
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in :

Metallurgical and Materials Transactions A

                                               

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa29679

_____________________________________________________________

 
Paper:

Evans, M. (2016).  A Statistical Test for Identifying the Number of Creep Regimes When Using the Wilshire Equations

for Creep Property Predictions. Metallurgical and Materials Transactions A

http://dx.doi.org/10.1007/s11661-016-3750-x

 

 

 

 

 

 

 

 

_____________________________________________________________
  
This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository. 

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 

http://cronfa.swan.ac.uk/Record/cronfa29679
http://dx.doi.org/10.1007/s11661-016-3750-x
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 


 

Page | 1 
 

A Statistical Test for Identifying the Number of Creep Regimes 1 

when using the Wilshire Equations for Creep Property Predictions 2 

 3 

MARK EVANS 4 

College of Engineering, Swansea University, Bay Campus, Engineering East, Fabian Way, 5 

Crymlyn Burrows, Swansea, SA1 8EN, Wales UK. 6 

Tel: +44(0)1792 295748; Fax: +44(0)1792 295676; Email: m.evans@swansea.ac.uk  7 

 8 

ABSTRACT     9 

A new parametric approach, termed the Wilshire equations, offer the realistic potential of being 10 

able to accurately life materials operating at in service conditions from accelerated test results 11 

lasting no more than 5,000h. The success of this approach can be attributable to a well-defined 12 

linear relationship that appears to exist between various creep properties and a log 13 

transformation of the normalised stress. However, these linear trends are subject to 14 

discontinuities, the number of which appears to differ from material to material. These 15 

discontinuities have until now been i. treated as abrupt in nature and ii. been identified by eye 16 

from an inspection of simple graphical plots of the data. This paper puts forward a statistica l 17 

test for determining the correct number of discontinuities present within a creep data set and a 18 

method for allowing these discontinuities to occur more gradually - so that the methodology is 19 

more in line with the accepted view as to how creep mechanism evolve with changing test 20 

conditions. These two developments are fully illustrated using creep data sets on two steel 21 

alloys. When these new procedures are applied to these steel alloys, not only do they produce 22 

more accurate and realistic looking long-term predictions of the minimum creep rate but they 23 

also lead to very different conclusions about the mechanisms determining the rates of creep 24 

from those originally put forward by Wilshire.  25 

Keywords:  26 

Minimum creep rate, Wilshire methodology, Statistical testing, Threshold models 27 

 28 

 29 

I.    INTRODUCTION 30 

To reduce fuel consumption and CO2 emissions from power plants, new high-tempera ture 31 

alloys are required to resist the increase in temperature and pressure needed to raise plant 32 

efficiencies. However, at the design stage, information must be available on the stresses to 33 

which multiple batches of these new alloys can sustain without creep fracture occurring within 34 

100,000h at the service temperatures [1]. Unfortunately, with the traditional parametric, 35 

numerical and computational methods, long term strengths cannot be predicted by 36 

extrapolation of short-term property sets. Consequently, at present, protracted and expensive 37 

long-duration test programmes are necessary to determine the 100,000h creep rupture 38 
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strengths, with a reduction in this 12 to 15 year “materials development cycle” being defined 39 

as the No.1 priority in the 2007 UK Energy Materials-Strategic Research [2]. 40 

In response to this problem, over recent years, a new approach - termed the Wilshire 41 

equations - has been devised which appears to allow accurate long-term strength values to be 42 

obtained by extrapolation from accelerated short-term measurements. The last 5 to 6 years has 43 

seen the appearance in the literature of this methodology applied to a wide range of materia ls 44 

used for high temperature application in the power generation and aerospace industries in an 45 

attempt to verify the validity and accuracy of this approach [3-8]. Specifically, 100,000h strength 46 

estimates have been produced by analysis of multi-batch data lasting up to only 5,000h for a 47 

series of ferritic bainitic and martensitic steels for power and petrochemical plant and titanium 48 

alloys used in aero engine blades and disc.  49 

The Wilshire equation takes the form,  50 

    v*

cm2TS /RT).exp(Qkexpσ/σ                                                  [1a] 51 

where 
m is the minimum creep rate, T is the absolute temperature,  the stress,TS the tensile 52 

strength, R the universal gas constant,  Q*
c the activation energy for self-diffusion and where 53 

k2 and v are further model parameters. This equation provides a sigmoidal data presentation 54 

such that 
m  ∞ as (/TS)  1 (provided v < 0), whereas 

m  0 as (/TS)  0. Wilshire 55 

and Battenbough [3] proposed a very similar expression to Eq. [1] for the stress and temperature 56 

dependencies of the time to failure, tf, and time to various different strains. The parameters k2 57 

and v appear to be dependent upon stress (and possibly temperature) for many steel alloys.  58 

This approach can be contrasted to the traditional power law expression for modelling 59 

creep properties as a function of stress and temperature  60 

/RT)exp(Q*
cm

nA                                                                                                           [1b] 61 

but once again the unknown parameter (Q*
c and n) change with test conditions. In this approach 62 

the variation in n and Q*c with test conditions is traditionally explained in terms of differ ing 63 

creep mechanisms being dominant at different stresses and temperatures. For example, a 64 

transition from n ≈ 4 to n ≈ 1 is traditionally taken as evidence of a change from dislocation to 65 

diffusional creep processes as stress diminishes. Likewise, when creep occurs by diffus ion 66 

controlled generation and movement of dislocations a fall in the activation energy below that 67 

associated with lattice self-diffusion is interpreted either as i. deformation behaviour being 68 

increasingly controlled by  preferential diffusion along dislocation cores at low temperatures 69 

within a high stress regime, or by ii. deformation behaviour being increasingly controlled by 70 

stress directed vacancy flow along grain boundaries at low temperatures and stresses.  71 

However, the results obtained from using Eq. [1a] have lead authors like Wilshire and 72 

Scharning [4] and Wilshire and Whittaker [5] to suggest that the parameter instability observed 73 
in k2 and v is not the result of a change from dislocation to diffusional creep processes. Instead, 74 

and depending on the material under investigation, they choose to interpret the observed 75 
changes in k2 and v as either being: 76 
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 77 
i. the result of particle coarsening associated with long test durations at lower stresses.  78 

ii. or as a result of a change from creep occurring from the generation of new dislocations 79 
within the lattice structure itself to creep occurring from the movement of dislocations pre-80 

existing only in the grain boundary zones as a result of a low stress level. 81 
 82 

The fact that Eq. [1a] has been remarkably successful in being able to predict creep 83 

lives at operating conditions from highly accelerated tests of very short duration and over a 84 

wide range of materials is taken by these authors to be strong evidence to support this view. 85 

As an illustration of this point of view consider two steel alloys. Fig.1a summarises the 86 

results obtained by Wilshire  and Scharning[4] in their 2007 study of 1Cr - 1Mo - 0.25V steel 87 

using the NIMS[9] data base on this material. As can be seen from this figure, there appears to 88 

be one break point (and therefore two creep regimes) where the values for k2 and v change, but 89 

according to the authors, the activation energy remains unchanged. By studying the 90 

metallographic evidence obtained by NIMS [10], the authors found that little or no change was 91 

observed  in the as received bainitic microstructures when hardness reductions were small, 92 

whereas distinguishable increases in carbide size was apparent  when the hardness values fell 93 

of rapidly. Furthermore, only very modest falls in hardness were observed in the high 94 

normalised stress range, with rapid harness reductions occurring the low normalised stress 95 

ranges. Thus, the unchanging activation energy quoted by the authors is taken to mean that 96 

creep is determined by behaviour within the crystal lattice. Then the changes in k2 and v reflect 97 

differences in the rates of creep strength reduction caused by the evolution of the tempered 98 

bianitic microstructure in the low normalised stress range. This causes creep rates to be much 99 

higher in the low stress regime than would be predicted by relations prevalent at higher stresses.  100 

Thus in Fig.1a the larger carbide particle sizes present at very low stresses (where the 101 

test duration is long), means that at a given stress, creep rates will be greater than that predicted 102 

from relations that hold at higher stresses. Hence the steeper slope of the best fit line shown in 103 

Fig.1a below a normalised stress of around 0.4.  Despite this, and as clearly seen in Fig. 1a, the 104 

presence of these distinctly different stress regimes does not prevent the accurate prediction of 105 

creep lives out to over 100,000 hours using only data up to 5,000h for the purpose of parameter 106 

estimation. 107 

In  their study of 2.25Cr-1Mo steel, Wilshire and Whittaker [5] identified three different 108 

values for v and k2 that corresponded to high, medium and low stress regimes – as seen in Fig. 109 

1b for the MAF batch of materials within the NIMS[11] data base on this steel alloy. For this 110 

material, these authors again suggest that no transition takes place from dislocation to 111 

diffusional creep with decreasing applied stress. Instead, dislocation creep processes are rate 112 

controlling at all stress levels, even though the detailed dislocation processes vary in different 113 

stress regimes. Thus, with 2.25Cr-1Mo steels, the creep and creep fracture properties differ 114 

above and below  ≈ Y (where Y is the yield stress). According to Wilshire and Whittaker 115 
[5], when  > Y, so that the initial strain on loading has both elastic and plastic components, 116 

creep is controlled by the generation and movement of dislocations within the grains where the 117 

activation energy is highest.  118 
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In contrast, when < Y, so that the strain on loading has essentially only an elastic 119 

component, new dislocations are not generated within the grains. Instead, creep occurs within 120 

the grain boundary zones, i.e. by grain boundary sliding or diffusion along existing dislocations 121 

and grain boundaries with associated deformation in the grain regions adjacent to the 122 

boundaries (where the activation energy is lower). Hence, the creep rates when < Y are 123 

slower and the creep lives are longer than expected by direct extrapolation of m  data obtained 124 

when < Y. Another change in creep and creep rupture behaviour occurs when  125 

approximately equals 0.2TS. With this material, the original ferrite/bainite microstruc ture 126 

degrades to ferrite and molybdenum carbide particles in long term tests at the highest creep 127 

temperatures, with very coarse carbide particles forming along the grain boundaries. This 128 

carbide coarsening reduces creep strength in the matrix allowing diffusio n to occur within the 129 

grains once again where the activation energy is higher. In these cases, because of the loss of 130 

creep resistance caused by this transformation, the m  values are larger when   < 0.2TS  than 131 

would be predicted by extrapolation of data collected at intermediate  levels. These authors 132 

have provided similar explanations for the observed breaks in other power generating materia ls 133 

as well. 134 

Yet despite the simplicity of these types of explanation, and the accuracy of predictions 135 

of creep life made using this approach, the methodology has always been presented (with Figs 136 

.1a,b being a typical visualisation of the approach in the literature) showing an abrupt change 137 

in parameter values at precise values for the normalised stress. This suggests that at this 138 

normalised stress the cause of creep deformation suddenly changes from being 100% 139 

controlled by dislocations within the bulk to 100% determined by dislocations within the 140 

boundaries. Yet, such changes are known to occur gradually, with a gradual transition say from 141 

deformation being controlled by the bulk to being controlled within the grains as stress falls 142 

below a critical value. 143 

This paper therefore has two main aims designed to enhance and further formulise the 144 

Wilshire methodology. The first is to modify the Wilshire methodology to allow for a gradual 145 

rather than abrupt change by using the approach first put forward by Evans[12] - but to generalise 146 

this approach to allow for more than one “regime” change. Secondly, a statistical test is 147 

presented that enables the number of regime changes or breaks present in the creep data to be 148 

determined. Such a statistical test is not as straight forward as it first sounds because under the 149 

null hypothesis of no regime change some of the parameters in the Wilshire equations are not 150 

actually defined. As a consequence of this, the distribution of any test statistic for this null 151 

hypothesis is non-standard - as maximum likelihood (or least squares) theory is no longer 152 

directly applicable. Interestingly, the modified Wilshire methodology proposed here provides 153 

a neat solution to this problem of testing for regime change. 154 

II.  THE MODIFIED WILSHIRE EQUATIONS 155 

A. Two Competing Creep Deformation Mechanisms 156 
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To develop the proposed modification of the Wilshire equations, it is first helpful to 157 

rewrite Eq. [1a] in the following way 158 

121 udxbxay                                                                                                           [2] 159 

with y being the natural log of the minimum creep rate, x1 = ln[-ln[/TS)] and x2 = 1/RT, b = 160 

1/v, a  = ln[k2/v] and d = Q*
c. u1 are the residuals included in the specification to make clear the 161 

fact that the experimental data on creep properties are stochastic in nature. Estimation 162 

procedures for determining values for a, b and d typical take the form of minimising the sum 163 

of these squared residuals. Consider next the simplest scenario where the data has at most just 164 

a single break or two distinct creep mechanisms or regimes. In such a situation Eq. [2] can be 165 

written as 166 

      
    wproportionith          wu xdxba      

w-1  proportionith          wu  xdxba        
y 

222122

221111




                                     [3a] 167 

where, for example, b1 is the value for b under one creep mechanism and b2 the value for b 168 

under the other creep mechanism. u2 are the residuals associated with the Wilshire model that 169 

has two creep regimes. The value for w determines how much of the overall minimum creep 170 

rate is determined by a particular mechanism. So when w = 0.5 two different creep processes 171 

(for example dislocation movements within grain boundaries versus dislocation movements 172 

within the bulk) contribute equally towards the overall minimum creep rate. Then as w tends 173 

to unity (and so 1 - w1 tends to zero) the creep rate is increasingly determined by just one of 174 

these creep mechanisms. When w = 1, the creep rate is determined 100% by a single 175 

mechanism. In effect w measures the dominance of a particular deformation mechanism. Then 176 

d1 can be interpreted as the activation energy associated with the first mechanism, and d2 is the 177 

activation energy associated with the other mechanism (for example the activation energies 178 

associated with dislocation movements within boundaries and within the bulk).  In comparison 179 

to Eq. [1], b1 = 1/v1 and b2 = 1/v2 where v1 and v2 are the values for v in Eq. [1] associated with 180 

the two different regimes. Likewise, a1  = ln[k21/v1] and a2  = ln[k22/v2] where k21 and k22 are 181 

the values for k2 in Eq [1] associated with the two different regimes. 182 

Whilst it is unclear exactly how w varies with the normalised stress, it must be the case 183 

that w tends 1 as /TS increases. Whilst this could happen in a linear fashion, a more general 184 

representation would allow for a non-linear transition between the regimes  185 

)]x(xβexp[1

1
w

*

l11 
                                                                                              [3b] 186 

where x*
1 is some critical value for the normalised stress, namely that normalised stress where 187 

creep rates are equally governed by the two competing mechanisms (i.e. where w = 0.5). The 188 

specification given by Eq. [3a,b] is very similar to threshold models used quite commonly for 189 

modelling time series data and the reader is referred to Tong [12] and Martin et. al. [13] for a good 190 

review on how to identify and estimate the parameters of such models. Writing the 191 

determination of w in this way has the clear advantage that the traditional Wilshire equation 192 
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can be recovered from this re-specification. That is, if 1 is large (typically larger than 500), 193 

the S shaped sigmoidal curve given by Eq. [3b] becomes extremely steep around x*
1 and 194 

essentially appears as a step like function at this point leading to a very abrupt regime change 195 

– which is how the Wilshire equations has been applied up until now. That is, as 1 increase, 196 

Eq. [3b] approximates to the step function 197 

      
  xif           0         

 xif           1        
 w

*

11

*

11

x

x




                                                                                            [3c] 198 

However, the main advantage if Eq. [3b] is that unlike a step function implied by the 199 

traditional Wilshire model, w is differentiable and this provides a means for statistically testing 200 

whether such a regime change exists in the first place. 201 

Eqs. [3a,b] or Eq. [3a,c] can be combined into a single equation of the form 202 

       )wuxdxb(aw))(1uxdxb(ay 222122221111                                        203 

or 204 

      u)wxd-(d)wxb-(b)wa(axdxbay 22121121221111      [3d] 205 

 206 

When the model is expressed as in Eq. [3d], a simple estimation procedure for the 207 

unknown parameters can be used. First, arbitrarily choose a value for 1 and x*
1 in Eq. [3b]. 208 

This makes w an observable variable in Eq. [3d] so that the parameters of this equation can be 209 

obtained by regressing y on a constant, x1, x2, w and the cross products wx1 and wx2 (this is 210 

just multiple linear least squares the value for u2
2 summed over all data points is minimised). 211 

Then a grid search can be carried out to find the values for 1 and x*
1 that further minimise the 212 

residual sum of squares (x*
1 will typically be varied in small increments over the range 0.2 to 213 

0.8, whilst 1 will typically be varied in less small increments over the range 0 to 1000). This 214 

will produce estimates for a1, b1 and d1 together with a2-a1, b2-b1 and d2-d1. From all these 215 

estimates, it is then possible to recover the values for a2, b2 and d2.  216 

B. Three or More Competing Creep Deformation Mechanisms 217 

There are a number of ways to generalise Eq. [3d]. One is to allow for mechanism 218 

changes at more than one normalised stress level - as suggested by Wilshire and Whittaker 219 

when studying data on 2.25Cr-1Mo steel. The second is to allow the mechanism to change at 220 

various stress and temperature levels as is typically portrayed in traditional creep deformation 221 

maps. Such an approach was considered by Evans[14] and will not be discussed further in this 222 

paper. In the former approach, Eq. [3a] would generalise to 223 
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w..ww1 wproportion  with                     u xdxba

:                                                                                            :

 wproportion  with                                                             uxdxba

 wproportion  with                                                             uxdxba

 wproportion with                                                             u xdxba

y 

1p21p32p1pp

3323133

2322122

1321111









224 

                      [4a] 225 

where u3 are the residuals when there are p different creep mechanisms that  predominantly 226 

come into operation at p - 1 different normalised stresses. For example, consider three possible 227 

creep regimes that occur within different normalised stress ranges. The Eq. [4a] simplifies to 228 

      )wuxdxb(a)ww-)(1uxdxb(a))(wuxdxb(ay 3323133313221221321111 229 

or 230 

         
      ux)wd-(dx)wd-(d

x)wb-(bx)wb-(b)wa(a)wa(axdxbay 

323232121

1323112132312122122




    [4b] 231 

with  232 

      312**

l13

3*

l11

1 ww1w;
)]x(xβexp[1

1
w;

)]x(xβexp[1

1
1w 





       [4c] 233 

and with x**
1 being the normalised stress associated with another creep mechanism starting to 234 

dominated the process of deformation. Eq. [4c] allows the intermediate regime to phase in as 235 

the regimes either side start to take on a less dominant role. 236 

III.     A STATISTICAL TEST FOR REGIME CHANGE 237 

A. Two Competing Creep Deformation Mechanisms 238 

By testing jointly that the parameters (a2 – a1), (b2 - b1) and (d2 - d1) are all equal to zero 239 

in Eq. [3d] it becomes possible to determine statistically how many regime changes are present 240 

within the experimental data. A natural test statistic to determine whether or not these are zero 241 

(which is the null hypothesis) is to jointly test whether the parameters in front of w, wx1 and 242 

wx2 in Eq. [3d] are significantly different from zero. (Readers are referred to Vining and 243 

Kowalski [15] for a description on this joint test of significance). However, the Standard F test 244 

normally constructed to carry out such a test, no longer has an F distribution because the 245 

parameters 1 and x*
1 in Eq. [3b] are not defined under this null hypothesis and so conventiona l 246 

maximum likelihood theory is no longer directly applicable. An alternative approach is to test 247 

1 = 0 as w is Eq. [3b] then becomes a constant resulting in Eq. [3a] collapsing to Eq. [1]. 248 

However, in this case it is the parameters x*
1, a1, b1, d1, a2, b2 and d2 that are not identified under 249 

the null hypothesis. In the Econometrics literature, three possible ways to address this problem 250 

have been identified. Luukkonen, Saikkonen and Terasvirta [16] suggest focusing on the local 251 

asymptotics at 1 = 0. This approach has the advantage of yielding a test statistic with a standard 252 

distribution under the null hypothesis. Alternatively, Hansen [17] proposes a solution based on 253 
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local asymptotics at a1 = b1 = d1 = a2 =b2 = d2 = 0, which yields a test statistic whose distribution 254 

must be approximated by bootstrapping. Lee, Granger and White [18] proposes a test similar to 255 

Hansen’s in that it tests a1 = b1 = d1 = a2 =b2 = d2 = 0. However, it draws simulated values for 256 

x*
1 and 1 to generate values for w in Eq. [3b]. The authors suggest using a rectangular 257 

distribution to do this simulation.  258 

This paper makes use of the first of these approaches. Let z = 1(x1-x*
1) so that under 259 

the null hypothesis of no regime change 1 = 0, and so z = 0. The first three derivatives of Eq. 260 

[3b] with respect to z, evaluated at  z = 0 are as follows: 261 

      
4

1

))exp(1(

)exp(
w

0

2

0

)1(

0 










 zz z

z

z

w
 262 

      0
))exp(1(

)2exp()exp(
w 03

0

2

2
)2(

0 








 



z

z
z

zz

z

w
 263 

      
8

1

1)exp(4)4exp()3exp(4)2exp(6

)exp()2exp(4)3exp(
w 0

0

3

3
)3(

0 








 



z

z
zzzz

zzz

z

w
 264 

Using these derivatives in a third order Taylor series expansion of w around z = 0 gives 265 

             z
48

1
-0z

4

1

2

1
   )0(

6

1
)0(

2

1
)0(w 33)3(

0

2)2(

0

)1(

0)0(  zwzwzww     [5a] 266 

Now the expansion of z3 in Eq. [5a] has terms x1, x2
1 and z3

1 so that this function can 267 

be approximated by the cubic  268 

3

13

2

12110 x xxw                                                                                                    [5b] 269 

This Taylor series approximation represents the local behaviour of the function in the 270 

vicinity of 1 = 0 and therefore provides a basis for a test of regime change. Substituting Eq. 271 

[5b] into Eq. [3d], (and ignoring the residual term for the moment), gives a regression equation 272 

of the form 273 

         

2

3

13122

2

121221112

4

1312

3

1212312

2

1112212

20121101211210121

xx)δd(dxx)δd(dxx)δd(d

x)δb(b}x)δb(b)δa{(a}x)δb(b   )δa{(a

 }x)δd(d{d  }x)δb(b   )δa(a{b})δa(a{ay 







[5c] 274 

Under the null hypothesis of no regime change, there are no interaction terms and no 275 

quadratic, cubic or fourth order terms (as the values in round brackets are then zero) present in 276 

Eq. [5c]. Therefore, the steps required to perform a test of the null hypothesis that there is just 277 

one creep mechanism (i.e. no creep regime change) are as follows: 278 

Step 1: Regress y on {1, x1, x2} (i.e. assuming no regime change as in Eq. [2]) to get estimates 279 

of the residuals u1 shown in Eq.[2]. 280 
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Step 2: Regress u1 on {1, x1, x2, x2
1, x3

1, x4
1, x1x2, x2

1x2, x3
1x2}. 281 

Step 3: Compute the Lagrange multiplier statistic LM = NR2 where N is the sample size and 282 

R2 is the coefficient of determination from the regression carried out in step 2.  Under the null 283 

hypothesis that 1 = 0 (i.e. no regime change), LM is asymptotically distributed as a chi square 284 

variable with 6 degrees of freedom. 285 

The intuition behind this test is that any important regime change excluded from the 286 

regression in step 1 will show up in the regression carried out in step 2 in the form of a high 287 

value for the coefficient of determination R2 (and so lead to a large chi square variable and the 288 

subsequent rejection of the null hypothesis). 289 

B.  Three or More Competing Creep Deformation Mechanisms 290 

This test is easily generalised to three or more competing mechanism by adopting a 291 

sequential estimation and testing procedure. Thus, the initial null hypothesis is for a linear 292 

model with a single creep mechanism and this is tested against the alternative of a model with 293 

a single regime change (or two mechanisms) using exactly the same procedure as that outlined 294 

in sub section IIIA above. If the null hypothesis is accepted that is the end of this sequentia l 295 

procedure and there is just a single creep mechanism present within the data. If the null 296 

hypothesis is rejected at significance level where typically  is taken to be 5%, the new 297 

null hypothesis becomes a model with two creep regimes present and this is tested against the 298 

alternative of a model with three regime changes, using once again a three step procedure. That 299 

is: 300 

Step 1: Regress y on {1, x1, x2, w1, wx1, w1x2} (i.e. assuming one regime change as in Eq, [3d]) 301 

to get estimates of the residuals u2 shown in Eq. [3d]. 302 

Step 2: Regress u2 on {1, x1, x2, w1, wx1, w1x2, x2
1, x3

1, x1x2, x1x2
1,  x1x3

1,  x3
1x2}. 303 

Step 3: Compute the Lagrange multiplier statistic LM = NR2 where N is the sample size and 304 
R2 is the coefficient of determination from the regression carried out in step 2.  Under the null 305 

hypothesis of one regime change, LM is asymptotically distributed as a chi square variable 306 
with 6 degrees of freedom. Accept the model with three different creep regimes if the null 307 
hypothesis is rejected at significance level τα, 0 < τ < 1. Reducing the significance level 308 

compared to the preceding test favours parsimonious models. Choosing τ is left to the modeller, 309 
but τ = .5 is a common choice. 310 

 311 
This sequential estimation and testing is continued until the first acceptance of the null 312 

hypothesis. This yields the specification for the final model and determines the number of creep 313 

mechanisms generating the experimental creep data. 314 

 315 

IV. APPLICATIONS 316 

A. 1Cr - 1Mo - 0.25V Steel  317 
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In order to apply the sequential testing procedure described in section III above to the 318 

1Cr - 1Mo - 0.25V data shown in Fig. 1a, it is necessary to first construct the residuals u1 in 319 

Eq. [2]. Columns 2 and 3 of Table I show the estimates made for the parameters in Eq. [2]. The 320 

t values show that all the parameters are statistically significant at the 1% significance level 321 

with the value for d implying an activation energy of just over 300kJmol-1. These estimates 322 

imply that the residuals u1 are given by 323 

u1 = y – (23.2390 - 6.9101x1 - 304.4505x2)                   [6a] 324 

The second and third columns of Table II show the results obtained when u1 is regressed 325 

on {1, x1, x2, x2
1, x3

1, x4
1, x1x2, x2

1x2,  x3
1x2} for the second step of the three step test procedure. 326 

It reveals that the parameter in front of x1x2 in Eq. [5c] is statistically different from zero at the 327 

5% significance level. Eq. [5c] also suggests that this can only be so if there is a statistica l ly 328 

significant change in the activation energy (as then d2 - d1 ≠ 0).This part of Table II also reveals 329 

that the parameter in front of x1 in Eq. [5c] is statistically different from zero at the 5% 330 

significance level. Again, Eq. [5c] also suggests that this can only be so if there is a statistica l ly 331 

significant change in either b1 or a1 or both, as then b2 - b1 ≠ 0, and or a2 - a1 ≠ 0. This is true 332 

because by using the residual u1 on the left hand side of Eq. [5c] instead of y, the parameter b1 333 

is “pulled” (i.e. should be zero in the regression) from this equation during the regression. All 334 

these t tests are consistent with the estimates made of the parameters in Eq. [3d] to be discussed 335 

further below. 336 

As shown in the second and third columns of Table II the R2 value is quite high at just 337 

over 64%. Consequently, the chi square variable (TR2), that test the null hypothesis of no 338 

change in creep regime, is statistically significant even at the 1% significance level, meaning 339 

that the null hypothesis of just one creep mechanism can be rejected. Thus, there are at least 340 

two different creep mechanisms generating the minimum creep rates shown in this 1Cr - 1Mo 341 

- 0.25V data set. 342 

To test for the presence of a third creep mechanism, it is necessary to next construct the  343 

residuals u2 in Eq. [3d]. The last two columns of Table I shows the estimates made for the 344 

parameters in Eqs. [3b,3d]. These estimates imply that the restricted residuals u2 are given by 345 

            u2 = y – (24.4028 – 4.3613x1 – 317.5693x2 - 10.3971w - 1.5702wx1 + 82.0410wx2)  [6b] 346 

with w given by 347 

)]4656.0(x7071.71exp[1

1
w

1 
                                                                            [6d] 348 

The last two columns of Table II shows the results obtained when u2 is regressed on {1, 349 

x1, x2, x2
1, x3

1, x4
1, x1x2, x2

1x2,  x3
1x2} for the second step of the three step test procedure. It 350 

reveals that none of the parameter in Eq. [5c] are statistically different from zero (even at the 351 

10% significance level). It is not surprising therefore that the R2 value is very low at just over 352 

1% so that the chi square variable (TR2), that test the null hypothesis of one change in creep 353 

regime, is statistically insignificant (even at the 10% significance level). Thus the null 354 
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hypothesis of just one creep regime change cannot be comprehensively rejected. Thus, there 355 

are exactly two different creep mechanisms generating the minimum creep rates recorded 356 

within this 1Cr - 1Mo - 0.25V data set. 357 

As briefly mentioned above, the last two columns of Table II shows the results obtained 358 

when the modified Wilshire model applied to the 1Cr - 1Mo - 0.25V data shown in Fig. 1a with 359 

two competing creep mechanisms. These estimates are slightly at odds with those origina l ly 360 

stated by Wilshire and Scharning and as summarised in Fig. 1a. The last two columns of Table 361 

I reveals that the break appears to occur at a normalised stress of 0.47. Whilst this is slightly 362 

higher than the value provided by Wilshire and Scharning (0.4), the main differences between 363 

their results and those shown in this paper stem from the value for 1 = 17.7 shown in Table I.  364 

This relatively low value gives rise to the sigmoidal curve shown in Fig.2. As can be seen from 365 

this figure, a transition from a low to a high stress regime occurs not instantaneous ly at a 366 

normalised stress of 0.47, but very gradually over a wider normalised stress range. At a 367 

normalised stress of 0.47, w in Eq. [3b] equals 0.5 implying that deformation is equally 368 

governed by two competing creep mechanisms. However, once the normalised stress falls to 369 

0.3, deformation is predominantly determined by one of these mechanisms (w = 0.05 implies 370 

95% determined) and once the normalised stress reaches about 0.6, deformation is 371 

predominantly determined by the other mechanism (w = 0.95 implies 95% determined). For 372 

this modified model to be equivalent to Wilshire’s original specification, 1 would need to be 373 

quite large (over 500) so that then the sigmoidal function in Fig.2 would become very step - 374 

essentially giving a very sharp and rapid transition between these two regimes. 375 

The values for d1 and d2 shown in the last two columns of Table I help interpret what 376 

these competing creep mechanisms might be. At normalised stress below 0.3, w is less than 377 

0.05 in value implying that the values for a1, b1 and d1 in Eq. [3a] are predominant in describing 378 

the minimum creep rate. The value for d1 in particular implies an activation energy of 379 

approximately 320kJmol-1. At normalised stress above 0.6, w is more than 0.95 in value 380 

implying that the values for a2, b2 and d2 in Eq. [3a] are predominant in describing the minimum 381 

creep rate. The value for d2 in particular implies an activation energy of approximate ly 382 

230kJmol-1. Furthermore, these activation energies are statistically significantly different from 383 

each other at the 1% significance level (as shown by the student t values in the d2-d1 row and 384 

third column of Table I). This is consistent with the results shown in the first half of Table II 385 

which showed the parameter in front of x1x2 to be statistically significant - when using u1 are 386 

the regressor variable. 387 

This result is very different from the original Wilshire and Scharning paper where the 388 

activation was quoted to be 300kJmol-1 at all levels of the normalised stress. This varying 389 

activation energy must also cast doubt on their explanation for the kink in the best fit line shown 390 

in Fig.1a. For creep to occur predominantly by diffusion controlled generation and movement 391 

of dislocations within the lattice structure only, (with particle coarsening within the lattice 392 

being the cause of changing k2 and v values), no matter what the stress level is, the activation 393 

energy should also be unchanging with respect to stress. Neither can the changing values for 394 

k2 and v be attributable to a change from creep occurring from the generation of new 395 

dislocations within the lattice structure itself to creep occurring from the movement of 396 
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dislocations pre-existing in the grain boundary zones only. Because then the activation energy 397 

would be lower at low normalised stress. This is not in agreement with the estimates made from 398 

the data where the opposite appears to be true - the sigmoidal curve shown in Fig.3a shows the 399 

activation energy increasing with decreasing normalised stresses. However, the activation 400 

energies shown in Fig. 3a are consistent with the traditional view that Nabarro –Herring 401 

diffusional creep becomes more dominant at lower stresses. This is further supported by the 402 

fact that in the NIMS data set the lower stress tests are at the highest temperatures. If this is so, 403 

then 320kJmol-1 would be that activation energy for self-diffusion. The only way to explain the 404 

lower activation energy that is estimated for the high stress regime (which in the NIMS data 405 

set also corresponds to low temperatures), is to suggest that under this condition the dominant 406 

creep mechanism is preferential diffusion along dislocations (without dislocation movement) 407 

or coble creep, i.e. stress directed vacancy flow along grain boundaries .  408 

There is also a statistically significant difference between b1 and b2 and between a1 and 409 

a2 as revealed by the student t values in Table I (in the a2-a1 and b2-b1 rows). Thus the gradual 410 

switch in the deformation mechanism with stress is also associated with changing values for 411 

both k2 and v. In Figs. 3a,b the values for Q*
c, k2 and v are multiplied by the changing value 412 

for w shown in Fig.2 to give an impression of how these parameters change with the normalised 413 

stress. As can be seen, the main changes in the values for these parameters takes place over the 414 

normalised stress range of 0.3 to 0.6.  It is over this stress range then that the deformation 415 

mechanism driving creep switches. These changes drive the shape of the solid curve in Fig. 3a. 416 

Along the stretch a – b we have the familiar negative relationship between ln(-ln(Ts) and 417 

ln[
mε . exp{Q*

c/RT)]. Then Q*
c starts to change rapidly and this leads to the stretch of the curve 418 

between b and c. Finally, over the normalised stress range 0.1 - 0.3, the familiar negative 419 

relationship between ln(-ln(Ts) and ln[
mε . exp{Q*

c/RT)] returns but now the activation 420 

energy is much higher than before.   421 

B.         2.25Cr-1Mo steel 422 

In order to apply the sequential testing procedure described in section III above to the 423 

2.25Cr-1Mo data shown in Fig. 1b, it is necessary to first construct the residuals u1 in Eq. [2]. 424 

Columns two and three of Table III shows the estimates made for the parameters in Eq. [2]. 425 

The t values show that parameters b and d are statistically significant at the 1% significance 426 

level with the value for d implying an activation energy of nearly 200kJmol-1. These estimates 427 

imply that the residuals u1 are given by 428 

u1 = y – (7.4906 - 6.1446x1 – 190.2616x2)                                                                 [7a] 429 

Columns 2 and 3 of Table IV show the results obtained when u1 is then regressed on 430 

{1, x1, x2, x2
1, x3

1, x4
1, x1x2, x2

1x2,  x3
1x2} for the second step of the three step test procedure. It 431 

reveals that at the 5% significance level, the only parameter to be statistically insignificant is 432 

that in front of x4
1 in Eq. [5c]. Eq. [5c] also suggests that this result can only be so if there is a 433 

statistically insignificant change in the value for v in Eq. [2] (as then b2 - b1 = 0). Eq. [5c] also 434 

suggests that the statistical significance of all the other parameters shown in these two columns 435 

can only be so if there is a statistically significant change in both d1 and a1. Then a2 - a1 ≠ 0 436 
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(leading to the parameter in front of x1, x2
1 and x3

1 in the first half of Table IV being significantly 437 

different from zero), and d2 - d1 ≠ 0 (leading to the parameter in front of x1x2 in the first half of 438 

Table IV being significantly different from zero). All these t tests are consistent with the 439 

estimates made of the parameters in Eq. [3d] to be discussed further below. 440 

As shown in columns two and three of Table IV, the R2 value is quite high at just over 441 

91%, so that the chi square variable (TR2), that test the null hypothesis of no change in creep 442 

regime, is statistically significant even at the 1% significance level. This in turn means that the 443 

null hypothesis of just one creep mechanism is rejected by the data. Thus, there are at least two 444 

different creep mechanisms generating the minimum creep rates recorded in this 2.25Cr-1Mo 445 

data set. 446 

To test for the presence of a third creep mechanism, it is necessary to next construct the 447 

residuals u2 in Eq. [3d]. The middle section of Table III shows the estimates made for the 448 

parameters in Eq. [3d]. These estimates imply that the residuals u2 are given by 449 

    u2 = y – (6.5490 – 4.8317x1 – 198.9690x2 + 29.4426w + 0.0727wx1 – 165.6330wx2)       [7b] 450 

with w given by 451 

)]2638.038.6887(xexp[1

1
w

1 
                                                                            [7c] 452 

The last two columns of Table IV show the results obtained when u2 is regressed on {1, 453 

x1, x2, x2
1, x3

1, x4
1, x1x2, x2

1x2,  x3
1x2} for the second step of the three step test procedure. It 454 

reveals, first of all, that the parameter in front of x4
1 is statistically different from zero at the 455 

5% significance level. Eq. [5c] also suggests that this can only be so if there is a statistica l ly 456 

significant change in the slope of the best fit line in Fig. 1b (as then b2 - b1 ≠ 0). The statistica l 457 

significance of the parameter in front of x2
1 at the 5% significance level may also indicate that 458 

the intercept of the best fit line in Fig. 1b changes (as then a2 - a1 ≠ 0). The last two columns 459 

Table IV also reveals the parameter in front of x2
1x2 is statistically different from zero at the 460 

10% significance level. Eq. [5c] also suggests that this can only be so if there is a statistica l ly 461 

significant change in the activation energy (as then d2 - d1 ≠ 0). These t statistics are therefore 462 

suggestive that for this material at least three creep mechanisms are at work. This is further 463 

confirmed by the R2 value, which is quite high at just over 34% so that the chi square variable 464 

(TR2), that test the null hypothesis of just two creep regimes, is statistically significant at the 465 

10% significance level. This in turn means that the null hypothesis of just two creep mechanism 466 

is rejected by the data. Thus, there are at least three different creep mechanisms generating the 467 

minimum creep rates recorded in this 2.25Cr - 1Mo steel data set. 468 

Although the results of testing the null hypothesis of exactly three creep regimes using 469 

this LM test are not shown here, the test leads to the acceptance of this null hypothesis - even 470 

at the 10% significance level. Thus for this material there appears to be three distinctly different 471 

creep regimes or mechanisms and the parameter estimates of Eq. [4b,c] shown in the last two 472 

columns of Table III throw some light on the nature of these regimes. These estimates are 473 

slightly at odds with those originally stated by Wilshire and Whittaker - which are shown in 474 



Page | 14 
 

Fig. 1b. The last two columns of Table III reveals that the two break points appear to occur at 475 

normalised stresses of 0.26 and 0.42. Whilst these are slightly different to the values provided 476 

by Wilshire and Whittaker (around 0.1 and 0.5 respectively), the main difference stems from 477 

the values for 1 = 50.5 and 3 = 18.1 shown towards the bottom of Table III.  These values 478 

give rise to the sigmoidal and bell shaped curves shown in Fig.4.  479 

As can be seen from this figure, a transition from a low to a medium stress regime and 480 

then from a medium to a high stress regime occurs, but not instantaneously, at normalised 481 

stresses of 0.26 and 0,42 respectively.  Below a normalised stress of 0.3, about 90% of the 482 

deformation is governed by the first creep mechanism (summarised by the value for w1). The 483 

remaining deformation is governed by the other two mechanisms. Then at a normalised stress 484 

of around 0.30 the second mechanism dominates with about 80% of the deformation being 485 

controlled by this mechanism (as shown by the value for w2). Beyond a normalised stress of 486 

0.42, the third mechanism starts to dominate with around 90% of the deformation being 487 

governed by this last mechanism at normalised stresses of 0.55 and above (as reflected in the 488 

value for w3). For this modified model to be equivalent to Wilshire and Whittaker’s origina l 489 

specification, 1 and 3 would need to be quite large (over 500) so that then the sigmoida l 490 

functions in Fig.4 would become very step, and the bell shaped function very compressed,-  491 

essentially giving a very sharp and rapid transition between the regimes. 492 

The values for d1, d2 and d3 in the last two columns of Table III help interpret what 493 

these competing creep regimes or mechanisms might be. At a normalised stress around 0.30, 494 

w2 is about 0.8 in value implying that the values for a2, b2 and d2 in Eq. [4b] are predominant 495 

in describing deformation and the minimum creep rate. The value for d2 then implies an 496 

activation energy of approximately 240kJmol-1which is consistent with the estimates made by 497 

Wilshire and Whittaker for this middle stress regime (see Fig. 1b where the activation energy 498 

is given by the authors at 230kJmol-1). At normalised stresses less than 0.2, w1 is 0.8 or more 499 

in value implying that the values for a1, b1 and d1 in Eq. [4b] are predominant in describing 500 

deformation and the minimum creep rate. The value for d1 shown in the last two columns of 501 

Table III then implies an activation energy of approximately 200kJmol-1, but because the t 502 

statistic on d1-d2 is insignificant (implying d1-d2 is insignificantly different from zero), the 503 

conclusion must be that the activation energy in this low stress regime is not different to that 504 

in the medium stress regime. This is very different to the conclusion given by Wilshire and 505 

Whittaker who maintain that the activation energy is much higher in this low stress regime (but 506 

they provide no statistical proof for this hypothesis). At normalised stresses above 0.55, w3 is 507 

0.8 or more in value implying that the values for a3, b3 and d3 in Eq. [4b] are predominant in 508 

describing deformation and the minimum creep rate. The value for d3 shown in Table III then 509 

implies an activation energy of approximately 400kJmol-1, and because the t statistic on d3-d2 510 

is statistically significant, the conclusion must be that the activation energy in this high stress 511 

regime is different to that in both the medium and low stress regimes. This activation energy is 512 

much higher than that quoted by Wilshire and Whittaker who maintain that the activation 513 

energy is around 280kJmol-1 in this high stress regime (see Fig. 1b). 514 

According to Wilshire and Whittaker [5], when  > Y, creep is controlled by the 515 

generation and movement of dislocations within the grains. This would require a high 516 
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activation energy, which is consistent with the result described above where an activation 517 

energy is estimated at around 400kJmol-1. In contrast, when < Y, Wilshire and Whittaker 518 

suggest that dislocations are not generated within the grains. Instead, creep occurs within the 519 

grain boundary zones, i.e. by grain boundary sliding and or diffusion along existing 520 

dislocations and grain boundaries. This requires a lower activation energy, which is consistent 521 

with the result described above where an activation energy of around 230kJmol-1 is estimated 522 

for medium stresses. Wilshire and Whittaker then suggest another change in creep and creep 523 

rupture behaviour occurs when approximately equals 0.2TS. With this material, they suggest 524 

the original ferrite/bainite microstructure degrades to ferrite and molybdenum carbide particles 525 

in long term tests at the highest creep temperatures, with very coarse carbide particles forming 526 

along the grain boundaries (which takes place in long-term tests at the highest creep 527 

temperatures). This then enables deformation to once again be determined by processes within 528 

the lattice structure, where the activation energy is greatest. Whilst the results in this paper 529 

suggest that a mechanism change does indeed occur in the transition from medium to very low 530 

stresses, there is no significant increase in the activation energy. Contrary to the Wilshire 531 

explanation, this result suggests that creep is not predominantly determined by processes 532 

occurring within the lattice structure material - because the activation energy is highest within 533 

the bulk. It would seem instead that sliding and or diffusion along existing dislocations and 534 

grain boundaries still predominates at these very low stresses. But that the coarsening of the 535 

carbide particles reduces creep strength further given the different stress relation shown in the 536 

low stress regime compared to the medium stress regime, i.e. allows creep rates to be much 537 

higher than would be predicted using relations that apply in the medium stress regime. 538 

There are also statistically significant differences between b1, b2 and b3 and between a1, 539 

a2 and a3 as revealed by the student t values in Table III (in the a1-a2, a3-a2 and the b1-b2, b3-b2 540 

rows). Thus the gradual switch in deformation mechanisms with stress is also associated with 541 

changing values for both k2 and v. In Figs. 5a,b the values for Q*
c, k2 and v are multiplied by 542 

the changing value for wi shown in Fig. 4 to give an impression of how these parameters change 543 

with the normalised stress. As can be seen, the main changes in the values for these parameters 544 

takes place over the normalised stress range of 0.2 to 0.5. k2 appears to continually increase 545 

with the normalised stress, whilst v is similar in value at the highest and lowest stresses with a 546 

temporary increase over the intermediate normalised stress ranges. The values for v at the end 547 

points (i.e. at points a and d in Fig. 5a) are very similar to the estimates made by Wilshire and 548 

Whittaker in their original study – as can be seen by a comparison of Fig.1a with Fig.5a. 549 

However, the values for k2 in this study appear a little larger in comparison. 550 

Finally, the solid curves in Fig.6 shows what the predictions given in Fig.5 look like in 551 

stress - minimum creep rate space. It can be seen that the predictions trace out well defined 552 

smooth curves as the stress level varies. In contrast to this, the dotted “curves” show the 553 

predictions obtained when the weighting functions w1 to w3 are step like in nature which then 554 

closely corresponds to the original Wilshire – Whittaker specification for this material. The 555 

predictions at some of the temperatures are very discontinuous due to abrupt changes in the 556 

activation energy and the functional relationship of the minimum creep rate with stress. These 557 

discontinuities do not make physical sense and lead to rather bizarre behaviour. For example, 558 
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at 873K (600oC) and between 53 MPa and 41 MPa, the minimum creep rate slows down in a 559 

uniform fashion, but then just before a stress of 41 MPa is reached the model predicts the creep 560 

rate will suddenly increase even though there has been little change in the stress level. From a 561 

creep perspective this makes little sense and reflects the incorrect specification of the way the 562 

activation energy changes with stress (in reality it is gradual rather than abrupt). 563 

V.  CONCLUSIONS 564 

This paper has put forward a statistical test for determining the correct number of 565 

discontinuities to use within the Wilshire equations and also a method for allowing these 566 

discontinuities to change more gradually with the normalised stress level - so that the 567 

methodology is more in line with the accepted view as to how creep mechanism evolve with 568 

changing test conditions. The new findings obtained using this modified methodology include : 569 

i. In their study of 1Cr - 1Mo - 0.25V steel, Wilshire and Scharning worked with a constant 570 

activation energy of 300kJmol-1 and a change in the relationship between the minimum 571 

creep rate and the normalised stress that occurred abruptly at a normalised stress of 0.4. 572 

In contrast, this paper found that the activation energy also changed with the normalised 573 

stress. Further, these changes occurred gradually over a normalised stress range of around 574 

0.3 to 0.6. This changing activation energy in turn casts doubt on the authors view that 575 

the changing values for k2 and v were the result of particle coarsening associated with 576 

long test durations at lower stresses. 577 

ii. In their study of 2.25Cr-1Mo Wilshire and Whittaker  worked with an activation energy 578 

that was lower for mid-range normalised stresses (230kJmol-1) than it was for any other 579 

value of the normalised stress (where they took the activation energy to be 280kJmol-1). 580 

In contrast, this paper found the activation energy to be around 400kJmol-1 at the highest 581 

values for the normalised stress but around 240kJmol-1 for all other values of the 582 

normalised stress. These difference suggest that creep is not predominantly determined 583 

by processes occurring within the lattice structure at these lowest stress values as 584 

originally suggested by these authors. Over the normalised stress range 0.2 to 0.5, creep 585 

is predominantly determined by a single process with an activation energy of 240kJmol-586 
1. Below a normalised stress of 0.25, there is quite an abrupt change in the values for k2 587 

and v, whilst in contrast, the changes in k2 and v are more gradual for increases in the 588 

normalised stress above a value of 0.45. 589 

iii. When the new procedures outlined in this paper were applied to 2.25Cr-1Mo steel, they 590 

produce more accurate and realistic looking long term predictions of the minimum creep 591 

rate.  592 

An important area for future work includes applying the methodology outlined in this 593 

paper to other steel alloys to confirm whether this approach also produced better long term 594 

predictions for these materials, and better understanding of the changing deformation 595 

mechanisms. 596 

 597 

 598 
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 640 

 641 

Fig.1 – The best values for k2, v and Q*
c determined by Wilshire and Scharning[4] and Wilshire 642 

and Whittaker[5] were found by plotting ln[m.exp(Q*
c/RT)] against ln(-ln(TS)) for a. 1Cr - 643 

1Mo – 0.25 steel forgings for rotors and shafts and b. for 2.25Cr-1Mo steel tubes. 644 
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 645 

Fig. 2 -   The dominance of two different deformation mechanisms at different stresses for 1Cr-646 

1Mo-0.25V steel. 647 
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 648 

Fig.3 – Dependence of a. ln[m.exp(Q*
c/RT)] on ln(-ln(TS)) and the activation energy on the 649 

normalised stress and b. dependence of  k2 and v on the normalised stress for 1Cr-1-Mo-0.25V 650 

steel at various temperatures. 651 
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 652 

Fig. 4 -   The dominance of three different deformation mechanisms at different stresses for 653 

2.25Cr-1Mo steel. 654 
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 655 

Fig.5 – Dependence of a. ln[m.exp(Q*
c/RT)] on ln(-ln(TS)) and the activation energy on the 656 

normalised stress and b. dependence of  k2 and v on the normalised stress for 2.25Cr-1Mo steel  657 

at various temperatures. 658 
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 659 

Fig.6 – Minimum creep rates in 2.25Cr-1Mo steel tubes predicted by the modified and origina l 660 

specifications of the Wilshire equation. 661 
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Table I.  Least Squares Estimates for the Parameters in Eq. [2] and Eqs. [3b,3d] when using 675 

1Cr-1Mo-0.25V Steel Forging Data 676 

 Eq. [2] Eqs. [3b,3d] 

Parameters Least squares 

estimates 

t value Least squares 

estimates 

t value 

a 23.2390 14.43*** - - 

b -6.9101 -24.24*** - - 

d -304.4505 -26.89*** - - 

a1 - - 24.4028 13.22*** 

b1 - - -4.3613 -10.09*** 

d1 - - -317.5693 -24.44*** 

a2-a1 - - -10.3971 -2.91*** 

b2-b1 - - -1.5702 -2.67*** 

d2-d1 - - 82.0411 3.34*** 

a2 - - 14.0057 6.06*** 

b2 - - -5.9316 -11.35*** 

d2 - - -235.5282 -8.47*** 

x*
1 - - 0.4656 - 

1 - - 17.7071 - 

- Parameters are not part of the model. 
***Parameters are statistically different from zero at the  = 1% and above significance level. 
** Parameters are statistically different from zero at the  = 5% and above significance level. 
* Parameters are statistically different from zero at the  = 10% and above significance level.  

T is the sample size (T=121). 
t has a student t distribution with T - 3 degrees of freedom for Eq. [2] and T - 6 degrees of 

freedom for Eq. [3d]. 
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Table II.  Results from Regressing u1 and u2 on {1, x1, x2, x2
1, x3

1, x4
1, x1x2, x2

1x2,  x3
1x2} 681 

when using 1Cr-1Mo-0.25V Steel Forging Data 682 

 u1 u2 

Variable 
Least squares 

estimates 

t & Chi square 

values 

Least squares 

estimates 

t & Chi square 

values 

Constant -0.9344 -0.54 -0.7656 -0.45 

x1 14.8038 2.51** 0.8635 0.15 

x2 2.9373 0.24 5.3381 0.44 

x2
1 6.3926 0.38 17.1725 1.01 

x3
1 -0.3812 -0.02 17.3221 0.82 

x4
1 -4.1614 -1.17 -2.7544 -0.78 

x1x2 -98.4011 2.31** -5.6813 -0.13 

x2
1x2 -25.0805 -0.21 -122.0521 -1.03 

x3
1x2 -7.2728 -0.04 -139.0271 -0.85 

R2 (%) 64.17 - 1.03 - 

LM = TR - 77.68*** - 1.25 

***Parameters are statistically different from zero at the  = 1% and above significance 

level. **Parameters are statistically different from zero at the = 5% and above significance 

level. *Parameters are statistically different from zero at the  = 10% and above 

significance level. 
R2 is the coefficient of determination or the percentage variation in u explained by all the 

variables shown in the first column of the table. 
TR2 has a chi square distribution with 6 degrees of freedom. T is the sample size (T = 121). 

t has a student t distribution with T - 9 degrees of freedom. 
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Table III.  Least Squares Estimates for the Parameters in Eq. [2] and Eqs. [3b,3d] when 690 

using 2.25Cr - 1Mo Steel Tube Data 691 

 Eq. [2] Eq. [3d] Eq. [4b,c] 

Parameters Estimate t value Estimate t value Estimate t value 

a 7.4906 1.15 - - - - 

b -6.1446 -7.99*** - - - - 

d -190.2616 -4.38*** - - - - 

a2 - - - - 15.6319 3.16*** 

b2 - - - - 0.0325 0.02 

d2 - - - - -238.3443 -7.45*** 

a1-a2 - - -29.4426 -7.58*** -8.9704 -1.65* 

a3-a2 - - - - 28.8024 4.43*** 

b1-b2 - - -0.0727 0.14 -5.422 -3.81*** 

b3-b2 - - - - -3.8803 -2.98*** 

d1-d2 - - 165.6330 6.33*** 42.1756 1.18 

d3-d2 - - - - -172.4897 -4.18*** 

a1 - - 6.5419 2.06** 6.6615 19.24*** 

a3 - - - - 44.3426 3.18*** 

b1 - - -4.8317 -9.59*** -5.3897 -12.28*** 

b3 - - - - -3.8478 -15.54*** 

d1 - - -198.9690 -9.05*** -196.1688 -6.58*** 

d3 - - - - -410.8314 -28.42*** 

x*
1 - - 0.2638 - 0.2638 - 

1 - - 38.6887 - 50.5172 - 

x**
1 - - - - 0.4239 - 

3 - - - - 18.1292 - 

- Parameters are not part of the model. 
***Parameters are statistically different from zero at the  = 1% and above significance level. 
** Parameters are statistically different from zero at the  = 5% and above significance level. 
* Parameters are statistically different from zero at the  = 10% and above significance level.  

T is the sample size (T = 31). 
t has a student t distribution with T-3 degrees of freedom for Eq. [2] and T - 6 degrees of 
freedom for Eq. [3d]. 
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 697 

Table IV. Results from Regressing u1 and u2 on {1, x1, x2, x2
1, x3

1, x4
1, x1x2, x2

1x2,  x3
1x2} 698 

when using  2.25Cr - 1Mo Steel Tube Data 699 

 u1 u2 

Variable 
Least squares 

estimates 

t & Chi square 

values 

Least squares 

estimates 

t& Chi square 

values 

Constant 10.8126 2.80** 3.1162 -1.35 

x1 -50.3627 -6.05*** -7.7382 -1.55 

x2 -62.4319 -2.47** 20.0285 1.32 

x2
1 22.5831 12.09*** 14.9435 2.07** 

x3
1 47.5139 3.63*** 5.7176 0.72 

x4
1 -0.9135 -0.84 -1.3998 -2.13** 

x1x2 315.8915 5.60*** 51.5805 1.53 

x2
1x2 -162.0437 -2.09** -88.0569 -1.90* 

x3
1x2 -314.1496 -3.45*** -44.4357 -0.83 

R2 (%) 91.03 - 34.25 - 

TR - 28.22*** - 10.72* 

***Parameters are statistically different from zero at the = 1% and above significance 

level. **Parameters are statistically different from zero at the  = 5% and above 

significance level. *Parameters are statistically different from zero at the = 10% and 
above significance level. 

R2 is the coefficient of determination or the percentage variation in u explained by all the 
variables shown in the first column of the table. 
TR2 has a chi square distribution with 6 degrees of freedom. T is the sample size (T = 31). 

t has a student t distribution with T - 9 degrees of freedom. 
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