar
trends to those shown previously indicating that exponential convergence with respect to the number
of degrees of freedom raised to the power 1/2 is also achieved through p-refinement for the mechan-
ical problem. In particular, p-refinement serves as a method for overcoming volumetric locking that
is known to be associated with the displacement formulation of elasticity for nearly incompress-
ible material [47,48] and leads to exponential rates of convergence of the error measured in the SNS
norm. Although we do see stagnation of convergence when the norms of the error reach 1073, which
coincides with the numerical precision of our computation. The displacements in the radial and axial
directions of the shell, obtained using p = 10, are illustrated in Figure 13.

5.1.3. Acoustic scattering of a sphere. Finally, to verify the acoustic system (3, 4), we consider the
problem of a sound hard sphere of radius R, illustrated in Figure 14. The sphere is illuminated by
a harmonic incident wave p = poeif* of amplitude py and wavenumber k := w/c. The complete
solution is of the form p = p™ + p*¢, subject to the boundary condition n - Vp = 0 on 02, and admits
an axisymmetric analytical solution for p*¢, [49]

Specifically, we choose to solve the problem corresponding to R = 1m, pp = 1Pa, k =
[47/3,10,30]m™". We solve a suitably simplified version of Algorithm 1 on the computational
domain Q" = ([0,5.6] X [-5.6,5.6)\{(r,2) : r* + 7> < R*}m? of which Q,’)”ml = Q"\([0,4] x
[—4,4])m?, with thickness parameters [f,,.] = [1.6, 1.6]m, distance parameters [d,,d.] = [4,4]m
and 6py, = 0 on 0Q™. We fix a quasi-uniform mesh of 408 unstructured triangular elements of max-
imum size 2 = 0.5m and perform the same refinement study of p = 1,2 ... , 10 as previously and
measure convergence using [|p* — P || 2 /119* || z2, 1P*€ = PP || /1P*C ||, Where PP 2= 6.

Figure 15a and 15b illustrates similar downward sloping trends, as shown in the previous exam-
ples. However, in this case the pre-asymptotic region is now affected by the increase in wave number.
For higher wave numbers there is an initial stage of increase in error, which results from wave disper-
sion effects, discussed in [31] and [50]. This effect is overcome by further increasing p and eventually

3 x10710 5 %1010
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0.4 £ 0.4 4

0.2
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Figure 13. Mechanical shell subject to interior and exterior pressure: contours of ufp and ui'p .
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Figure 15. Sound-hard sphere subject to an incident acoustic pressure field: convergence of ||p* —
PPN /1 Wiz, 1% = p*™ Nl /11P* |l under p-refinement.

results in the same expected exponential rates of convergence as before, confirmed in Figure 15b.
This again indicates that exponential convergence with respect to the number of degrees of freedom
raised to the power 1/2 is also achieved through p-refinement for the acoustic problem, provided
sufficiently high refinement is used to eliminate numerical dispersion. For the case of k = 47 /3 m’!
for p > 7, the convergence behaviour is suboptimal because of the effect of the PML, which is an
approximate absorbing boundary condition, but nevertheless, accurate solutions are still obtained.
The finest solution, using p = 10, of the scattered pressure field arising from the incident pressure
field for wave numbers k = [47/3,10,30] m™! are illustrated in Figure 16.

5.2. Coupled multi-physics problems

5.2.1. Acoustic wave scattering of thin elastic shell. We consider a coupled acousto-mechanical
problem consisting of a thin elastic shell of thickness 7, mid surface radius R and material parameters
ps» v and E. The shell is placed in a background medium described by py and ¢y and is illuminated
by harmonic incident pressure field p”*. The configuration is illustrated in Figure 17. This problem
requires the solution of Equation (7) in absence of electromagnetic coupling and naturally lends
itself to a harmonic treatment. For thin shells, the solution to this problem can be approximated by
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Figure 16. Sound-hard sphere subject to an incident acoustic pressure field: contours of Re(p* P).

R ‘n
- p5C

Figure 17. Elastic shell subject to an incident acoustic pressure field: problem setup.

the Kirchhoff shell theory [49,51] and the total pressure exterior becomes p = p™* + p* + p". For the
incident field p™ = poe*?, the component p* corresponds to the hard scattering by the sphere and
p" to the radiated pressure [49,51].

We consider the particular case of t = 0.05m, R = 1m, po = 1 Pa, k = w/cy = [47/3,10,30] m!,
pr = 1000 kg/m?, ¢r = 1460m/s, p; = 7800 kg/m®, v = 0.3, E = 210GPa. We treat this problem
computationally by applying a suitably simplified version of Algorithm 1 with p*'? + p™ 1= &,
on the computational domain Q" = ([0,5.6] X [-5.6,5.6D\{(r,2) : r* + 2> < (R — t/2)*}m? with
the same PML settings as in Section 5.1.3. As in Section 5.1.2, to avoid the shell from floating away,
we fix a small boundary segment dQP to have displacements u = 0. The problem is driven by the
incident pressure field in the form of a Neumann condition set on the external boundary of the shell
{((r,2) : P+22=R+1t/2)}asn - Véppp = —n - Vp™ and the coupling according to the interface
conditions in equation (7). The inside boundary of the shell is left free and the acoustic effects inside
of the shell are ignored.

Given that the convergence rates of the mechanical and acoustic fields have already been verified in
Sections 5.1.2 and 5.1.3, we now instead directly compare the effectiveness of both A-refinement and
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p-refinement with the analytical solution for k = 47 /3m~!. In Figure 18, we plot various hp-enriched
solutions for the line segment 1.025 m < £ 5.6 m, z = 0, taken from the outer surface of the shell
to the truncated boundary. For both A-refinement and p-refinement, the computed solution tends to
the analytical for » < 4 m. However, for A-refinement, a mesh of 4 ~ 0.1m with 15752 elements,
with 7779 unknowns, is required to obtain good agreement with the analytical solution, with a level
of accuracy of O(1072). On the other hand, using p = 2 on a mesh with 530 elements requires only
1021 unknowns for comparable accuracy in the solution. If we further refine p to p = 4, then the
number of unknowns increases to 4163, but with improvement in the relative accuracy of two orders
of magnitude. The PML is defined by the grey area, in which the computed solution is non-physical
and absorbed.

Figure 19 shows the comparisons in computed and analytical solutions for higher wave numbers
of k = [10, 30]m™". For both cases, the order of p = 4, used to obtain the finest solution in Figure 18,
offers reasonable agreement with the analytical solution and is able to capture the higher frequencies
of the waves. However, for increasing wave numbers, our computed solution requires even further p-
refinement in order to accurately capture the solution in these regions because of the aforementioned
dispersion effects. The solution case for p = 4 and a suitably refined solution of each case is plotted

06 : : e 06

0.4} 0.4+ PML

o
N
T

0.2r

Pressure (Pa)
o

Pressure (Pa)
o

-0.2 -0.2+
—p=1
—p=2

0.4 04} hls
— p=4
- — Exact

-0.6 . . - -0.6 . ]

1 2 3 4 5 6 1 2 3 4 5 6
r-Coordinate (m) r-Coordinate (m)
(A) h—enriched solutions (B) p—enriched solutions

Figure 18. Elastic shell subject to an incident acoustic pressure field: Effects of #-refinement and p-refinement
on the acoustic pressure field.
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Figure 19. Elastic shell subject to an incident acoustic pressure field: effects of p-refinement for high wave
number k on the acoustic pressure field.
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against the analytical solution in Figure 19a and b. The mesh density required, for p = 1 elements,
to capture the high-frequency wave effects at k = 30m~! becomes impractical for such geometries.
The interaction between the pressure field and the displacements of the shell is illustrated
in Figure 20, where the computed deformed shape of the shell is plotted in the surrounding
acoustic field.
The success of high-order /ip discretisations for the preceding case studies motivates our strategy
for the following industrial example, which does not have an analytical solution.

5.2.2. Siemens benchmark problem. We now consider an industrially relevant benchmark problem,
proposed by Siemens Magnet Technology, in which a simplified quarter-size representation of an
MRI scanner was modelled and previously presented in [2]. The problem setup comprises of the
same main components illustrated in Figure 1, with a reduced complexity in the coil configuration.
The setup comprises of three metallic shields known as the outer vacuum chamber (OVC) Q9V¢,
77°K radiation shield Q77X and 4°K helium vessel Q*X, which make up Q. and each with different
material parameters (y, u, v, E, p). A pair of main coils, with static current source JP C, are located
on the outside of the three shields and a pair of gradient coils, with alternating current source JA(7),
are located within the imaging bore. Both are assumed as Biot—Savart coils and are illustrated in
Figure 21.

We treat this problem computationally for two cases; in the first case, we apply a suitably sim-
plified version of Algorithm 1 in which we neglect the acoustic effects and focus on the purely
magneto-mechanical coupling mechanisms, as in [2]. In the second case, we consider the fully
coupled acousto-magneto-mechanical systems in Algorithm 1. We truncate the non-conducting

(A)k =47/3m™! B)k :10m1 ' (C)k =30m!

Figure 20. Elastic shell subject to an incident acoustic pressure field: deformed shell interacting with
surrounding acoustic pressure field.

Air @

Main Magnet Gradient Coils

Gradient Coils
\ Main Coils
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77K ¢ Shields
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(A) 3D geometry (B) Axisymmetric plane

Figure 21. Simplified magnetic resonance imaging scanner subject to alternating and static current driven
coils: problem setup.
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region, comprised of air, and create the domain Q" = ([0, 1.26] x [—1.68, 1.68])m?, with the PML
Q;’ml = Q"\([0,0.9] x [-1.2, 1.2])m2. As in Section 5.1.2, to avoid the shell from floating away, we
fix a small boundary segment dQP of the conductors to have displacements u = 0. The exact geome-
tries and material parameters of the conducting components are confidential and so are not to be
displayed in this paper. We analyse the solution for an unstructured mesh of 8464 triangles of max-
imum size & = 0.25m, but with substantial refinement in Q. Of these elements, ~ 1700 are located
within Q7'. This example serves to show the predictive capability of our approach, and to validate
our approach, we compare our results with industrial data supplied by Siemens Magnet Technology.

Dissipated power and eddy currents A quantity of industrial interest is the power dissipated in
QOY€, Q7K and QK. This measure is used to quantify the resonance behaviour of the MRI system
and to determine the frequencies at which operation is undesirable. This measure is given in terms of
the Ohmic currents, and for the harmonic component of the magnetic vector potential 84, , becomes

2
rdQ™. (21)

) 1 [ 10 1
P (w,8,) = —/y HJPdQ = —/y|E|2dQ ~ 7rco2/ yi%m
2/ 2Jq Q, '

In, [2] we previously compared Py, (@, Aac), P (@, Aac) and P, (@, Ac), where Aac ~ Agpeqs
is the equivalent to 64, €, but obtained by the fixed point scheme, to a set of industrial results using
the NACS software [11]. We revisit this by including the results of the new monolithic formulation,

both with and without acoustic effects. The converged results are plotted in Figure 22 where we
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Figure 22. Simplified magnetic resonance imaging scanner subject to alternating and static current driven
coils: Ohmic power dissipation as a function of alternating current frequency
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Figure 23. Simplified magnetic resonance imaging scanner subject to alternating and static current driven
coils: contours of the eddy currents Re(J(‘;) for p = 1,5 and f = [160,4100]Hz.
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Figure 24. Simplified magnetic resonance imaging scanner subject to alternating and static current driven
coils: effects of p-enrichment on the eddy current resolution Re(J;) in Q¥ for f = [160,4100]Hz.

perform a sweep over the alternating current driving frequencies in the range o :=2zf = 27(10 <
f < 5000) rad/s. In the figure, the black line represents the results obtained by Siemens using
NACS, the red line the results of the previous fixed point scheme, the blue line our new mono-
lithic magneto-mechanical formulation and the yellow line the fully coupled monolithic system with
acoustic effects.

In the absence of acoustic effects, and for f < 3000 Hz, the fixed point, monolithic and NACS
results for P, (@, Axc) and P{,,, (w,Axc) are in close agreement with each other because in this

case the problem is well approximated by the pure eddy current model. The fixed point and mono-
lithic results for Pl (w,A4c) also give good agreement in this region; however, the results obtained

by NACS offer very small differences of O(10~") for f > 1000Hz. We conjecture that this is due
to the limitations of the low-order elements in accurately resolving the skin depth effects with
increasing frequency, illustrated in Figures 23 and 24. These methodologies also give a similar
prediction of the resonance region occupied by 3500 Hz < f < 4500 Hz with the NACS model
being damped because of the artificial Rayleigh damping [52]. The effect of this damping on the
response of the system results in a change in the amplitude and frequency range of the resonance
region [52,53].

Copyright © 2017 The Authors. International Journal for Numerical Int J Numer Meth Engng (2017)
Methods in Engineering Published by John Wiley & Sons, Ltd. DOI: 10.1002/nme



S. BAGWELL ET AL.

Our new monolithic framework offers computational advantages over our previous fixed point
strategy because the solution is obtained in a single iteration, as opposed to multiple iterations, which
grows in the resonance region. This enables us to perform rapid and robust solutions at each fre-
quency, which offers trivial parallelism and greater resolution in the resonance region for the same
computational cost. Notably, the resonant frequencies computed using the fixed point scheme exactly
match those obtained by the monolithic scheme albeit with differing magnitude of the peaks because
of the effects of matrix equation conditioning.

The predicative capability of our approach is further demonstrated by the inclusion of acoustic
effects, which has substantial effects in P;’WK (w,A4c) and le4K(co,A ac) for f > 500 Hz, not included

in the NACS software or our previous fixed point scheme. Negligible effects for P{,,,.(@,Axc) are
obtained because the OVC is located closest to the inner bore tube and, therefore, the gradient coils,
and dissipated power is dominated by the electromagnetic effects. In contrast, the other two shields
are located to the outside of the OVC and hence acoustic propagation effects cause these shields
to further perturb the output power. Note that repeating the results with coils treated as deformable
conductors leads to only negligible changes in the output power, and therefore, these results are not

shown.

Kinetic Energy [J]

0 1000 2000 3000 4000 5000
Frequency [Hz]

(B) 3580 Hz

(E) 4280 Hz (F) 4880 Hz

Figure 25. Simplified magnetic resonance imaging scanner subject to alternating and static current driven
coils: T, qQove (w, 8,) and resonant mode shapes.
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To illustrate the different skin effects at different frequencies, we show in Figure 23 the eddy
current distributions at f = 160Hz and f = 4100Hz for both p = 1 and p = 5. At the lower frequency,
the skin effects are already well resolved by p = 1 elements, but the higher frequency p > 4 elements
are required to resolve the small skin depth. This is further illustrated in Figure 24, which shows the
convergence of J° in Q‘C‘K along the line z = 0.04m forp = 1,2, ... ,5.

5.2.2.1. Kinetic energy and mode shapes. The kinetic energy of Q9V¢, Q77K and Q2K is of industrial
interest for understanding the motion of the conductors, highlighting the resonance frequencies and
the corresponding mode shapes of the scanner's structure. In terms of the computed displacements
Oi p» this is

1 T

To(w, 8,) = %/m|v|2d9 = Z/pa)2|6u|2d9 ~ 5/ p? |8y |2 rd Q™. (22)
Q Q Z

(A) 10 Hz (B) 1500 Hz

(C) 3600 Hz (D) 3800 Hz

(E) 3950 Hz (F) 4075 Hz

Figure 26. Simplified magnetic resonance imaging scanner subject to alternating and static current driven
coils: magnetic flux lines (red), acoustic contour lines (yellow) and displaced shields Q..
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Figure 25 illustrates the kinetic energy as a function of the driving current frequency in the gradient
coils in Q9VC. Similar mode shapes are also obtained for the other shields [54]. For each spike in
the kinetic energy, or resonant frequency, a corresponding three-dimensional axisymmetric mode
shape of the shield is included. Higher resonant frequencies excite higher order sinusoidal modes as
the figures illustrate. The resonant frequencies of the kinetic energy in the shields coincide with the
frequencies experienced in the output power, which suggests that the primary source of excitation
in the conductors is that of the eddy currents dissipated in the shields.

Finally, we illustrate the complex behaviour of the magnetic flux lines, acoustic contour lines and
deformed structure in Figure 26 for a range of frequencies in both the eddy current dominant (low fre-
quency) and the resonance (high frequency) regions. This figure illustrates that in the low-frequency
region (120Hz < f < 1500Hz), a patient in the bore can become exposed to sufficiently higher noise
levels than that of the exterior region of the scanner, with the sound radiating and decaying outwards
in space. This is due to the dominance of the harmonic magnetic field arising from the gradient coils,
located inside the imaging volume, which gives rise to the source term in the acoustic Helmholtz
system in (3). As the frequency increases (1500Hz < f < 3700Hz), the effect of the mechanical res-
onance begins to dominate and the acoustic field is further excited by the displacement of the shields
and the sound intensity outside of the scanner increases. The case of f = 4075Hz illustrates a higher
frequency mode shape and the effect of the displacement on the acoustic field. In this case, the mag-
netic field is further perturbed because of the increase in Lorentz currents resulting from the acoustic
excitation. Notably, in each case, the greatest sound intensity is that inside the bore tube, suggesting
that the highest noise levels are experienced by the patient.

6. CONCLUSION

In this paper, we have provided a new rigorous theoretical framework for the simulation of acousto-
magneto-mechanical effects in MRI scanners, which provide the basis of our design tool. We have
provided a consistent linearisation of the transient equations and have arrived at a simplified mono-
lithic single-step strategy in the case of harmonic gradient coil excitations. This greatly improves our
previous work, [2] which required non-physically motivated simplifying assumptions and resulted in
a fixed point strategy with a growth of iterations for increasing frequency. We have further extended
our approach to include acoustic effects and discretised the resulting framework by Ap-FEM to ensure
a robust tool that provides the accurate resolution of small skin depths and wave propagation effects.
The optimal convergence of the physical fields is demonstrated for a series of challenging single and
multi-physics test cases in axisymmetric coordinates. The predictive capability has been illustrated
by applying our approach to rapid evaluation of the performance of a MRI scanner model whose
acousto-magneto-mechanical response has been analysed in detail. The next steps of our research
involves developing a full three-dimensional simulation tool for MRI scanners based on sp-FEM.
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