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Abstract 

The present computational study investigates on stochastic natural frequency analyses of 

laminated composite curved panels with cutout based on support vector regression (SVR) 

model. The SVR based uncertainty quantification (UQ) algorithm in conjunction with Latin 

hypercube sampling is developed to achieve computational efficiency. The convergence of 

the present algorithm for laminated composite curved panels with cutout is validated with 

original finite element (FE) analysis along with traditional Monte Carlo simulation (MCS). 

The variations of input parameters (both individual and combined cases) are studied to 

portray their relative effect on the output quantity of interest. The performance of the SVR 

based uncertainty quantification is found to be satisfactory in the domain of input variables in 

dealing low and high dimensional spaces. The layer-wise variability of geometric and 

material properties are included considering the effect of twist angle, cutout sizes and 

geometries (such as cylindrical, spherical, hyperbolic paraboloid and plate). The sensitivities 

of input parameters in terms of coefficient of variation are enumerated to project the relative 

importance of different random inputs on natural frequencies. Subsequently, the noise 

induced effects on SVR based computational algorithm are presented to map the inevitable 

variability in practical field of applications.     

Keywords:  Cutout, composite, support vector regression, random natural frequency, 

uncertainty quantification, noise 
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1. Introduction 

    Composite panels are employed in a plentitude of shallow weight-sensitive load bearing 

structural components for wide range of aerospace, automotive, nuclear, marine and civil 

engineering applications. The cutouts of composite panels are inevitable primarily for 

practical considerations. These are generally utilized not only to access ports for mechanical 

and electrical systems, but also to serve as doors and windows. Moreover, it is employed for 

inspection or maintenance purposes of the system. The dynamic behavior composite 

laminates may fluctuate significantly due to presence of cutout. In other words, the free 

vibration characteristics of composite curved panels are affected due to variability in shape, 

size and location of cut outs. Its effects are more difficult to quantify when such composite 

panels are subjected to random oscillations with uncertain geometric and material properties. 

The combined effect of cutout along with different stochastic material and geometric 

parameters may cause wide range of uncertainty in vibration behavior of the structure which 

may lead to sudden failures due to resonance. It is essential to quantify the uncertain natural 

frequencies of such composite structural components accurately and thereby follow a design 

process accounting all the uncertainties appropriately. Composite structures have more 

uncertainties and variabilities in the structural properties than conventional structures because 

of large number of structural parameters (inter-dependent in nature) and complex 

manufacturing and fabrication processes leading to less overall design control. In order to 

have more exact and realistic analysis, they can be modelled as stochastic structures i.e., 

structures with uncertain system parameters (both in inputs and outputs). Beside these, the 

inherent errors involved in finite element modelling lead to inaccuracy in results. A brief 

review of the literature dealing with the effect of cutout in composite laminates and stochastic 

analysis of general composite structures is presented in the next paragraph.  
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A detail bibliography of previous investigations on dynamics of composite plates with 

cutouts is given in review papers [1-3]. The past investigations [4-9] incorporating cutouts are 

primarily confined to buckling and free vibration analysis of composite plates in a 

deterministic framework. Thornburgh and Hilburger [10] carried out both experimental as 

well as numerical studies of composite panels with cutouts subjected to compressive load 

while Dimopoulos and Gantes [11] employed the numerical methods to design the cylindrical 

steel shells with cutouts. The deterministic free vibration analyses of laminated composite 

shells with cutout are studied by many researchers [12-18]. The mode shapes and natural 

frequencies are investigated for cross-ply laminates with square cut-outs by Jenq et al. [19]. 

Eiblmeier and Loughlan [20] studied on buckling analysis of composite panels with 

circular shaped cut-outs. Sivakumar et al. [21] considered large amplitude oscillation on 

frequency analyses of composite plates with cutout. In past, multi-dimensional deterministic 

studies are carried out to conduct investigations on behavior of composite and sandwich plate 

or shells with cutouts such as Anuja and Katukam [22] presented parametric studies on the 

cutouts in heavily loaded aircraft beams, Mondal et al. [23] studied the dynamic performance 

of sandwich composite plates with circular hole. Recently Venkatachari et al. [24] 

investigated on influence of environment for free vibration of composite laminates with 

cutouts and Yu et al. [25] studied on buckling and free vibration analyses of 

laminated composites plates with complicated cutouts employing first order shear 

deformation theory and level set method. Plenty amount of research is carried out on free 

vibration analysis of composite plates, shells and sandwich structures [26-40]. A concise 

review of literature on application of efficient reduced order models in the field of structural 

analysis and design is presented next. Ample research is conducted on response surface 

methodologies in conjunction to composite materials in past, such as, Park et al. [41/29] 

conducted a numerical investigation on composite shells employing stochastic finite element 
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method (SFEM) while Zhao et al. [42] investigated on material behavior modeling with 

multi-output  support  vector regression. Recently, Zhigang et al. [43] incorporated a 

response surface method (RSM) to analyze the reliability of turbine blades made of 

composites. Nik et al. [44] conducted an illustrative study of metamodelling methods in 

conjunction to design optimization of composites subjected to variable stiffness, while 

Steuben et al. [45] carried out the inverse characterization of composite materials by 

surrogate modeling. Some researcher employed the perturbation-based stochastic multi-scale 

analyses of composite materials [46, 47]. Considering stochastic nonlinear systems, Gao and 

Tong [48] employed fuzzy to design composites while Kepple et al. [49] incorporated an 

improved stochastic method for buckling of composite cylindrical shells dealing with 

modelling errors.  

Despite the engineering importance of cutouts involved in composites as pointed out 

in the preceding paragraphs, the number of rese arch articles and reports in conjunction to 

the subject topic are found to be limited to deterministic results, possibly due to the 

computational complexity involved in it. The present study is focused to quantify the 

uncertain natural frequencies for composite panels with cutouts following an efficient support 

vector regression based algorithm in conjunction with finite element analysis. In general, the 

deterministic approach of finite element analysis becomes computationally inefficient and 

costly when the input parameters considered at each nodal points of each discretized element 

becomes random with respect to its meshing pattern and boundary condition. The number of 

elements depends not only on cutout- size but also on its shape and location. Moreover, due 

to random variability of each input parameters at element level throughout the structure, the 

application of identical isotropic plate elements for computing the element mass and stiffness 

matrices will never match with reality. Thus uncertainty quantification for such structures 

following traditional Monte Carlo simulation based approaches is prohibitively expensive 
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because of the fact that the exorbitant numbers of finite element iterations are required for 

separate random input parameter sets. This complex problem of composites can be 

effectively handled by using Support Vector Regression (SVR) which is employed as an 

efficient surrogate of the expensive finite element model allowing rigorous occurrence of 

virtual iterations to be exercised with cost-effectiveness. In stochastic structural problems, it 

can be restricted to consideration of the two-class problems, namely, with linear and non-

linear classifier, without loss of generality. In such problems, the aim is to segregate the two 

classes by means of a function which is induced from known random dataset. In other words, 

the prime objective is to produce a classifier that will work well on unpredictable random 

data, i.e. it generalizes well. The conformity of such phenomenon can be efficiently dealt by 

SVR model. Due to inherent complexity, composite structures have intrusive variability of 

geometric and material properties in both linear and nonlinear domain while analyzing the 

structural reliability. Moreover the risk involved in ensuring the reliability of such system can 

be projected as the accidental loss plus uncertain measure of such loss. In compliance of the 

same, the present study aimed to predict those uncertain natural frequencies by employing 

support vector regression model. No literature is found which dealt with uncertainty 

quantification of natural frequencies in laminated composite panels with cutout using the 

support vector regression model. The random variation of individual parameters and 

combined parameters are considered in the present investigation. This article is organized 

hereafter as, section 2: stochastic finite element formulation for composite curved panels with 

cutout, section 3: brief description of support vector regression, section 4: support vector 

regression based uncertainty quantification algorithm for composite laminates with cutout 

including the effect of noise, section 5: results and discussion, section 6: conclusion. 
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Fig. 1 Laminated composite curved panel with cutout 

2. Governing equations 

      In the present study, the composite panels with central cutout (as shown in Figure 1) 

are considered. The stress resultants can be expressed in terms of the mid-plane strains and 

curvatures as 
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The constitutive equation [50] is given by  

 { F} = [D( ω )]  { ε} (2) 

Subsequently, extension, bending-stretching coupling and bending terms can be expressed as 

 
∑ ∫

=
==

−

n

k
k

z

z

onijijijij jidzzzQDBA
k

k
1

2 6,2,1,],,1[])}({[)](),(),([
1

ωωωω  (3) 

The transverse shear term can be derived from 
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where ω  indicates the representation of randomness while αs denotes the shear correction 

factor (αs =5/6) and ][ ijQ  are the off-axis elastic constant matrix for elements which can be 

expressed as  

 4
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The off-axis elastic constant matrix linked with transverse shear deformation can be 

expressed as 
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where )(sin ωθ=m  and )(cos ωθ=n , wherein )(ωθ  is random ply orientation angle. The 

on-axis terms can be represented as 
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                                        )(1266 ωGQ =             )(2344 ωGQ =            )(1355 ωGQ =  

 
In present study, the uniaxial in-plane periodic loads are considered for composite panel with 

cutout. The differential equations of equilibrium can be expressed as [51]  
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wherein 1C  and 2C  are represented as tracers of shear deformable version of the theories of 

Sanders ( 121 == CC ), Love ( 11 =C  and 02 =C ), and Donnells ( 021 == CC ).  )(ωxN , 

)(ωyN  and )(ωxyN  denote the stochastic in-plane stress resultants, )(ωxM , )(ωyM and 

)(ωxyM represents the stochastic moment resultants while )(ωxQ  and )(ωyQ  depict as the 

stochastic transverse shear stress resultants. )(ωxR , )(ωyR and )(ωxyR  denote the stochastic 

radii of curvature along the x  and y  directions and the radius of twist, respectively. 
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where n is the layer number of laminate and )(ωρk is the random  mass density of k-th layer; 

and kz represents the k-th layer’s distance from the midplane.  

The present study considers eight nodes in isoparametric quadratic element wherein 

five degrees of freedom (three translations and two rotations) is assumed at each nodal point. 

Considering Hamilton’s principle [52] in conjunction to Lagrange’s equation, the dynamic 

equilibrium equation of motion for free vibration can be expressed as  

 0}{)]([][)]([ =+ δωδω KM &&  (14) 

where  M(ω ), [K(ω )], { δ} are represented as mass matrix, elastic stiffness matrix and vector 

of generalized coordinates. The random natural frequencies [ωm )(ω ] are derived from the 

standard eigenvalue problem [53] using QR algorithm and are obtained as 

 
                                      

)(

1
)(2

ωλ
ωω

m
m =            where mnm ...,..........3,2,1=                                      

(15) 

where mn  denotes the mode number and )(ωλm  indicates the m-th eigenvalue of matrix 

)()(1 ωω MKA −=  

 

 

Fig. 2 Soft margin loss setting corresponding to a linear Support Vector machine [54] 
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3. Support vector regression  
 

Support vector regression (SVR) model is derived from Support Vector Machine 

(SVM) pertaining to regression analysis. Suppose the training data is given as 

ℜ×⊂ χ)},(.........),(),,{( 2211 ll yxyxyx  where χ  and ℜ  denote the space of the input 

patterns and Euclidean space vector. In support vector regression, the primary objective is to 

find a function )(ˆ xf  that has at most ε  deviation from the actually obtained targets iy  for 

all these training data and at the same time, is as flat as possible. The formulation In Figure 2, 

only the points distributed outside the shaded zone are contributed to the cost linked with 

insensitive loss function (ζ ) at points (m and n) wherein the deviations are penalized in a 

linear fashion. Thus the optimization problem is solved more easily in its dual formulation. 

Moreover, the dual formulation provides the key for extending SV machine to nonlinear 

functions. Hence it can be used as a standard dualization method utilizing Lagrange 

multipliers [54]. The errors are neglected as long as they are less than the region of tolerance 

(say ε± ) (refer to Figure 2), but it will not accept any deviation larger than this limiting 

value.  The SVR model is constructed by employing the subset sample data and support 

vectors wherein maximum deviation of ε  from the function value of each training data exist. 

For a linear case, SVR model can be expressed as [55] 

bxWxYxf +>⋅<== )(ˆ)(ˆ  (16) 
 

where )(ˆ xY  , W and b indicate the predicted value of objective function, weight-vectors and  

bias, respectively while >⋅<  denotes the inner product. The sample data points within the 

±ε band (known as the ε -tube) are neglected, while the predictors are considered wherein 

the data points are found on or outside this region. The SVR prediction can be expressed as, 

∑
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where )(iψ and )(iW are the basis function and weights, respectively. For generalized 

prediction, it is therefore needed to develop the function with ε deviations from y as well as 

least complex. Despite reducing the risk of using training data for fitting, SVR reduces the 

upper bound on the calculated risk by employing ε -insensitive loss function, as constrained 

convex quadratic optimization problem proposed by [51] 
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where ε  and G parameters are selected based on the recommendation proposed by 

Cherkassky and Ma [56]. SVR model performs both linear as well as non-linear regression in 

conjunction to ε -insensitive loss function, simultaneously. It attempts to decrease the 

complexity by reducing the weighting vector as the objective function, 
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A non-linear regression can be formed by replacing the >⋅< in Eq. (16) with a kernel 

function, K as [57] 

bxxKxf i

k

i
ii +−= ∑

=

),()()(ˆ
1

*αα  (20) 

In the present study, Gaussian kernel function is used throughout the entire investigation.  

4. Stochastic approach using SVR model 

     The dimension of cutout of laminated composite panel with respect to each layer can 

be defined as acCo /=  where c / a   denotes the percentage of cutout with respect to overall 

panel-dimension. The effects of both single variable as well as multi-dimensional random 
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variables are investigated in conjunction to different sizes of cutout in the present analysis as 

follows:   

(a) Variation of only ply-orientation angle:        }..............{)( 321 li θθθθθωθ =  

(b) Variation of only twist angle:                    }..............{)( 321 li ψψψψψωψ =  

(c) Variation of only thickness:                                      }..............{)( 321 li tttttt =ω  

(d) Variation of only material properties: }..............{)( )()()3()2()1( lmimmmmm pppppp =ω  

(e) Combined variation of ply orientation angle, twist angle, thickness and materials 

properties:   

)}...(),...(),...(),...({)( )()1(4131211 lmmlll ppttg ΦΦΦΦ= ψψθθω  

where for i th layer, θi , ψi, ti, pm(i) are the ply orientation angle, twist angle, thickness and 

material properties wherein material properties include E1(i) , E2(i) ,  G12(i) , G23(i) , µ12(i) and ρi 

denoting the elastic modulus (longitudinal direction), elastic modulus (transverse direction), 

shear modulus (longitudinal direction), shear modulus (transverse direction), Poisson ratio 

and mass density, respectively (l is the total layer number, where i = 1, 2, 3…l). In 

conformity of the same, ± 5º variability is assumed for ply orientation and twist angle while 

± 10% variability from respective deterministic mean values of thickness and material 

properties are considered. The flowchart of uncertainty quantification algorithm based on 

SVR with and without noise effect using SVR model is shown in Figure 3. Latin hypercube 

sampling is used for forming the sample dataset of the input space.  

The pronounced noise-effect on the proposed SVR based UQ algorithm is also 

accounted by introducing different levels of noise as depicted in Figure 3(b).  In present 

investigation, Gaussian white noise is employed for SVR model formation 

fijN = fij + p × 
ijξ  (21) 

where, p and f are the multiplication factor and natural frequency with the subscript i and j 

frequency number and sample number, respectively. A function generating random numbers  
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(a) SVR based uncertainty quantification algorithm without noise (b) SVR based uncertainty quantification algorithm with noise 

Fig. 3 Flowchart on uncertainty quantification algorithm based on SVR including the effect of noise 
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(normal-distributed) with zero mean and unit standard deviation is represented as 
ijξ . Thus p 

(noise level) in the above expression basically represents the standard deviation of introduced 

noise level.  Subscript N is used here to indicate the noisy frequency. Thus simulated noisy 

dataset (i.e. the sampling matrix for SVR model formation) is formed by introducing pseudo 

random noise in the responses, while the input design points are kept unaltered. Subsequently 

for each dataset, SVR based MCS is carried out to quantify uncertainty of composite 

laminates. The noise-effect is found to be investigated previously [58-62] for other problems 

and related to other surrogates. The assessment of SVR based uncertainty propagation with 

noise-effect is the first attempt of its kind to the best of authors’ knowledge. The root-causes 

of such inevitable noise-effect can be attributed to the fact of other unknown sources of 

uncertainty such as measurement-errors, modelling-errors and computer simulation-errors 

and other system-specific epistemic uncertainties. Thus the present investigation is portrayed 

with a comprehensive idea about the robustness of SVR based UQ algorithm including noise-

effect.           

5. Results and Discussion 

     The present study is dealt with three layered graphite-epoxy angle-ply composite 

cantilever spherical shallow panel with a central square shaped cutout. Four different types of 

panels are considered for detail analyses: plate ( ∞== yx RR ), cylindrical ( ∞=xRa / , 

25.0/ =yRb ), spherical ( 25.0// == yx RbRa ) and hyperpolic paraboloid ( 25.0/ −=xRa , 

25.0/ =yRb ). The length, width and thickness of the composite laminate assumed in the 

present analyses are 1 m, 1 m and 5 mm, respectively and the dimension of the square shaped 

cutout size is considered as a percentage of its overall length and width [ acCl /=  and 

bdCb /=  wherein dc = for square cutout] from 0.1 to 0.5 with a step of 0.1. Material 

properties of graphite–epoxy composite [63] are considered with deterministic mean values 
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as E1 = 138.0 GPa, E2 = 8.96 GPa, G12 = 7.1 GPa, G13 = 7.1 GPa, G23 = 2.84 GPa, µ = 0.3, 

ρ=1600 kg/m3.  

A convegence study is carried out to validate the present formulation and to ascertain 

the optimal finite element mesh size as shown in Table 1 and Table 2. Table 1 presents the 

convergence study for non-dimensional fundamental natural frequencies of three layered 

graphite-epoxy untwisted angle-ply composite plates with finite element sizes (4 × 4), (6 × 6), 

(8 × 8) and (10 × 10), respectively in addition to comparision with the results obtained by 

Qatu and Leissa [64]. In contrast, Table 2 presents the convergence of fundamental natural 

frequencies for a simply supported square plate with specific size of the cutout with finite 

element sizes (4 × 4), (8 × 8), (12 × 12), (16 × 16) and (20 × 20), respectively in addition to 

comparision with the results obtained by Reddy [65]. Thus, Table 1 and Table 2 provide 

validation of the deterministic finite element model. A discretization of (8 × 8) mesh on plan 

area with 64 elements 225 nodes with natural coordinates of an isoparametric quadratic plate 

bending element are considered for the present FEM analysis. 

In general, the number of expensive finite element analysis required for original 

Monte Carlo simulation based UQ approach is same as the sampling size. The present 

approach of SVR based uncertainty quantification develops a predictive and representative 

surrogate model relating each natural frequency to a number of stochastic input parameters. 

Table 1 Convergence study for non-dimensional fundamental natural frequencies [ω=ωn L
2 

√(ρ/E1t
2)] of three layered (θ°/-θ°/θ°) graphite-epoxy untwisted composite plates (a/b=1 and 

b/t=100) 
 

θ 
Present FEM  

Ref. [64] 
(4 ×  4) (6 ×  6) (8 ×  8) (10 ×  10) (12 ×  12) (16 ×  16) (20 ×  20) 

0° 1.0112 1.0133 1.0107 1.0040 1.0031 1.0028 1.0022 1.0175 

90° 0.2553 0.2567 0.2547 0.2542 0.2540 0.2533 0.2530 0.2590 
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Table 2 Convergence of fundamental natural frequencies ( 22
2 / Dha ρωλ = ) of simply 

supported square plate with cutout size of c/a=0.5, a/b=1, b/h=100. 
 

Shell Type 

Present FEM Reddy 

[65] (4 ×  4) (8 ×  8) (12 ×  12) (16 ×  16) (20 ×  20) 

Isotropic 23.8432 23.570 23.4703 23.4364 23.4218 23.489 

Orthotropic 51.8546 51.0597 50.7899 50.6944 50.6505 51.232 

Composite 48.9546 48.2535 48.0650 48.0222 48.0064 48.414 

 
 
Thus SVR model for a particular mode represents the result encompassing each possible 

combination of all stochastic input parameters. A convergence study of sample size for SVR 

model formation with respect to original MCS is tabulated in Table 3 for the first three modes 

corresponding to individual (ply-orientation angle) and combined variation (ply-orientation 

angle, twist angle, thickness, elastic moduli, shear moduli, poission ratio and mass density). 

By analysing the statistical parameters presented in the Table 3 it is evident that sample size 

of 256 and 512 are adequate for the SVR model formation corresponding to individual and 

combined cases, respectively. Figure 4 and Figure 5 present the scatter plot and probability 

density function plot, respectively considering the converged sample sizes for stochastic 

natural frequencies using SVR model and traditional MCS approach for angle-ply (45°/-

45°/45°) composite curved panels with cutout corresponding to individual and for combined 

variation, respectively. It is evident from these figures that the results of the proposed SVR 

based approach are in good agreement with that of direct MCS simulations corroborating 

accuracy and validity of the proposed approach.  

The probability density function plots for stochastic first three modes using SVR 

approach for individual variation of ply orientation angle considering angle-ply (θ°/- θ °/ θ °) 

composite curved panels with cutout are presented in Figure 6. The figure reveals that as the 

ply orientation angle (θ) of the angle-ply composite curved panels with a particular size of 

cutout increases, the stochastic first three natural frequencies are found to reduce. In figure 6- 
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Table 3 Convergence study of natural frequencies corresponding to first three modes due to 
individual [ ( )]θ ω  and combined effect [ ( )]g ω  of stochasticity for composite curved panels 
with cutout (Co = 0.1) 

 

Type Mode Method Samples Maximum Minimum Mean SD 

 I
n

d
iv

id
u

al
 V

ar
ia

tio
n

 (
O

n
ly

 p
ly

-o
ri

en
ta

tio
n

 a
n

g
le

) 

F
ir

st
 

MCS 10,000 17.8750 13.9750 15.8501 0.7935 

Present 
method 

64 17.8810 13.9782 15.8561 0.7948 
128 17.8604 13.9835 15.8464 0.7946 
256 17.8725 13.9905 15.8556 0.7929 
512 17.8770 13.9887 15.8570 0.7941 
1024 17.8758 13.9762 15.8512 0.7945 

S
ec

o
n

d 
MCS 10,000 100.8807 79.8358 90.0001 4.2127 

Present 
method 

64 100.7124 80.99413 90.1040 4.1351 
128 100.6888 80.95801 89.9539 4.1981 
256 100.8305 80.01091 90.0567 4.2017 
512 100.8747 79.91743 90.0316 4.2215 
1024 100.8813 79.84141 90.0016 4.2301 

T
h

ir
d 

MCS 10,000 136.1571 122.0387 128.9192 2.7264 
 

Present 
method 

64 136.1873 122.1453 129.9542 2.7171 
128 136.2222 121.9553 128.9793 2.7513 
256 136.1728 122.1545 129.9441 2.6950 
512 136.1651 122.0598 128.9398 2.7144 
1024 136.1578 122.0436 128.9291 2.7345 

 

C
o

m
b

in
ed

 V
ar

ia
tio

n 

F
ir

st
 

MCS 10,000 21.3550 13.1850 17.0607 1.3754 

 

Present 
method 

128 21.2290 13.2270 17.08304 1.3595 

256 21.4815 13.1062 17.07911 1.3963 

512 21.4277 13.1694 17.0867 1.3848 

1024 21.3673 13.1416 17.07897 1.3822 

2048 21.3778 13.1873 17.07107 1.3787 

S
ec

o
n

d 

MCS 10,000 110.3002 73.0035 90.6014 6.4184 
 

Present 
method 

128 110.3709 72.9484 90.7125 6.3907 
256 110.9686 72.7500 90.6700 6.5456 
512 110.3437 73.1406 90.6806 6.4109 
1024 110.3767 73.0716 90.6662 6.4375 
2048 110.3034 73.0315 90.6418 6.4297 

T
h

ir
d 

MCS 10,000 192.8565 123.9751 158.4033 14.0007 

 

Present 
method 

128 192.6459 124.6592 158.5274 13.9243 

256 193.2740 124.7608 158.6299 13.6715 

512 192.5198 124.5556 158.4206 13.8215 

1024 193.0577 124.1068 158.3772 13.9229 

2048 192.8565 123.9751 158.4033 14.0007 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 4 (a, c, e) Scatter plot and (b, d, f) Probability density function plot for stochastic first 
three natural frequencies using SVR approach for individual variation of ply orientation angle 
[ ( )]θ ω  of angle-ply (45°/-45°/45°) composite curved panel with cutout (Co = 0.1) 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

 
Fig. 5 (a, c, e) Scatter plot and (b, d, f) Probability density function plot for stochastic first 
three natural frequencies using SVR approach for combined variation of ply angle, elastic 
modulus, shear modulus, Poisson ratio and mass density [ ( )]g ω  of angle-ply (45°/-45°/45°) 
composite curved panel with cutout (Co = 0.1) 
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(a) 

 
(b) 

 
(c) 

Fig. 6 Probability density function plot for first three stochastic natural frequencies using 
SVR approach for individual variation of ply orientation angle [ ( )]θ ω  of angle-ply (θ°/- θ °/ 
θ °) composite curved panel with cutout  
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(a) 

 

(b) 

 

(c) 

Fig. 7 Probability density function plot for first three stochastic natural frequencies using 
SVR approach for individual variation of twist angle [ ( )]ψ ω  of angle-ply (45°/-45°/45°) 
composite curved panel with cutout  
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(a) 

 

(b) 

 

(c) 

Fig. 8 Probability density function plots for variation of only thickness [ ( )]t ω  corresponding 
to different cut out sizes for composite curved shells with cutout 
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(a) 

 

(b) 

 
(c) 

Fig. 9 Probability density function plots for variation of only material properties [ ( )]mp ω  

corresponding to different cut out sizes for composite curved shells with cutout 
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(a) 

 

(b) 

 

(c) 

Fig. 10 Probability density function plots for combined variation [ ( )]g ω  corresponding to 
different twist angle for composite curved shells with cutout 
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(a) 

 

(b) 

 

(c) 

Fig. 11 Probability density function plots for combined variation of ply orientation angle, 
thickness, twist angle and material properties [ ( )]g ω  corresponding to different cut out sizes 
for composite curved shells with cutout 
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(a) 

 
(b) 

 
(c) 

Fig. 12 Probability density function plots for combined variation [ ( )]g ω corresponding to 
different geometry for composite curved shells with cutout (PL-Plate, CyL-Cylindrical, SP-
Spherical, HP-Hyperbolic Paraboloid) 
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Fig. 13 Coefficient of variation for different of variations of input parameters   

12, the first three natural frequencies are referred as fundamental natural frequency (FNF), 

second natural frequency (SNF) and third natural frequency (TNF) which are stochastic in 

nature. Figure 7 presents the probability density function plot for stochastic fundamental 

natural frequency for individual variation of twist angle only of angle-ply (45°/-45°/45°) 

composite curved panels with cutout. The twist angle in shell-panel structures causes 

reduction of stiffness which in turn decreases the values of the first three natural frequencies 

corresponding to a constant cutout size. The probability distributions of the first three natural 

frequencies for only variation of thickness corresponding to different sizes of cutout for 

composite shells are furnished in Figure 8. The stochastic mean values of first three natural 

frequencies are found to reduce with increasing cutout size. Figure 9 presents probability 

distributions of first three natural frequencies for variation in all the material properties. It is 

observed that the combined effects of variation of all the material properties follow Gaussian 

distribution and the mean for all the three natural frequencies reduce with the increase in 

cutout size. 

The probability density function plots of first three modes with combined variation 

(ply-orientation angle, twist angle, thickness, elastic moduli, shear moduli, poission ratio and 

mass density) corresponding to different twist angles are shown in Figure 10. The mean of 
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stochastic natural frequencies are found to reduce with increase in twist angle. It is interesting 

to notice that the probabilistic distributions for combined variation (Figure 10) follow 

Gaussian distribution, in contrast to the probabilistic characters depicted for individual 

variation of twist angle only (Figure 7). Probability distributions for first three modes with 

combined variation corresponding to different sizes of cutout are shown in Figure 11, 

wherein it is evident that the distributions are of Gaussian nature and mean of stochastic 

natural frequencies decrease with the increase in cutout size. The probability density function 

plots of the stochastic first three natural frequencies for combined variation corresponding to 

different geometry such as composite plate, cylindrical, spherical, hyperbolic paraboloid 

curved shells as shown in Figure 12. Even though the probability distributions are found to 

follow Gaussian distributions, the mean and standard deviation of natural frequencies for 

different modes are highly dependent on the type of shell geometry. Figure 13 presents the 

cofficient of variation (ratio of standard deviation and mean for a distribution) of the 

stochastic first three natural frequencies corresponding to individual and combined variation 

of stochastic input paramenters. Cofficient of variation is highest for combined variation of 

all input parameters, as expected. The analysis presented in Figure 13 provides a measure of 

relative sensitivity of different input parameters towards the natural frequencies. Among the 

stochastic geometric features, twist angle is found to be the most sensitive parameter 

followed by thickness, ply orientation angle and material properties, respectively.   

It is worthy to note here that all the probabilistic results furnished in this paper are 

obtained on the basis of 10,000 simulations. Application of support vector regression based 

approach allows us to obtain these results by means of efficient virtual simulations instead of 

actual expensive finite element simulation. 512 and 256 samples are required to construct the 

SVR model for layer-wise combined variation and individual variation of the stochastic input 

parameters, respectively. Thus for the purpose of stochastic analysis, same number of actual  
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(a) (b) 

 
(c) 

Fig. 14 Effect of noise on prediction capability of SVR model for first three natural frequencies considering combined stochasticity 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

  

 
 

  
(a) (b) 

 
(c) 

Fig. 15 Effect of noise on SVR based uncertainty quantification algorithm for first three natural frequencies considering combined stochasticity 
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FE simulations are needed in the present approach, in contrast with 10,000 FE simulations 

needed in traditional MCS based approach. Therefore, the proposed SVR approach for 

uncertainty quantification is more computationally efficient than traditional MCS approach in 

terms of FE simulations.  

Figure 14 shows the effect of noise on prediction using SVR considering combined 

variation of all input parameters. Representative results are presented in figure 15 showing 

the effect of noise on first three natural frequencies considering different levels of noise (p) 

ranging from 0 to 0.15. The results presented in this paper are obtained on the basis of 1000 

such noisy datasets, which involves construction of SVR model and thereby performing MCS 

for each dataset using corresponding SVR models as explained in figure 3(b). A comparative 

assessment of the effect of different levels of noise with noise free data (p = 0) provides a 

comprehensive idea about the influence of such noise in the probability distributions of first 

three natural frequencies. 

6. Conclusion 

     This paper presents an efficient support vector regression based stochastic natural 

frequency analysis for laminated composite curved panels with cutout including the effect of 

twist angle and variation in shell-panel geometry (such as cylindrical, spherical, hyperpolic 

paraboloid and plate). First three stochastic natural frequencies are analyzed considering 

layer-wise variation of individual (low dimensional input parameter space) as well as 

combined effect (relatively higher dimensional input parameter space) of random input 

parameters (such as ply orientation, twist angle, thickness and material properties). The 

computational time and cost are reduced significantly by using the present SVR based 

approach compared to traditional Monte Carlo simulation method. A sensitivity analysis 

among the stochastic material and geometric features is carried out within the analysis 

domain to ascertain their relative importance. The effect of noise on SVR based uncertainty 
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quantification algorithm in characterizing the probabilistic distribution of natural frequencies 

is presented to account for the respective variability in practical applications of such 

structures.  

The novelty of the present study includes the stochastic natural frequencies analysis of 

composite curved panels with cutout and development of the efficient SVR based uncertainty 

quantification algorithm for laminated composites. Moreover, the effect of noise on SVR 

based uncertainty quantification algorithm is first analyzed in this article. Even though it is 

concentrated on stochastic natural frequency analysis of laminated composite curved panels 

in this paper, the SVR based approach for uncertainty quantification including the effect of 

noise can be extended to deal with other computationally intensive problems in different 

fields of science and engineering.  
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