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Abstract 

 Confidence judgments in two-alternative decisions have been the subject of a great 

deal of research in cognitive psychology. Sequential sampling models have been particularly 

successful at explaining confidence judgments in such decisions, and the relationships 

between confidence, accuracy, and response latencies. Across five experiments, we derived 

predictions from sequential sampling models and applied them to more complex decisions: 

multiple-alternative decisions, and compound decisions, such as eyewitness identification 

tasks, in which a target may be present or absent within the array of items that can be 

selected. We hypothesized that, when a decision-maker chooses an item, confidence in that 

decision reflects the relative evidence for the chosen item over all unchosen items. We tested 

this hypothesis by manipulating the similarity between the target (or target-replacement, for 

trials in which the target was not present in the array) and the weakest lure(s). As target-lure 

similarity decreased, confidence in correct target identifications increased, while response 

latencies decreased. When the decision-maker chose none of the items, the similarity between 

the target-replacement and the lures was unrelated to confidence. We conclude that similar 

mechanisms underpin confidence judgments in multiple-alternative and positive compound 

decisions as in simpler, two-alternative decisions. A goal of future research should be to 

formally extend sequential sampling models to more complex decisions, such that it will be 

possible to establish whether diffusion or accumulator models provide a better fit to the data. 

Keywords: Confidence, response latencies, n-alternative decisions, compound decisions, 

eyewitness identification.  
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How target-lure similarity shapes confidence judgments in multiple-alternative decision tasks 

 There is a long history in psychology and psychophysics of using confidence ratings 

to understand the processes through which an individual arrives at a decision (e.g., Angell, 

1907; Henmon, 1911; Williamson, 1915). In recent decades, a concerted effort has been 

made to understand how these confidence judgments are produced, with sequential sampling 

models proving particularly successful (e.g., Brown & Heathcote, 2008; Ratcliff & Starns, 

2009; Usher & McClelland, 2001). However, these models have largely been used to predict 

confidence in simple, binary-choice decisions, such as determining which of two stimuli is 

brighter (Teodorescu, Moran, & Usher, 2016) or which of two lines is longest (Yu, Pleskac, 

& Zeigenfuse, 2015). The aim of this paper is to test predictions derived from these models in 

the context of more complex decision tasks that are more closely aligned to the types of 

decisions we make in daily life. Specifically, we investigate n-alternative forced-choice 

decisions, such as might be faced by a candidate sitting a multiple-choice exam, or by a 

physician deciding which of several treatment regimens to prescribe to a patient. We also 

investigate compound decisions, in which the decision-maker must decide whether a target 

item is present in or absent from an array of stimuli, such as might be faced by an eyewitness 

attempting to identify a culprit from a police photo-array or lineup. To foreshadow, our 

findings suggest that similar cognitive mechanisms may produce confidence judgments in 

these complex decisions as in the simple decisions that have formed the basis of much 

cognitive research. 

Theoretical perspectives on confidence judgments 

In basic cognitive psychology research, confidence judgments are frequently elicited 

following memorial (Heathcote, Bora, & Freeman, 2010; Mickes, Hwe, Wais, & Wixted, 

2011; Stretch & Wixted, 1998) or perceptual (Baranski & Petrusic, 1994; Festinger, 1943; 

Juslin & Olsson, 1997) decisions. In a typical paradigm, the decision-maker is faced with two 
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response options: Is line A or line B longest? Was this item on the study list or is it a new 

item? Following the decision, the participant indicates her confidence that the decision was 

correct. 

Over many decades, several regularities have emerged regarding the relationships 

between decision accuracy, confidence, and response latencies. First, when difficulty is 

manipulated, conditions with higher accuracy are associated with higher mean confidence 

and shorter decision latencies than conditions with lower accuracy (e.g., Baranski & Petrusic, 

1998; Björkman, Juslin, & Winman, 1993; Festinger, 1943). Second, when difficulty is held 

constant, there is a positive relationship between confidence and accuracy (e.g., Baranski & 

Petrusic, 1994; Hiller & Weber, 2013; Juslin & Olsson, 1997). In non-speeded tasks, there is 

also a negative relationship between confidence and decision latencies (e.g., Kiani, Corthell, 

& Shadlen, 2014; Pleskac & Busemeyer, 2010; Vickers & Packer, 1982). To explain these 

regularities, a class of models called sequential sampling models have been proposed. There 

are many sequential sampling models, which differ in their details. It is beyond the scope of 

this paper to provide a comprehensive review of these models and how they differ, and it is 

not our intention to critically test these models against each other. Rather, we focus on the 

common underlying assumptions of the models. 

All sequential sampling models assume that, when an observer is faced with a 

decision, evidence accumulates over time until a decision threshold is reached. Let us 

imagine a two-alternative perceptual discrimination task in which the decision-maker must 

decide which of two lines, A or B, is longest. In diffusion, or random walk models, (e.g., 

Ashby, 1983; Ratcliff, 1978), the accumulated evidence is stored on a single variable. At any 

moment in time, the state of accumulated evidence is represented as a single value that 

indicates the extent to which the evidence favours one response option over the other. This 

variable drifts towards one of two decision thresholds – one for choice A and one for choice 



CONFIDENCE IN COMPLEX DECISION TASKS 5 

 

B. When the evidence reaches one of these thresholds, the appropriate decision is made. In 

accumulator, or race models (e.g., Brown & Heathcote, 2008; Usher & McClelland, 2001; 

Vickers, 1970), each response option is associated with its own counter upon which evidence 

accumulates. Thus, at any single moment in time, the state of evidence accumulation is 

presented by n values, where n is the number of response options. In the line discrimination 

example, line A and line B would each have a corresponding evidence counter. Just as with 

diffusion models, evidence accumulates until a decision threshold is reached, at which point 

the corresponding decision is made.  

Sequential sampling models have been very successful at explaining relationships 

between decision accuracy and response latencies. If the evidence more strongly favors one 

option over the other, the evidence will accumulate rapidly, leading to a fast decision. 

Furthermore, when evidence strongly favors one decision over another, that decision is likely 

to be correct. Thus, these models can explain why conditions in which stimuli are more 

discriminable produce faster, more accurate decisions than conditions in which stimuli are 

less discriminable. The models also explain the negative accuracy-latency relationship 

observed within conditions; trial-to-trial variability in evidence accumulation is associated 

with variability in both response latencies and accuracy. 

The extension of sequential sampling models to confidence judgments is more 

complex. In accumulator models, confidence is assumed to index the difference in the end 

state of accumulated evidence between the chosen and unchosen response options; this has 

been termed the balance-of-evidence hypothesis (P. L. Smith & Vickers, 1988; Van Zandt, 

2000). Thus, a trial that produced much more evidence in favor of option A over option B 

will be associated with high confidence; conversely, a trial in which the race between the two 

counters was much closer will be associated with low confidence. In this way, accumulator 

models can account for: i) the difference in mean confidence between high- and low-
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discriminability conditions (higher discriminability is associated with a larger difference in 

the end-state of the evidence between the response options); ii) the positive relationship 

between confidence and accuracy (trials in which the evidence strongly favours one option 

over the other are more likely to be correct, and will produce higher confidence, than those in 

which the evidence is more closely balanced); and iii) the negative relationship between 

confidence and response latencies (when evidence accumulates rapidly on the winning 

counter, the decision will be made more quickly; furthermore, the balance-of-evidence will 

more strongly favor the winning response, producing high confidence judgments). 

Diffusion models cannot be extended to confidence judgments without some extra 

assumptions (Usher & McClelland, 2001). Recall that in diffusion models the evidence is 

represented on a single variable, which indexes the relative evidence for one option over the 

other, and that the decision is made when this variable reaches the decision threshold. 

Consequently, there is no variability in the end state of the evidence at the time of the 

decision, and therefore, no basis upon which to produce graded confidence judgments. To 

overcome this obstacle, several two-stage models have been proposed, in which evidence 

continues to accumulate after the decision is made (e.g., Moran, Teodorescu, & Usher, 2015; 

Pleskac & Busemeyer, 2010). Confidence is scaled not from the state of evidence at the time 

of the decision (t1), but from the state of the evidence at the time of the confidence judgment 

(t2). It is the variability in the rate of evidence accumulation between t1 and t2 that allows for 

graded confidence judgments, with rapid accumulation of evidence associated with high 

confidence. These two-stage diffusion models are also able to account for: i) the difference in 

mean confidence between high- and low-discriminability conditions (the rate of the post-

decisional evidence accumulation will be higher in high-discriminability conditions, 

producing higher mean confidence judgments); ii) the positive relationship between 

confidence and accuracy (accurate trials are associated with higher post-decisional drift rates 
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than inaccurate trials, consequently producing higher confidence judgments); and iii) the 

negative relationship between confidence and response latencies (pre- and post-decisional 

drift rates are associated, such that a decision made quickly will continue to accumulate 

evidence rapidly in the post-decision period, leading to a high confidence judgment).  

In sum, sequential sampling models have been developed to account for commonly 

observed relationships between decision accuracy, confidence, and response latencies. 

Though there are some differences between models, they all assume that evidence 

accumulates over the course of a trial until a decision can be made. Importantly, across all 

sequential sampling models, confidence judgments express the relative evidence for the 

chosen response over the unchosen response. In the case of accumulator models, confidence 

judgments index the balance-of-evidence stored in the accumulators; in diffusion models, 

confidence is scaled from a single variable that represents evidence favoring one response 

option over the other. 

Confidence judgments in n-alternative decisions 

 The models outlined above were largely developed in the context of 2-alternative 

forced-choice (2AFC) decisions. However, the types of decisions we face in day-to-day life 

are often not as simple as deciding between two options. In this section, we discuss the 

extension of sequential sampling models to forced-choice decisions with more than two 

alternatives. 

 A major strength of accumulator models is that they can be easily applied to multiple-

alternative decisions (Brown & Heathcote, 2008; Usher & McClelland, 2001). Each response 

option is associated with its own counter upon which evidence accumulates. There is no limit 

to the number of counters and, hence, no limit to the number of response options that can be 

considered. In some accumulator models (e.g., Usher & McClelland, 2001), lateral inhibition 

occurs, such that a build-up of evidence on one counter comes to dominate the others; in 
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other models (e.g., Brown & Heathcote, 2008), evidence accrual is independent across 

counters. 

 However, when sequential sampling models have been applied to multiple-alternative 

decisions, the focus has usually been on explaining the effect of choice set size on accuracy 

and response times in absolute identification tasks (Hick, 1952; Lacouture & Marley, 2004; 

Usher, Olami, & McClelland, 2002). Here, we try to answer a rather different question: given 

a multiple-alternative decision with a specific set size, how are confidence judgments 

formed?  

 As argued previously, it is widely agreed that confidence judgments are largely 

relative (though they may also carry information about absolute stimulus values; Teodorescu 

et al., 2016; Zawadzka, Higham, & Hanczakowski, 2016). In a 2AFC task, confidence 

indexes the degree to which the evidence favors the chosen option over the unchosen option. 

Thus, we would expect that, within an n-alternative forced choice task, confidence will index 

the degree to which the evidence favors the chosen option over the unchosen options. The 

question we ask is this: do confidence judgments in nAFC decisions contrast the strength of 

evidence associated with the chosen alternative with the strength of evidence for all unchosen 

alternatives? We investigate this possibility within a task analogous to an eyewitness 

identification test, which would allow us to consider both the theoretical and applied 

implications of such a finding. 

 There is reason to think that this may be the case. Windschitl and Chambers (2004) 

showed that likelihood assessments of a particular outcome increase when some implausible 

alternatives are added. The authors argued that the inclusion of “duds” increases the 

perceived evidence strength of the focal alternative. Charman, Wells, and Joy (2011) 

extended these findings to confidence judgments in eyewitness identification decisions by 

adding implausible filler items to a lineup.  The inclusion of these duds boosted confidence in 
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the chosen (plausible) item. Such an effect could be the result of top-down meta-cognitive 

inferences (e.g., “I was able to exclude a couple of items, so my memory must be pretty 

good!”), or it could be the bottom-up result of a sequential sampling system in which 

confidence indexes relative evidence strengths between a chosen item and all non-chosen 

items (e.g., P. L. Smith & Vickers, 1988; Van Zandt, 2000).   

 If sequential sampling models can be successfully extended to nAFC tasks, then we 

might expect the general findings from 2AFC tasks to transfer. Namely, we would predict 

that: i) Mean confidence will be higher and mean response latencies will be shorter under 

conditions of higher discriminability; ii) when discriminability is held constant, confidence 

and accuracy will be positively correlated; and iii) when discriminability is held constant, 

response latencies and accuracy will be negatively correlated. Furthermore, if confidence 

judgments carry information from all items within the choice array, then we would expect 

confidence to increase as the evidence associated with the weakest item decreases. 

Importantly, if such an effect were observed even when the weakest item was not an obvious 

‘dud’, this would be suggestive of a bottom-up process, rather than top-down metacognitive 

processes. 

Confidence judgments in compound decisions   

In compound decision tasks, decision-makers are presented with an n-alternative 

choice array that may or may not include a target, and they must decide: i) whether a target is 

present or absent; and ii) the identity or location of the target. Examples of real-world 

compound decision tasks include airport security personnel scanning luggage for dangerous 

or prohibited items, radiologists searching images for particular types of abnormalities, and 

eyewitnesses attempting to identify a perpetrator from a police lineup (Duncan, 2006). These 

tasks are considerably more complicated than 2AFC tasks. In addition to the n-alternative 
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nature of compound decision tasks, the decision-maker has the opportunity to decide that the 

target item is not present. We focus on the latter of these complications in this section. 

Let us consider a recognition task. On each test trial, the participant must decide 

whether a specific item was previously studied or not. Accumulator models of recognition 

assume that positive and negative samples of evidence accumulate on separate counters (Van 

Zandt, 2000). With each sample, the degree of match between the test item and the stored 

item (or items) is assessed (which may include familiarity and recollective detail; Wixted & 

Mickes, 2010). If a sample produces low evidence of match, (or evidence of mismatch), the 

sample will accumulate on the “new” counter; if the sample produces high evidence of 

match, the sample will accumulate on the “old” counter. Just as with a 2AFC task, a decision 

is made when one of the counters reaches the appropriate threshold. In these models, 

confidence is scaled from the balance of evidence in accumulated “old” and “new” evidence. 

An alternative accumulator model of recognition is Ratcliff and Starns’ (2013) 

RTCON2 model. In this model, match-to-memory is available to the decision-maker not as a 

single value but as a distribution. The strength distribution is partitioned into separate 

regions, with each region corresponding to a particular combination of decision type (e.g., 

“old” or “new”) and confidence (e.g., “high”, “medium”, or “low”). Each possible decision-

confidence pairing is associated with an accumulator, racing towards its own threshold. The 

rate at which evidence accumulates on each counter is determined by the area of the strength 

distribution that falls within the corresponding region. One disadvantage of this model is that 

the number of accumulators grows rapidly with each additional response option (e.g., 

choosing between 2, 3, or 4 items) and with increasingly fine-grained confidence scales. For 

this reason, we will not focus on this particular model here, instead extracting predictions 

from simpler models that scale more easily to the complex 4-alternative, compound decisions 

that we investigate in Experiments 4 and 5. 
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In diffusion models of recognition memory, the decision variable on which evidence 

accumulates indexes the degree of match between a target item and an item, or items, stored 

in memory (e.g., Ratcliff, 1978; Ratcliff, Thapar, & McKoon, 2004). Without extension, 

these models would suffer from the same problems as in a 2AFC task; a lack of variability in 

the end state of the accumulated evidence would provide no basis for confidence. Thus, 

additional assumptions, such as post-decisional processing, would be required, in which 

confidence is scaled from the evidence state at the time of the confidence judgment (e.g., 

Moran et al., 2015; Pleskac & Busemeyer, 2010).  

Let us now consider a compound recognition task, such as that faced by an eyewitness 

viewing a police lineup. The decision-maker is presented with n items, and must decide 

whether any of these items match a previously seen target. To our knowledge, sequential 

sampling models have not been formally extended to compound decision tasks, and so we 

necessarily must become speculative here. Because accumulator models are more easily 

extended to multiple-choice decisions than diffusion models, we will take an accumulator 

perspective here. Let us assume that each of the n items is associated with a counter, as in a 

nAFC task (e.g., Brown & Heathcote, 2008; Usher & McClelland, 2001); we will refer to 

these as item counters. Furthermore, negative evidence accumulates on a separate, “not 

present” counter (similar to how negative evidence accumulates in recognition decisions; Van 

Zandt, 2000); we will refer to this as the negative counter. We will also assume that the 

decision-maker sets two thresholds; one for making a positive decision (i.e., choosing an 

item), and one for making a negative decision (i.e., deciding that no target is present). The 

decision-maker responds when one of two events occur: when the evidence on one of the 

item counters reaches the positive decision threshold; or when the evidence on the negative 

counter reaches the negative decision threshold.  
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When a positive decision is reached, we assume that confidence is produced by the 

same processes as in a nAFC task. Specifically, confidence is computed from the balance-of-

evidence between the chosen item and the unchosen items. A growing body of research in the 

eyewitness identification literature has documented a robust confidence-accuracy relationship 

for witnesses who make a positive choice (e.g., Brewer & Wells, 2006; Horry, Palmer, & 

Brewer, 2012; Palmer, Brewer, Weber, & Nagesh, 2013; Sauerland & Sporer, 2009). For 

positive decisions, there is also a negative response latency-accuracy relationship (e.g., 

Brewer, Caon, Todd, & Weber, 2006; Sauerland & Sporer, 2009; S. M. Smith, Lindsay, 

Pryke, & Dysart, 2001). Furthermore, conditions associated with higher accuracy also 

produce higher mean confidence (e.g., full vs. divided attention; Palmer et al., 2013). Thus, 

the same regularities that have been observed in 2AFC tasks have also been observed for 

positive decisions in more complex, compound decision tasks. 

When a negative decision is reached, we assume that this is because the evidence on 

the negative counter accumulated to threshold. The rate of accumulation should be faster, on 

average, for target-absent trials than for target-present trials, producing a negative response 

latency-accuracy relationship. But how are confidence judgments scaled in negative 

decisions? Given a negative decision, a decision-maker must evaluate their confidence that 

none of the items matched the target (Weber & Brewer, 2004; Lindsay et al., 2013). This 

would seem to place somewhat different demands on the decision-maker than a confidence 

judgment for a positive decision, in which an individual item is chosen. One possible 

mechanism would be to scale confidence from the distance between the evidence 

accumulated for the best (though unchosen) item and the positive decision threshold. 

Consequently, confidence judgments in negative decisions would become less of a relative 

index of evidence strengths across items, and more of an absolute judgment of match 

associated with the best item. If this were the case, we would expect to see a positive 
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confidence-accuracy relationship for negative decisions, as the distance between the best-

match and the positive threshold should vary systematically with target-presence. However, 

we would not expect the perceptual similarity between the target-replacement and the lure to 

affect confidence, as this relative difference should have little or no impact on the absolute 

strength of the best match. 

In summary, we expected to replicate the standard relationships between confidence, 

response latencies, and accuracy in compound decision tasks. We also predicted that 

confidence in positive decisions would increase as target-lure similarity decreased. We did 

not expect to observe such an effect for negative decisions, as we reasoned that these 

judgments would index the absolute strength of the best match, rather than the relative 

strengths of the items.  

Overview of the experimental paradigm 

In each of the experiments described in this paper, we used the same basic paradigm. 

Participants completed a series of trials in which they briefly studied a target face, and then 

attempted to identify that target from an array consisting of two items (Experiments 1 and 3) 

or four items (Experiments 2, 4, and 5), before rating their confidence in their decision. Our 

approach was to build up the complexity of the decision gradually over the course of several 

experiments. Thus, we began with a simple 2AFC task (Experiment 1) before moving on to a 

4AFC task (Experiment 2). In Experiments 3 to 5, we added a compound decision component 

(via the inclusion of target-absent trials and a “not present” response option).  

In each experiment, we manipulated the similarity between the target or target-

replacement and the lure(s) to vary the difference in evidence strengths between the strongest 

and weakest items in the array.
1
 Systematically varying the similarity between two faces 

produces some practical challenges, as faces are complex, multidimensional stimuli. To 

achieve tight experimental control, we created computer generated faces using FaceGen 
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Modeller (Singular Inversions Inc.).  These faces are three-dimensional, are suitably realistic 

and they have been used in many investigations of face perception and recognition (e.g., 

Chen, Yang, Wang, & Fang, 2010; Papesh & Goldinger, 2010; Potter & Corneille, 2008; Xu, 

Yue, Lescroart, Biederman, & Kim, 2009). The software includes a “Genetic” function, 

which generates sibling faces for any referent face. Each of the siblings is allowed to vary by 

a specified amount from the referent along multiple dimensions (full details are given in the 

Experiment 1 Method). We used this method to create a series of siblings for each target face 

(and for each target-replacement) that varied along a continuum of perceived similarity (see 

Figure 1 for examples).  

Experiment 1 

 In Experiment 1, we used a simple, 2AFC task. The purpose of Experiment 1 was to 

replicate the standard findings predicted by sequential sampling models, as a test of our 

stimuli and experimental paradigm. Specifically, we predicted that, when the target is 

correctly identified: 1) Mean confidence would increase as the lure became less similar to the 

target; and 2) Mean response latencies would decrease as the lure became less similar to the 

target. Furthermore, when target-lure similarity was held constant, we predicted that: 3) 

Confidence and accuracy would be positively related; 4) Response latencies and accuracy 

would be negatively related; and 5) Response latencies and confidence would be negatively 

related. 

Method 

Participants and Design 

Participants were recruited from an email list of people who had expressed interest in 

taking part in research. Most of the people on the list were undergraduates, though the list 

also included postgraduates and university staff. Twenty-four participants with a mean age of 

25.4 years (SD = 5.4 years) took part in Experiment 1, of whom 70.8% were female. 
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G*Power was used to determine a sample size. We assumed that there would be a reasonably 

strong correlation amongst the repeated measures in each of the analyses (r = .60). We thus 

determined that a sample of 19 would be sufficient to detect a medium effect with 80% 

power. 

 Experiment 1 was a single factor (target-lure similarity) repeated measures design, 

with four levels: High, Medium-High, Medium-Low, and Low. Note that we use these terms 

for ease of interpretation, though, as can be seen from Figure 1, even the “low similarity” 

lures were reasonably similar to the target (i.e., they could not reasonably be considered 

“duds”, cf. Charman et al., 2011). The dependent measures were decision accuracy, 

confidence, and response latencies.  

Materials and Apparatus 

 The experiments were created using E-Prime 2.0 (Psychology Software Tools, Inc.). 

The stimuli were digital faces created using the software FaceGen Modeller 3.5 (Singular 

Inversions, Inc.). All faces were designed to appear male, Caucasian, and between 20 and 40 

years of age. To make the faces appear more lifelike, skin texturing was added using the 

Texture Overlay function of the software.  None of the faces included hair. 

 To create the stimuli, 96 target faces were created using the random face generator in 

FaceGen Modeller. If a randomly generated face appeared somewhat atypical, then the 

structure, skin coloring, and/or the asymmetry of the face was adjusted toward the typical 

face as appropriate. From each of these 96 identities, siblings were created using the Genetic 

function of the software. This function creates an array of eight faces that are similar to the 

target face, but which have freedom to vary along multiple dimensions. The user is able to 

specify by how much the sibling faces are allowed to differ from the target face; a 

randomness value of 0 would create a face identical to the target; a randomness value of 1 

would create a face that is free to vary completely randomly on all dimensions, and so would 
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bear little resemblance to the target. We chose a randomness value of .30 for the creation of 

our stimuli. From each array of siblings, one face was randomly selected. Once again, if a 

face had become somewhat atypical in appearance, we adjusted the skin tone, structure, or 

asymmetry, as appropriate. That face then became the referent face for the next iteration of 

the process. The process was repeated seven times, creating a chain of seven generations of 

sibling faces that were increasingly dissimilar to the target face. Only generations 1 (High 

similarity), 3 (Medium-High similarity), 5 (Medium-Low similarity) and 7 (Low similarity) 

were used in the experiments. See Figure 1, top row, for an example of a target and its four 

siblings. We conducted two pilot tests to determine whether our manipulation was successful 

in affecting perceptual similarity, and to ensure that the low-similarity siblings were no more 

distinctive than the targets. Full details of the pilot experiments can be found in the 

Supplemental Materials. Following these pilot tests, we ended up with 64 sets of stimuli, 

which were used in all of the experiments. 

Procedure 

 Each trial began with a target face presented in the centre of the screen for 500 ms, at 

a size of 400 × 400 pixels. A visual mask consisting of patches of varying skin tones was then 

presented for 2000 ms to minimize reliance on low level features of the stimulus, such as skin 

tone. A two-alternative choice array was then presented, with each face shown at a size of 

300 × 300 pixels. The two faces were presented side by side, and the position of the target 

was counterbalanced across trials. At the top of the screen was the question “Which face did 

you see?” Beneath each image was a number corresponding to the key that the participant 

should use to choose that image. The images remained on screen until a response was made. 

 Following a recognition decision, the participants were asked to rate their confidence 

in their decision from 0% to 100%. Prior to beginning the experiment, they were told to use 

0% if they were guessing and to use 100% if they were completely certain, and to use the 
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whole range of numbers between. The images remained on screen while the confidence 

judgment was made and the chosen face was highlighted with a red border. Participants typed 

their response in a text box and pressed ENTER to submit their confidence rating. A blank 

screen was shown for 1000 ms before the next trial began.  

The participants completed 64 trials in two blocks. The order of the trials within a 

block was randomized for each participant, and the order of the blocks was counterbalanced 

across participants. 

Results 

 Participants were excluded on the basis of two criteria. First, participants were 

excluded if they failed to provide a valid confidence rating on more than 25% of the trials. 

One participant met this exclusion criterion. Second, participants were excluded if they used 

the confidence scale very narrowly or inappropriately. One participant was excluded as he 

provided confidence ratings of 100% on all but two trials, and one further participant was 

excluded for providing confidence judgments in the range 3 to 9, suggesting a 

misunderstanding of the confidence scale. Thus, the final sample included 21 participants. 

For all post-hoc comparisons, a Bonferroni-corrected α of .008 was applied. 

Before we addressed our main hypotheses, we checked whether our manipulation of 

target-lure similarity significantly affected discriminability. Discriminability (d') was 

estimated using the formula for n-alternative forced-choice tasks provided by Alexander 

(1990). Descriptive statistics are shown in Table 1, and a full breakdown of the proportions of 

each decision type can be found in the Supplemental Materials (Table S1). A one-way 

ANOVA showed that mean discriminability was, indeed, affected by similarity, F(3, 60) = 

13.85, p < .001, ηp
2
  = .41, 90% CI [.20, .53].

2
 Post-hoc comparisons revealed that 

discriminability increased from High to Medium-High similarity trials, t(21) = 3.56, p = .002, 
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d = 0.75, 95% CI [0.26, 1.23], and from Medium-High to Low similarity trials, t(18) = 3.26, 

p = .004, d = 0.68, 95% CI [0.21, 1.16].    

Our first main hypothesis was that, when a participant correctly identified a target, 

mean confidence would be higher under conditions of lower target-lure similarity. Thus, 

these analyses included only correct target identifications, excluding those in which the 

confidence rating was missing or invalid. A consequence of partitioning data by response 

type is that each participant provides a different number of trials to the analyses; in such 

situations, it is appropriate to use mixed effects models that allow the inclusion of participant 

as a random effect (Wright, Horry, & Skagerberg, 2009; Wright & London, 2009). To test 

our hypothesis, we created two regression models, with confidence as the outcome variable, 

and compared their fit. The only predictor in the baseline model was the random intercept for 

participant; in the comparison model, the fixed effect of similarity (coded as a categorical 

factor) was entered. The difference in model fit was statistically significant, χ
2
 (3, N = 1059) 

= 94.73, p < .001, indicating that confidence varied systematically with similarity. A plot of 

means is shown in Figure 2A, and a full breakdown of response frequencies can be found in 

the Supplemental Materials (Table S2). Mean confidence significantly increased from High 

to Medium-High similarity trials (95% CIdiff [6.25, 14.28]), and from Medium-High to 

Medium-Low similarity trials (95% CIdiff [2.73, 10.37]).  

Our second hypothesis was that response latencies for correct target identifications 

would be shorter under conditions of lower target-lure similarity. Trials were removed if the 

latency was more than two standard deviations from the participant’s condition mean, or if 

the latency was less than 500 ms. Using these criteria, 49 trials (4.55% of total correct 

identifications) were removed
3
. We used the same mixed-effects modelling approach as that 

described above for confidence ratings. Prior to analyses, response latencies were log-

transformed to reduce skew. Figure 2B shows a plot of back-transformed means. Similarity 
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was a significant predictor of response latency, χ
2
 (3, N = 1027) = 98.96, p < .001. Response 

latencies significantly decreased from High to Medium-High, and from Medium-High to 

Medium-Low trials.  

Next, we explored the confidence-accuracy relationship. For each participant, at each 

level of similarity, we calculated Goodman Kruskal gamma (G). The mean G coefficients 

were then compared to zero in a series of one-sample t tests. At all levels of similarity, the 

mean G coefficient was positive and significantly greater than zero: High similarity, M = .34, 

SD = .36, t(20) = 4.42, p < .001, 95% CIdiff [.18, .51]; Medium-High similarity, M = .48, SD = 

.47, t(19) = 4.59, p < .001, 95% CIdiff [.26, .70]; Medium-Low similarity, M = .55, SD = .54, 

t(17) = 4.25, p = .001, 95% CIdiff [.27, .82]; Low similarity, M = .67, SD = .36, t(9) = 5.90, p 

< .001, 95% CIdiff [.41, .93].
4
 Thus, as predicted, confidence and accuracy were positively 

related, when target-lure similarity was held constant. 

We also predicted that response latency and accuracy would be negatively related. For 

each participant, at each level of similarity, we calculated a point-biserial correlation between 

log-transformed response latencies (to reduce skew) and accuracy. The mean correlation 

coefficients were then compared to zero in a series of one-sample t tests. At all levels of 

similarity, (log) response latency and accuracy were negatively related: Medium-High 

similarity, M = -.26, SD = .27, t(19) = 4.40, p < .001, 95% CIdiff [-.39, -.14]; Medium-Low 

similarity, M = -.28, SD = .39, t(18) = 4.25, p < .001, 95% CIdiff [-.42, -.14]; Low similarity, 

M = -.35, SD = .29, t(9) = 3.90, p = .004, 95% CIdiff [-.56, -.15], though the mean coefficient 

was not significantly different from zero in the High similarity condition, M = -.11, SD = .31, 

t(20) = 1.64, p = .12, 95% CIdiff [-.25, .03]. 

Finally, we predicted that we would see a negative relationship between confidence 

and (log) response latency. For each participant, at each level of confidence, we calculated 

Pearson’s r. The mean coefficients were then compared to zero in a series of one-sample t 
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tests. At all levels of similarity, confidence and (log) response latency were negatively 

correlated: High similarity, M = -.40, SD = .26, t(20) = 6.98, p < .001, 95% CIdiff [-.52, -.28]; 

Medium-High similarity, M = -.44, SD = .26, t(20) = 7.85, p < .001, 95% CIdiff [-.55, -.32]; 

Medium-Low similarity, M = -.43, SD = .32, t(19) = 6.08, p < .001, 95% CIdiff [-.58, -.28]; 

Low similarity, M = -.47, SD = .29, t(20) = 7.44, p < .001, 95% CIdiff [-.61, -.34]. 

Discussion 

 In Experiment 1, we replicated the standard effects of target-lure similarity on mean 

confidence and mean response latency. We also replicated the standard relationships between 

accuracy, confidence, and response latency. This pattern of results is entirely consistent with 

a range of sequential sampling models of decision-making, in which evidence accumulates 

over time until a decision can be reached, and in which confidence is scaled from the extent 

to which the evidence favours the chosen option over the unchosen option. In the following 

experiments, we increase the complexity of the decision task, first by increasing the number 

of alternatives from two to four, and then by introducing a compound decision component. 

Experiment 2 

 In Experiment 2, we added one layer of complexity to the task by increasing the 

number of alternatives from two to four. In all trials, the choice array included the target and 

two high-similarity lures. The similarity of the weakest lure was varied in the same way as in 

Experiment 1. Thus, we selectively manipulated the strength of the weakest item in the array. 

We hypothesised that if confidence judgments index the balance-of-evidence between all 

items in the choice set (or, indeed, if the diffusion variable reflects the evidence associated 

with all items), then mean confidence in correct target identifications would increase, and 

mean response latency would decrease, as the similarity of the weakest item to the target 

decreased. We also expected to see the same relationships between confidence, accuracy, and 

response latency as in Experiment 1.  
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Method 

Participants and Design 

 Twenty-five participants took part in Experiment 2, of whom 60.0% were female. The 

mean age was 28.4 years (SD = 10.3). The participants were recruited from the same email 

list used in Experiment 1, though no participants had taken part in the previous experiment. 

 Experiment 2 was a single factor (similarity of worst-matching lure) repeated 

measures design, with four levels: High, Medium-High, Medium-Low, and Low. The 

dependent variables were decision accuracy, confidence, and response latencies. 

Materials 

 Following the procedure described for Experiment 1, we created two additional sets 

of siblings for each of the 64 target faces so that we could create four-alternative choice 

arrays. The materials for Experiment 2 included 64 target faces and 768 lures, though only 

192 of the lures were seen by any participant. 

Procedure 

 The procedure was similar to Experiment 1, except that the number of faces in the 

choice array was increased from two to four. The faces were presented in two rows of two. 

Of the three distractor faces, two were always highly similar to the target, leaving the third 

distractor free to vary in similarity (High, Medium-High, Medium-Low, Low).  

Results 

 We used the same exclusion criteria as for the previous experiments. One participant 

was excluded because he provided confidence ratings of 100% on all trials. The final analysis 

included 24 participants. For all post-hoc comparisons, a Bonferroni-corrected α of .008 was 

applied. 

 Once again, discriminability was estimated using Alexander’s (1990) formula for n-

alternative forced-choice tasks. Descriptive statistics are shown in Table 1, and a full 
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breakdown of responses can be found in the Supplemental Materials (Table S1). A one-way 

ANOVA revealed that discriminability was significantly affected by similarity, F(3, 69) = 

3.33, p = .03, ηp
2
  = .13, 90% CI [.01, .22]. Post-hoc tests indicated an increase in accuracy 

from High to Medium-Low similarity trials, t(23) = 2.80, p = .01, d = 0.55, 95% CI [0.12, 

0.98], and from High to Low similarity trials, t(23) = 2.92, p = .008, d = 0.58, 95% CI [0.14, 

1.01], though neither of these met the Bonferroni-corrected α level of .008. 

We tested our hypothesis that confidence in correct target identifications would 

increase as the similarity of the weakest item to the target decreased. We used the same 

analysis as in Experiment 1, namely a mixed-effects regression model with a random 

intercept for participants. As predicted, adding similarity as a categorical fixed effect 

significantly improved model fit, χ
2
(3, N = 716) = 16.11, p = .001. The means are plotted in 

Figure 3A , and a full breakdown of response frequencies can be found in the Supplemental 

Materials (Table S3). Confidence was significantly lower in High similarity trials than in the 

Medium-High (95% CIdiff [3.72, 12.81]), or Low similarity (95% CIdiff [3.30, 12.22]) trials. 

There were no significant differences between the Medium-High, Medium-Low, and Low 

similarity conditions.  

Next, we tested our hypothesis that response latencies for correct identifications 

would decrease as the similarity of the weakest lure to the target decreased. Once again, we 

used a mixed-effects regression model, including participant as a random intercept. As in 

Experiment 1, trials were excluded if the response latency was less than 500 ms or more than 

2 SDs from the participant’s condition mean. Using these criteria, 33 trials (4.56% of all 

correct identifications) were removed. Response latencies were then log-transformed to 

reduce skew. Unexpectedly, adding similarity as a fixed effect did not improve the fit of the 

model, χ
2
(3, N = 691) = 6.05, p = .11. Means are plotted in Figure 3B. However, when we 
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repeated the analysis with the outliers included, similarity did significantly improve the 

model fit, χ
2
(3, N = 724) = 12.74, p = .005 (see Supplemental Materials).  

As in Experiment 1, we explored the relationship between confidence and accuracy, 

by calculating G for each participant, at each level of similarity. The mean coefficients were 

significantly different from zero only in the Medium-High similarity condition, M = .28, SD 

= .35, t(23) = 3.96, p = .001, 95% CIdiff [.13, .43], and in the Low similarity condition, M = 

.25, SD = .47, t(23) = 2.59, p = .02, 95% CIdiff [.05, .45]. In the remaining conditions, the 

coefficients were not significantly different from zero: High similarity, M = .06, SD = .47, 

t(23) = 0.68, p = .51, 95% CIdiff [-.13, .26]; Medium-Low similarity, M = .03, SD = .47, t(23) 

= 0.32, p = .75, 95% CIdiff [-.17, .23]. 

Correlations between log-transformed response latency and accuracy were explored 

next. The mean coefficient was significantly only in the Low similarity condition, M = -.12, 

SD = .24, t(23) = 2.54, p = .02, 95% CIdiff [-.22, -.03]. In the remaining conditions, the 

coefficients were not significantly different from zero: High similarity, M = -.11, SD = .31, 

t(23) = 1.75, p = .09, 95% CIdiff [-.24, .02]; Medium-High similarity, M = -.08, SD = .27, 

t(23) = 1.47, p = .15, 95% CIdiff [-.19, .03]; Medium-Low similarity, M = -.02, SD = .29, t(23) 

= 0.39, p = .70, 95% CIdiff [-.15, .10].  

Finally, we examined correlations between confidence and log-transformed response 

latency. The mean coefficients were significantly below zero in the High, M = -.15, SD = .32, 

t(23) = 2.26, p = .03, 95% CIdiff [-.28, -.01], and Medium-High conditions, M = -.18, SD = 

.32, t(23) = 2.78, p = .01, 95% CIdiff [-.32, -.05]. In the remaining conditions, the coefficients 

were not significantly different from zero: Medium-Low similarity, M = -.09, SD = .33, t(23) 

= 1.25, p = .22, 95% CIdiff [-.23, .06]; Low similarity, M = -.13, SD = .34, t(23) = 1.91, p = 

.07, 95% CIdiff [-.27, .01]. 
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Discussion 

 In Experiment 2, participants completed a 4AFC task, in which the similarity between 

the target and the weakest item was systematically manipulated. As predicted from a 

sequential sampling perspective, mean confidence ratings in correct target identifications 

increased as the similarity between the target and the weakest item decreased. These findings 

suggest that, in a nAFC task, confidence indexes the relative strength of evidence for the 

chosen item over all unchosen items. The mechanism for such an effect could be through 

assessing the balance-of-evidence across multiple counters (Usher & McClelland, 2001; Van 

Zandt, 2000), or it is possible that a single diffusion variable combines information from 

multiple items, and confidence ratings are scaled from this variable at the time of the 

confidence judgment (Pleskac & Busemeyer, 2010).  

 The standard relationships between confidence, response latency, and decision 

accuracy were replicated. However, the relationships were less strong than in Experiment 1. 

This may be in part due to the increased variability in response latency, and the decrease in 

accuracy. Though accuracy was above floor in even the most difficult condition, it is clear 

that the task was a reasonably difficult one, with two highly similar lures in each array. 

Nonetheless, the relationships that were observed lend further support to a sequential 

sampling perspective on nAFC judgments. 

Experiment 3 

 We turn our attention now to compound decisions, in which a decision-maker must 

decide whether a target item is present within a choice array, and if so, which item 

corresponds to that target. To reduce the complexity of the task, we used a 2-alternative 

compound task. In target-present trials, the target appeared alongside a single lure, whose 

similarity to the target was systematically varied. In target-absent trials, the target was 

replaced by a target-replacement, who appeared alongside a lure that varied in its similarity to 
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the target-replacement in the same way as the lures in the target-present trials. Thus, the 

perceptual similarity relationships between items were maintained in the target-present and –

absent trials. 

For correct target identifications, we predicted that we would see the same pattern of 

results as in forced-choice decisions; namely, mean confidence would increase, and mean 

response latency would decrease, as target-lure similarity decreased. We also predicted that, 

across all positive decisions, we would see the same relationships between confidence, 

response latency, and decision accuracy as in Experiments 1 and 2. 

 For correct rejections of target-absent lineups, we predicted that we would not 

observe any influence of target-lure similarity on confidence. We reasoned that confidence 

judgments might be scaled in a different way (i.e., the distance between the evidence 

associated with the best match, and the positive decision threshold), which would not lend 

itself to a relative confidence judgment. Based on findings from the face recognition and 

eyewitness identification literatures (e.g., Brewer & Wells, 2006; Horry et al., 2012; Weber 

& Brewer, 2004), we did not expect to observe a strong relationship between confidence and 

accuracy across all negative decisions. We had no clear predictions about the relationship 

between response latency and accuracy or confidence. 

Method 

Participants and Design 

 Twenty-five participants took part in Experiment 2, of whom 84.0% were female. The 

mean age was 22.5 years (SD = 4.07). The participants were recruited from the same source 

as in the previous experiments; no participant had taken part in a previous experiment.  

 Experiment 2 followed a 2 (target-presence) × 4 (similarity: High, Medium-High, 

Medium-Low, Low) repeated measures design.  

Materials 
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 For target-present trials, the materials were identical to those used in Experiment 1. 

For target-absent trials, 64 target-replacements were created, each of which were seven 

generations removed from its respective target. Thus, the target-replacement was equivalent 

in similarity to the target as a “Low similarity” lure. The target-replacement was a unique 

identity, who never appeared as a lure in any target-present trials. Furthermore, for each 

target-replacement, 4 siblings were created, one at each level of similarity. Thus, in target-

absent trials, we manipulated the similarity between the target-replacement and the lure, 

rather than the similarity between the target and the lure.  

Procedure 

 The procedure was similar to Experiment 1, with the following exceptions. First, half 

of the trials were target-absent. In place of the target, the array included a target-replacement 

alongside the lure. The participants could choose either of the items in the array or they could 

make a “not present” response. Following a “not present” response, all of the images 

remained on screen while the participant provided his or her confidence judgment. The 

participants were told that in some of the trials, the target would not be present, but they were 

not informed of the ratio of target-present to target-absent trials. 

Results 

 One participant was excluded because she only ever provided confidence ratings of 

0% or 100%. One further participant was excluded because she provided confidence ratings 

from 0 to 9, suggesting a misunderstanding of the confidence scale. Thus, the analyses 

included 23 participants.  

Discriminability and choosing 

 With a compound decision, estimating discriminability is not straightforward. We 

took the approach here of breaking the decision down into its constituent components: 

detection and identification.  Detection refers to the participant’s ability to distinguish 
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between target-present and target-absent trials. Any positive decision on a target-present trial 

is coded as a hit (regardless of the accuracy of that decision), and any positive decision on a 

target-absent trial is coded as a false alarm. d'-detection is then calculated as z(HR) – z(FAR), 

where HR is the proportion of target-present trials that result in a positive decision, and FAR 

is the proportion of target-absent trials that result in a positive decision. Second, identification 

refers to the participant’s ability to identify the target, given that a positive decision was made 

on a target-present trial. d'-identification is then estimated using the same formula as for an n-

alternative forced-choice task (Alexander, 1990), but only target-present trials are included, 

with negative decisions excluded. As a proxy for response bias, we examined choosing rates, 

collapsing across target-presence. Descriptive statistics are shown in Table 2, and a full 

breakdown of response frequencies can be found in the Supplemental Materials (Table S1). 

For all post-hoc comparisons, a Bonferroni-corrected α of .008 was adopted. 

Similarity had a statistically significant effect on d'-identification, F(3, 66) = 9.51, p < 

.001, ηp
2
  = .30, 90% CI [.13, .41]. Post-hoc comparisons revealed that d'-identification 

significantly increased from High to Medium-Low similarity trials, t(22) = 6.09, p < .001, d = 

1.21, 95% CI [0.62, 1.81], and from Medium-High to Medium-Low similarity trials, t(22) = 

3.20, p = .004, d = 0.64, 95% CI [0.15, 1.13]. Thus, unsurprisingly, the participant’s ability to 

distinguish between the target and the lure in a target-present array was affected by the 

similarity between the target and the lure.  

Neither d'-detection, F(3, 66) = 0.42, p = .74, ηp
2
  = .02, 90% CI [.00, .06], nor 

choosing rates were significantly affected by similarity, F(3, 66) = 1.99, p = .12, ηp
2
  = .08, 

90% CI [.00, .17]. Thus, similarity did not seem to influence willingness to choose, nor the 

ability to discriminate between target-present and target-absent trials. 
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Positive decisions 

The following analyses focus on confidence and response latency for correct target 

identifications. As in Experiments 1 and 2, we used a mixed effects regression approach, 

allowing random intercepts for participant. For confidence, adding similarity as a fixed, 

categorical factor significantly improved the fit of the model, χ
2
(3, N = 561) = 12.29, p < 

.001. The means are plotted in Figure 4A. Confidence was significantly lower in High 

similarity trials than in the Low similarity trials (95% CIdiff [3.48, 13.06]), and in the 

Medium-High similarity trials than in the Low similarity trials, (95% CIdiff [1.76, 10.66]).  

As in Experiments 1 and 2, trials with response latencies of less than 500 ms or more 

than 2 SDs from the participant’s standard deviation were excluded. Using these criteria, 24 

trials (4.21% of all correct target-present decisions) were removed. Response latencies were 

log transformed to reduce skew. Adding similarity as a fixed, categorical predictor 

significantly improved model fit, χ
2
(3, N = 546) = 42.21, p < .001. Back-transformed means 

are shown in Figure 4B, and a full breakdown of response frequencies can be found in the 

Supplemental Materials (Table S4). Response latencies significantly decreased from High to 

Medium-High similarity trials, and from Medium-High to Medium-Low similarity trials. 

For our analyses of the relationships between confidence, accuracy, and response 

latency, we included all positive decisions, whether from target-present or target-absent trials. 

First, we calculated the confidence-accuracy relationship for positive decisions at each level 

of similarity. Goodman-Kruskal’s gamma (G) was calculated for each participant, and the 

mean coefficients were compared to zero in a series of one-sample t tests. At each level of 

similarity, the mean coefficient was significantly greater than zero: High similarity, M = .28, 

SD = .44, t(21) = 3.01, p = .007, 95% CIdiff [.09, .48]; Medium-High similarity, M = .36, SD = 

.36, t(22) = 4.81, p < .001, 95% CIdiff [.20, .51]; Medium-Low similarity, M = .52, SD = .38, 
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t(21) = 6.31, p < .001, 95% CIdiff [.35, .69]; Low similarity, M = .58, SD = .34, t(21) = 8.13, p 

< .001, 95% CIdiff [.43, .73]. 

To examine the relationship between response times and accuracy, we calculated a 

point-biserial correlation between accuracy and log-transformed response latency for each 

participant, at each level of similarity. The mean coefficients were then compared to zero in a 

series of one-sample t tests. As predicted, all coefficients were significantly below zero: High 

similarity, M = -.20, SD = .23, t(21) = 4.04, p < .001, 95% CIdiff [-.30, -.10]; Medium-High 

similarity, M = -.28, SD = .31, t(22) = 4.20, p < .001, 95% CIdiff [-.41, -.14]; Medium-Low 

similarity, M = -.35, SD = .35, t(22) = 4.87, p < .001, 95% CIdiff [-.50, -.20]; Low similarity, 

M = -.45, SD = .25, t(22) = 8.62, p < .001, 95% CIdiff [-.56, -.34]. 

Finally, we examined the relationship between (log) response latency and confidence 

ratings. Once again, the mean correlation coefficients were compared to zero in a series of 

one-sample t tests. At all levels of similarity, confidence and (log) response latency were 

negatively correlated: High similarity, M = -.46, SD = .26, t(22) = 8.54, p < .001, 95% CIdiff [-

.57, -.35]; Medium-High similarity, M = -.47, SD = .24, t(22) = 9.45, p < .001, 95% CIdiff [-

.57, -.37]; Medium-Low similarity, M = -.46, SD = .19, t(22) = 11.51, p < .001, 95% CIdiff [-

.55, -.38]; Low similarity, M = -.38, SD = .37, t(22) = 5.04, p < .001, 95% CIdiff [-.54, -.23]. 

Negative decisions 

 The following analyses examine confidence and response latency in correct negative 

decisions (i.e., rejections of lineups when the target was absent). We used the same mixed-

effects regression analyses as for positive decisions, with random intercepts allowed for 

participants. We first examined the effect of similarity on confidence. We excluded trials in 

which the confidence rating was missing or invalid. Adding similarity to the regression model 

did not significantly improve fit, χ
2
(3, N = 359) = 1.53, p = .68. Means are shown in Figure 



CONFIDENCE IN COMPLEX DECISION TASKS 30 

 

5A, and a full breakdown of response frequencies can be found in the Supplemental Materials 

(Table S5).  

Next, we examined the effect of similarity on log-transformed response latency. We 

removed trials in which the response latency was less than 500 ms or more than 2 SDs from 

the participant’s condition mean. In total, 13 trials (3.59% of correct negative decisions) were 

removed. Adding similarity to the regression model significantly improved model fit, χ
2
(3, N 

= 349) = 16.10, p = .001. Back-transformed means are shown in Figure 5B. Log-transformed 

response latency significantly decreased from High to Medium-Low similarity trials, and 

from High to Low similarity trials. However, when the analyses were repeated with the 

outliers included, the effect was no longer significant, χ
2
(3, N = 362) = 5.10, p = .17 (see 

Supplemental Materials). Therefore, this effect may not be robust, and may have been 

produced by a small number of outlying trials.  

 To examine the relationships between confidence, accuracy and response latency, we 

included all negative decisions, whether from target-absent or target-present trials. We were 

unable to examine these correlations separately at each level of similarity, as there were too 

few trials per cell for many participants. Consequently, for all correlations, we collapsed 

across similarity. Confidence and accuracy were positively related; the mean Goodman-

Kruskal G was significantly higher than zero, M = .54, SD = .62, t(17) = 3.69, p = .002, 95% 

CIdiff [.23, .85]. Log-response times and accuracy were negatively related; the mean point-

biserial correlation was significantly below zero, M = -.16, SD = .26, t(17) = 2.66, p = .02, 

95% CIdiff [-.29, .-.03]. Confidence and (log) response latency were negatively correlated; the 

mean correlation coefficient was significantly below zero, M = -.44, SD = .32, t(20) = 6.33, p 

< .001, 95% CIdiff [-.58, .-.29]. 
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Discussion 

 In Experiment 3, participants completed a 2-alternative compound task. When the 

participant correctly identified the target, we observed the same pattern of results as in 

Experiments 1 and 2: confidence increased, and response latency decreased, as target-lure 

similarity decreased. Across all positive decisions, we observed the standard pattern of 

relationships between confidence, response latency, and decision accuracy. Thus, when a 

decision-maker chooses an item in a compound decision task, the patterns of confidence and 

response latency map neatly onto the predictions we had derived from sequential sampling 

models. 

 As predicted, when the decision-maker correctly rejected a target-absent array, the 

similarity between the target-replacement and the lure did not significantly affect confidence. 

It may be that the framing of the question (how confident are you in your decision) forces the 

decision-maker to evaluate the evidence differently, focusing more on the absolute match of 

the best (though unchosen) item. It is also possible that negative decisions serve as a “catch-

all” response when the decision-maker is unsure – although that seems unlikely in this 

context, as mean confidence in negative decisions was similar to, if not higher than mean 

confidence in positive decisions. Somewhat surprisingly, we did see a positive confidence-

accuracy relationship for negative decisions, though we had to collapse across similarity 

levels to ensure a sufficient number of trials per participant for stable estimates. Thus, for 

negative decisions, we can make no strong claims about these relationships while holding 

task difficulty constant.  

Experiment 4 

 In Experiment 3, we demonstrated that, in a compound decision task, patterns of 

confidence and response latency are consistent with predictions derived from a sequential 

sampling framework, at least when the decision-maker chooses an item from the array. In 
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Experiment 4, we add one additional layer of complexity to the task, by increasing the 

number of alternatives from two to four. As in Experiment 2, participants were presented 

with four items, and the similarity between the target (or target-replacement, in target-absent 

trials) and the weakest lure was systematically manipulated. For correct target identifications, 

we expected to replicate the findings of Experiment 2; for correct rejections, we expected to 

observe no significant effect of target-lure (or target-replacement-lure) similarity on 

confidence.  

Method 

Participants and Design 

 Twenty-three participants took part in Experiment 4, of whom 56.5% were female. 

The mean age was 23.0 years (SD = 6.40). The participants were recruited from the same 

source as in the previous experiments; no participant had taken part in a previous experiment.  

 Experiment 4 followed a 2 (target-presence) × 4 (similarity: High, Medium-High, 

Medium-Low, Low) repeated measures design.  

Materials 

 For target-present trials, the materials were identical to those used in Experiment 3. 

For target-absent trials, the target-replacements were the same as those used in Experiment 2. 

The lures used in the target-absent trials included those used in Experiment 2, and an 

additional eight distractors per target-replacement (two at each level of similarity), to create 

four-alternative arrays. 

As in Experiment 3, two of the distractors in each array were highly similar to the 

target/target-replacement. Only one of the distractors varied in similarity to the target/target-

replacement. 
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Procedure 

 The procedure was similar to Experiment 2, except that the choice arrays included 

four faces instead of two. The items were arranged in a two-by-two grid, and the position of 

the target/target-replacement was counterbalanced within participants.  

Results 

 No participants met the exclusion criteria in Experiment 4. Thus, data from all 

participants were analyzed.  

Discriminability and choosing 

 Discriminability was estimated in the same way as in Experiment 2. d'-identification, 

d'-detection, and choosing rates were analyzed in separate one-way ANOVAs. Descriptive 

statistics are shown in Table 2, and a full breakdown of response frequencies can be found in 

the Supplemental Materials (Table S1). 

 Similarity did not significantly affect d'-identification, F(3, 66) = 0.98, p = .41, ηp
2
  = 

.04, 90% CI [.00, .10], d'-detection, F(3, 66) = 0.18, p = .91, ηp
2
  = .01, 90% CI [.00, .03], or 

choosing rates, F(3, 66) = 0.12, p = .95, ηp
2
  = .01, 90% CI [.00, .02]. Thus, the similarity 

between the target, or target-replacement, and the worst-matching lure did not observably 

affect discriminability or choosing. 

Positive identification decisions 

 As in Experiment 3, we examined the effect of similarity on confidence and response 

latency when the target was correctly identified. For the analysis of confidence, trials were 

excluded if the confidence rating was missing or invalid; for the analysis of response latency, 

trials were removed if the response latency was less than 500 ms or more than 2 SDs from the 

participant’s condition mean. In total, 11 trials (3.54% of correct positive decisions) were 

removed. Response latencies were then log-transformed prior to analysis. As in the previous 

experiments, we used a mixed-effects regression approach, with random intercepts for 
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participant. Contrary to predictions, adding similarity did not significantly improve model fit 

for confidence, χ
2
(3, N = 307) = 0.84, p = .84, or response latency, χ

2
(3, N = 300) = 5.98, p = 

.11. Mean confidence and back-transformed response latency are shown in Figure 6.  A full 

breakdown of confidence frequencies can be found in the Supplemental Materials (Table S6). 

 Next, we explored the relationships between confidence, accuracy, and response 

latency. We included all positive decisions, whether from target-present or target-absent 

trials. For the confidence-accuracy relationship, at all levels of similarity, mean G was 

positive; however, the coefficients were only significantly above zero in the Medium-High 

and Low similarity conditions: High similarity, M = .22, SD = .52, t(21) = 1.94, p = .07, 95% 

CIdiff [-.02, .45]; Medium-High similarity, M = .35, SD = .57, t(21) = 2.94, p = .008, 95% 

CIdiff [.10, .61]; Medium-Low similarity, M = .17, SD = .56, t(22) = 1.47, p = .16, 95% CIdiff 

[-.07, .42]; Low similarity, M = .22, SD = .47, t(21) = 2.14, p = .04, 95% CIdiff [.01, .43]. 

 Unexpectedly, log-response latency was not significantly correlated with accuracy at 

any level of similarity: High similarity, M = .06, SD = .36, t(22) = 0.85, p = .40, 95% CIdiff [-

.09, .22]; Medium-High similarity, M = -.14, SD = .34, t(20) = 1.96, p = .06, 95% CIdiff [-.30, 

.01]; Medium-Low similarity, M = -.13, SD = .37, t(22) = 1.68, p = .11, 95% CIdiff [-.29, .03]; 

Low similarity, M = -.01, SD = .36, t(21) = 0.09, p = .93, 95% CIdiff [-.17, .15]. 

 Finally, we examined the relationship between confidence and (log) response latency. 

At all levels of similarity, the mean correlation coefficients were negative, though they 

differed significantly from zero only in the High, Medium-High, and Medium-Low similarity 

conditions: High similarity, M = -.20, SD = .42, t(22) = 2.27, p = .03, 95% CIdiff [-.38, -.02]; 

Medium-High similarity, M = -.29, SD = .27, t(22) = 5.08, p < .001, 95% CIdiff [-.40, -.17]; 

Medium-Low similarity, M = -.19, SD = .31, t(22) = 2.95, p = .007, 95% CIdiff [-.32, -.06]; 

Low similarity, M = -.11, SD = .31, t(22) = 1.78, p = .09, 95% CIdiff [-.25, .02]. 
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Negative identification decisions 

 Next, we examined the effect of similarity on confidence and response latency in 

correct negative decisions. For the analysis of confidence, trials were excluded if the 

confidence rating was missing or invalid; for the analysis of response latency, trials were 

removed if the response latency was less than 500 ms or more than 2 SDs from the 

participant’s condition mean. In total, 4 correct negative decisions (1.72% of all correct 

negative decisions) were removed. Response latencies were then log-transformed prior to 

analysis. As in the previous experiments, we used a mixed-effects regression approach, with 

random intercepts for participant. Adding similarity did not significantly improve model fit 

for confidence, χ
2
(3, N = 227) = 0.84, p = .84, or response latency, χ

2
(3, N = 229) = 3.71, p = 

.29. Mean confidence and back-transformed response latency are shown in Figure 7.  A full 

breakdown of confidence frequencies can be found in the Supplemental Materials (Table S7). 

Finally, we explored the relationships between confidence, accuracy, and response 

latency in negative decisions. As in Experiment 3, we collapsed across levels of similarity to 

ensure sufficient numbers of decisions for stable correlations. Confidence and accuracy were 

positively related; the mean Goodman-Kruskal G was significantly greater than zero, M = 

.38, SD = .51, t(16) = 3.09, p = .007, 95% CIdiff [.12, .64]. Log-transformed response latency 

and accuracy were negatively related; the mean correlation coefficient was significantly 

below zero, M = -.26, SD = .29, t(17) = 3.86, p = .001, 95% CIdiff [-.41, -.12]. Unexpectedly, 

confidence and (log) response latency were not significantly correlated, M = -.11, SD = .42, 

t(19) = 1.11, p = .28, 95% CIdiff [-.30, .09]. 

Discussion 

 In Experiment 4, participants completed a 4-alternative compound decision task. In 

contrast to Experiment 2, our manipulation of similarity between the target (or target-

replacement) and the weakest lure did not significantly influence mean confidence ratings, or 
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mean response latency for correct identifications. Why did we fail to replicate this finding in 

Experiment 4? Perhaps the multiple-alternative compound task is just too complex for such 

effects to hold up. However, this seems unlikely; we found such an effect in a 4AFC task 

(Experiment 2), and in a compound decision task (Experiment 3), which suggests that neither 

element of the task individually quashes the effect. A more likely explanation is that the 

effect size was simply too small to be reliably detected; the weakest item in the array should 

exert some influence on confidence judgments and response latency, but this pull may be 

quite weak. In Experiment 5, we address this possibility by manipulating the similarity of the 

two weakest items in the array to the target (or target-replacement). 

Experiment 5 

 In Experiment 5, participants again completed a four-alternative compound decision 

task. To increase the influence of the weakest items on confidence, we manipulated the 

similarity of two members of the array to the target (or target-replacement). Thus, each array 

featured a target or target-replacement, one high-similarity lure, and two lures that varied 

systematically in their similarity to the target (or target-replacement). In addition, to increase 

reliability of the confidence ratings associated with correct identifications, we increased the 

proportion of target-present trials from .50 to .66. Participants were not informed of the ratio 

of target-present to target-absent trials. 

Method 

Participants and Design 

 Thirty-two participants took part in Experiment 5, of whom 76.7% were female. The 

mean age was 29.8 years (SD = 12.8 years). The participants were recruited from the same 

source as in the previous experiments; no participant had taken part in a previous experiment.  

 Experiment 5 followed a 2 (target-presence) × 4 (similarity: High, Medium-High, 

Medium-Low, Low) repeated measures design.  
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Materials 

 The materials were identical to those used in Experiment 4.  

Procedure 

 The procedure was similar to Experiment 4, with two exceptions: First, the similarity 

of the two worst-matching lures was manipulated. These lures always varied in step, such that 

they were equivalent in their similarity to the target or target-replacement. Second, the 

proportion of target-present trials was increased from .50 to .66. The participants were not 

informed of the proportion of target-present trials. 

Results 

 Two participants were excluded for failing to provide valid confidence judgments on 

more than 25% of trials. For all analyses, a Bonferroni-corrected α of .008 was applied. 

Discriminability and choosing rates 

 As in Experiments 2 and 4, we analyzed d'-identification, d'-detection, and choosing 

rates in separate one-way ANOVAs. Means and standard deviations are shown in Table 1, 

and a full breakdown of response frequencies can be found in the Supplemental Materials 

(Table S1).   

 Similarity had a statistically significant effect on d'-identification, F(3, 87) = 6.63, p < 

.001, ηp
2
  = .19, 90% CI [.06, .28]. Post-hoc comparisons showed that discriminability 

increased from High to Medium-Low similarity trials, t(29) = 3.41, p = .002, d = 0.61, 95% 

CI [0.22, 0.99]. No other comparisons were statistically significant to the level of the 

Bonferroni-corrected criterion. d'-detection was not statistically affected by similarity, F(3, 

87) = 0.85, p = .47, ηp
2
  = .03, 90% CI [.00, .08]. 

 Choosing rates were significantly affected by similarity, F(3, 87) = 4.53, p = .005, ηp
2
  

= .14, 90% CI [.03, .23]. Participants chose more frequently in the High similarity trials than 

in any other type of trial: High vs. Medium-High, t(29) = 2.94, p = .006, d = 0.52, 95% CI 
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[0.14, 0.90]; High vs. Medium-Low, t(29) = 2.97, p = .006, d = 0.53, 95% CI [0.15, 0.91]; 

High vs. Low, t(29) = 3.21, p = .003, d = 0.57, 95% CI [0.18, 0.96]. No other comparisons 

met the Bonferroni-corrected criterion for statistical significance. 

Positive identification decisions 

We first examined the effect of similarity on confidence in correct target 

identifications, using the same mixed-effects regression approach as in the previous 

experiments. Random intercepts were allowed for participant number, and trials were 

excluded if the confidence rating was missing or invalid. Adding similarity to the model 

significantly improved fit, χ
2
(3, N = 529) = 17.24, p < .001. Means are plotted in Figure 8A, 

and a full breakdown of response frequencies can be found in the Supplemental Materials 

(Table S8). Confidence significantly increased from High to Medium-Low similarity trials, 

(95% CIdiff [1.89, 10.86]), High to Low similarity trials, (95% CIdiff [4.29, 13.12]), and from 

Medium-High to Low similarity trials, (95% CIdiff [1.54, 10.20]). 

Next, we examined the effect of similarity on response latency when the target was 

correctly identified. Trials were excluded if the response latency was less than 500 ms, or 

more than 2 SDs from the participant’s condition mean. In total, 26 trials (4.76% of all 

correct positive decisions) were removed. Response latencies were then back-transformed 

and analysed in a mixed-effects regression, with participant as a random intercept. Adding 

similarity to the regression model significantly improved model fit, χ
2
(3, N = 520) = 9.20, p = 

.03. Back-transformed means are plotted in Figure 8B. Response latency was significantly 

longer in High and Medium-High similarity trials than in Medium-Low and Low similarity 

trials. 

To explore the confidence-accuracy relationship, we once again calculated Goodman-

Kruskal’s G for each participant, at each level of similarity. The mean coefficients were then 

compared to zero in a series of one-sample t tests. At each level of similarity, confidence and 
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accuracy were positively related, with mean G significantly greater than zero: High 

similarity, M = .36, SD = .44, t(28) = 4.36, p < .001, 95% CIdiff [.19, .53]; Medium-High 

similarity, M = .23, SD = .47, t(28) = 2.69, p = .01, 95% CIdiff [.06, .41]; Medium-Low 

similarity, M = .23, SD = .46, t(29) = 2.71, p = .01, 95% CIdiff [.06, .40]; Low similarity, M = 

.37, SD = .44, t(28) = 4.50, p < .001, 95% CIdiff [.20, .54]. 

Next, we examined the relationship between (log) response latency and accuracy. The 

mean point-biserial correlation coefficient, at each level of similarity, was compared to zero. 

At all levels of similarity, the mean correlation was negative and significantly below zero: 

High similarity, M = -.23, SD = .35, t(28) = 3.61, p = .001, 95% CIdiff [-.37, -.10]; Medium-

High similarity, M = -.15, SD = .33, t(28) = 2.43, p = .02, 95% CIdiff [-.28, -.02]; Medium-

Low similarity, M = -.21, SD = .30, t(29) = 3.88, p = .001, 95% CIdiff [-.32, -.10]; Low 

similarity, M = -.23, SD = .33, t(28) = 3.86, p = .001, 95% CIdiff [-.36, -.11]. 

Finally, we examined the relationship between confidence and (log) response latency. 

At each level of similarity, the mean correlation coefficient was negative and significantly 

below zero: High similarity, M = -.41, SD = .31, t(29) = 7.11, p < .001, 95% CIdiff [-.52, -.29]; 

Medium-High similarity, M = -.38, SD = .26, t(29) = 8.17, p < .001, 95% CIdiff [-.48, -.29]; 

Medium-Low similarity, M = -.20, SD = .38, t(29) = 2.94, p = .006, 95% CIdiff [-.34, -.06]; 

Low similarity, M = -.32, SD = .38, t(28) = 4.58, p < .001, 95% CIdiff [-.46, -.18]. 

Negative identification decisions 

 Finally, we turned our attention to the effect of similarity on confidence and response 

latency for correct rejections. The same analytic techniques were used as for positive 

decisions. Using the same cutoff criteria as in all previous experiments, one trial was 

excluded from the response latency analysis. Adding similarity to the regression model did 

not significantly improve the fit for confidence, χ
2
(3, N = 335) = 4.31, p = .23, or for response 



CONFIDENCE IN COMPLEX DECISION TASKS 40 

 

latency, χ
2
(3, N = 337) = 0.49, p = .92. Means are plotted in Figure 9, and a full breakdown of 

confidence frequencies can be found in the Supplemental Materials (Table S9). 

 Next, we examined the relationships between confidence, accuracy, and (log) 

response latency in negative decisions. To ensure sufficient numbers of decisions per cell, we 

collapsed across similarity. Confidence and accuracy were positively related; the mean G 

coefficient was significantly above zero: M = .36, SD = .40, t(26) = 4.63, p < .001, 95% CIdiff 

[.20, .52]. Log response latency and accuracy were negatively related; the mean point-biserial 

correlation coefficient was significantly below zero: M = -.18, SD = .22, t(27) = 4.51, p < 

.001, 95% CIdiff [-.27, -.10]. Confidence and (log) response latency were negatively related 

also; the mean correlation coefficient was significantly below zero: M = -.38, SD = .36, t(26) 

= 5.47, p < .001, 95% CIdiff [-.52, -.24]. 

Discussion 

 In Experiment 5, we manipulated the similarity between the target (or target-

replacement) and the two weakest items in the array. As predicted, for correct target 

identifications, mean confidence increased, and mean response latency decreased, as the 

weakest lures became increasingly dissimilar to the target. These results suggest that, even in 

complex decision tasks, confidence ratings incorporate information about the relative strength 

of evidence for the chosen item over the unchosen items. Furthermore, across all positive 

decisions, we replicated the standard relationships between confidence, accuracy, and 

response latency. Taken together, these findings suggest that predictions from sequential 

sampling models of decision-making can be scaled up to understand decision-making in 

complex, multiple-alternative, compound tasks.   

 As in Experiments 3 and 4, the similarity between the target-replacement and the lures 

did not affect confidence or response latency in correct rejections of target-absent arrays. We 
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consider the theoretical and applied implications of these consistent findings in the General 

Discussion. 

 For the first time, in Experiment 5, we observed a significant association between 

target-lure similarity and choosing rates. Specifically, participants were most likely to choose 

from a High-similarity array. These results raise the intriguing possibility that in certain 

situations, target-lure similarity can have paradoxical effects on willingness to choose and on 

the confidence expressed in those choices. Of course, given that we did not observe any such 

effect in Experiments 3 or 4, it would be necessary to replicate such findings before drawing 

any strong conclusions. 

General Discussion 

Across five experiments, we attempted to answer the question: what information 

forms the basis of confidence judgments in complex, n-alternative, compound decisions? 

Across five experiments, we manipulated the similarity between the target, or target-

replacement, and the lures, systematically testing predictions derived from sequential 

sampling models to increasingly complex decisions. We began with a simple, 2AFC task, 

such as has been the focus of much research in cognitive psychology. We replicated the 

standard pattern of findings that have been successfully explained by sequential sampling 

models of decision making (e.g., Brown & Heathcote, 2008; Ratcliff & Starns, 2009; Usher 

& McClelland, 2001). Specifically, we found that mean confidence increased, and mean 

response latency decreased, as target-lure discriminability decreased. Furthermore, when 

holding target-lure discriminability constant, confidence was positively related to accuracy, 

response latency was negatively related to accuracy, and confidence was negatively related to 

response latency. In the following experiments, we increased the complexity of the decision 

in two ways: by increasing the number of items in the choice array from two to four 

(Experiments 2, 4, and 5), and by changing the decision task from forced-choice to 



CONFIDENCE IN COMPLEX DECISION TASKS 42 

 

compound (Experiments 3-5). Overall, our results suggested that predictions derived from 

sequential sampling frameworks can be applied to complex decisions, and that confidence (at 

least in positive decisions) is scaled from the relative evidence for the chosen item over 

unchosen items in the array. 

Within multiple-item arrays, we systematically varied the similarity of the weakest 

items in the array to the target (or target-replacement). We did so to test whether the relative 

nature of confidence judgments would incorporate information from all items in the array, or 

whether confidence judgments would be scaled based on the relative information from the 

chosen and next-best item. In Experiments 3 and 5, we found that confidence increased as the 

weakest item(s) became increasingly dissimilar to the target (or target-replacement), which 

provides some support for the hypothesis that confidence judgments incorporate information 

from all items within the array. These findings are consistent with the “dud effect” reported 

by Windschitl and Chambers (2004), and extended upon by Charman et al. (2011), in which 

the addition of a weak item to a choice set increases confidence in a chosen item. Our results 

suggest that a dud effect is a natural product of a sequential sampling system in which 

confidence reflects the difference in evidence strengths between items. Importantly, our 

results show that even small changes in item plausibility can affect confidence judgments – 

an obvious dud is not required. 

The magnitude of the similarity effect was larger in 2-alternative tasks than in 4-

alternative tasks; indeed, in Experiment 4, we were unable to detect any significant effect 

(and the effect size was close to zero). This may have been because the effects of 

manipulating a single lineup member within a multiple-item array are fairly subtle, with that 

single item exerting only a small pull overall balance-of-evidence. When we manipulated the 

similarity of the two weakest items in the array in Experiment 5, we were once again able to 

detect a significant effect, which provides some support for this suggestion. 
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With compound decisions, we investigated positive decisions (i.e., decisions in which 

an item was chosen) and negative decisions (i.e., decisions in which no item was chosen) 

separately. Our motivation for doing so was two-fold: theoretically, there are reasons to 

expect that confidence in negative decisions may be scaled from different information than 

confidence in positive decisions (e.g., Weber & Brewer, 2004); additionally, research from 

the eyewitness identification literature has consistently shown asymmetrical relationships 

between confidence and accuracy in positive and negative decisions (e.g., Brewer & Wells, 

2006; Horry et al., 2012; Sauerland & Sporer, 2009). As we predicted, while target-lure 

similarity had consistent, predictable effects on confidence and response latency in positive 

decisions (in line with the patterns observed within forced-choice tasks), we observed no such 

effects on negative decisions.  

Why is there a discrepancy in findings between positive and negative decisions? 

There are several possibilities. We may have lacked statistical power to detect subtle effects 

with negative decisions, due to the smaller number of negative decisions, and the relatively 

large error variance associated with them. However, looking at the patterns of means for the 

negative decisions in Figures 5, 7, and 9, it is clear that they do not follow any predictable 

pattern as would be expected if we had simply lacked power to detect a small but real effect. 

A second possibility is that negative decisions are heterogeneous, capturing some true 

rejections of the items in the array, as well as default responses when the participant has 

insufficient information to make a positive choice (perhaps because the target wasn’t encoded 

effectively due to a lapse in attention) (Sporer, Penrod, Read, & Cutler, 1995). If that were 

the case, we would expect longer average response latencies for negative than positive 

decisions, due to those trials in which the decision “timed out” due to insufficient 

information. However, response latencies for correct negative decisions were similar to, and 

in some cases, shorter than, correct positive decisions.   
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A third possibility is that the consistent effects of similarity on confidence for positive 

decisions were driven by the ecophoric similarity of the items in the array (i.e., the similarity 

between each test item and the memorial representation of the target; Tulving, 1981), rather 

than the perceptual similarity relationships amongst the items. In our target-absent arrays, 

ecphoric similarity would have been rather low across all items (given that the target-

replacement was already seven generations removed from the target). Consequently, in the 

target-absent trials, the crucial source of similarity may have been at floor. At the suggestion 

of a reviewer, we examined the effects of similarity on confidence in negative decisions from 

target-present arrays. In these trials, the perceptual and ecphoric similarity relationships 

between items are identical for positive and negative decisions. Because target-present trials 

were rejected infrequently, we combined all target-present rejections from Experiments 3 to 5 

to achieve a sufficient number of trials (N = 301). In the regression model, we included an 

additional random intercept for experiment number. Adding similarity to a baseline model 

did not significantly improve model fit, χ
2
 (N = 301) = 3.16, p = .37. This null effect would 

seem to speak against the possibility that low ecphoric similarity in the target-absent trials 

was responsible for the positive-negative discrepancy. Of course, we must be cautious to 

avoid drawing any strong conclusions from null results, particularly as the number of trials 

was low, and the variance was high. A stronger test of this potential explanation provides an 

avenue for future research. 

Any potential explanation for our findings must be able to account for two facets of 

our findings: i) that the similarity between the target-replacement and the lures did not 

significantly affect confidence ratings; and ii) that confidence and accuracy were positively 

related for negative decisions. Our working hypothesis is that confidence judgments in 

negative decisions incorporate different information than confidence judgments in positive 

decisions. Specifically, negative decision confidence may index the difference between the 
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amount of evidence required for a positive decision and the amount of evidence associated 

with the best match – in other words, by how much did the best candidate fall short of the 

threshold? This hypothesis could explain why similarity did not affect confidence, as the 

similarity between items should have no (or minimal) influence on the distance between the 

best candidate and the threshold. It could also explain why we consistently found positive 

confidence-accuracy relationships for negative decisions; on average, the distance between 

the best candidate and the threshold (and therefore, confidence) should be higher on target-

absent trials than on target-present trials. The cognitive and neural correlates of confidence 

judgments in negative decisions provide another interesting avenue for future research. 

From a theoretical perspective, our results suggest that similar mechanisms can 

explain confidence judgments in multiple-alternative and compound decisions, and in simpler 

yes/no or 2-alternative decisions. Future research should aim to clarify exactly what those 

mechanisms are. Are confidence judgments derived from a diffusion process, with some post-

decisional accrual of information (e.g., Moran et al., 2015; Pleskac & Busemeyer, 2010)? 

Does each possible decision-confidence pairing accumulate on its own counter (Ratcliff & 

Starns, 2013)? Are confidence judgments derived from the balance-of-evidence across 

independent accumulators (e.g., Brown & Heathcote, 2008; Van Zandt, 2000)? Or are 

confidence judgments produced by some other process? To begin answering these sorts of 

questions, current models of decision-making would need to be formally extended, so that 

they can incorporate multiple choices (which is already the case with Brown & Heathcote’s 

linear ballistic accumulator model, but is not true for the vast majority of other models) and 

compound decisions.  

Across all of our experiments, confidence judgments and response latency were 

negatively related, even when target-lure similarity was held constant. Of course, this 

relationship is predicted by sequential sampling models; however, it has also been suggested 
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that response latency makes an independent contribution to confidence judgments (Kiani et 

al., 2014). Specifically, decision makers evaluate not only the relative strengths of evidence 

associated with items, but they also consider how long the decision took, based on a learned 

association that more difficult decisions are made more slowly. Our data are unable to 

provide any critical tests of this hypothesis, but exploring further the relationships between 

response latency and confidence in complex decisions (for example, using signal-to-respond 

or deadline procedures) would be an interesting avenue of research. 

We observed consistent relationships between confidence, accuracy and response 

latencies for negative decisions, as well as for positive decisions. These relationships make 

sense from a sequential sampling perspective, if one assumes that negative evidence 

accumulates over the course of a trial. Specifically, negative evidence should accumulate 

more rapidly when the target is absent, producing faster decisions than when the target is 

present. Furthermore, assuming that confidence is based on a valid cue of target-absence (as 

we have speculated, the distance between the best candidate and the positive decision 

threshold), confidence should be higher, on average, for correct decisions than for incorrect 

decisions. These relationships are often not observed in more naturalistic, single-trial 

eyewitness identification paradigms for reasons that are currently unknown (e.g., Brewer & 

Wells, 2006; Horry et al., 2012; Lindsay et al., 2013). One possibility is that, in single-trial 

paradigms, participants may reject a lineup when they don’t know who to choose, thus 

contaminating true rejections with uninformative ‘default’ responses (Sporer et al., 1995; 

Weber & Perfect, 2012). There are also many reasons why the negative counter might ‘win’ 

the race, some of which may not be useful for discriminating between target-present and 

target-absent trials. For example, the witness may have failed to adequately encode the face 

of the perpetrator, the memory trace may have deteriorated due to forgetting or retroactive 

interference, or the target in the lineup may appear quite differently than how he appeared at 
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encoding (i.e., the target may have low ecphoric similarity to himself). Any of these issues 

could reduce the strength of the confidence-accuracy relationship in a single-trial eyewitness 

identification study. 

From an applied perspective, perhaps the most well-studied compound decision task 

is the eyewitness identification task, in which an eyewitness attempts to identify a target (who 

may or may not be present) from a lineup. Confidence in eyewitness identifications has 

garnered much interest in recent years, with a consensus emerging that, when a witness 

makes a positive decision, confidence is a meaningful predictor of accuracy (Brewer & 

Wells, 2006; Palmer et al., 2013). Of course, the strength of the confidence-accuracy 

relationship is likely to be moderated by many variables (e.g., Horry et al., 2012; Palmer et 

al., 2013; Sauer, Brewer, Zweck, & Weber, 2010), and it is important to understand when 

confidence and accuracy might become dissociated.  

If our findings generalize to the eyewitness identification context, there are some 

important applied implications. Expressions of confidence from an eyewitness shape how that 

eyewitness, and the evidence that he or she provides, is perceived by investigators, judges, 

and juries (e.g., Brewer & Burke, 2002). Here, we have shown that the presence of a lure who 

is relatively dissimilar to the target (though still a plausible match) can boost confidence, with 

the potential downstream effect of increasing the perceived reliability of the decision. Taken 

to extremes, the presence of a very dissimilar lineup member (a “dud”) can produce even 

more marked overconfidence (Charman et al., 2011). On the other side of the coin, the 

presence of a highly similar lure can reduce confidence, thus potentially decreasing the 

perceived reliability of the decision. Luus and Wells (1991) argued that there is likely to be 

some inverted-U shaped function between target-lure similarity and eyewitness identification 

performance. We would argue that there is also likely to be a similar function corresponding 

to optimum confidence-accuracy calibration. If similarity is too low, witnesses may be 
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overconfident in their decisions; if similarity is too high, witnesses may be underconfident in 

their decisions. Given recent very strong claims that highly confident witnesses are very 

likely to be correct (e.g., Wixted, Mickes, Clark, Gronlund, & Roediger, 2015; Wixted, 

Mickes, Dunn, Clark, & Wells, 2016), it is important to further investigate the extent to 

which over- and under-confidence are produced by lineup composition. 

It is important to note that, in real-world tasks, confidence judgments are likely to 

incorporate information from external cues, as well as those that are generated by the 

decision process. Charman, Carlucci, Vallano, and Hyman Gregory (2010) put forward the 

cues-based inference model of confidence judgments, a three-stage process for generating 

confidence judgments in lineup decisions. First, the decision-maker assesses the internal cues 

that formed the basis of their decision. If those cues are weak, the decision-maker proceeds to 

search for external cues (such as feedback from the lineup administrator; Charman & Wells, 

2012; Wells & Bradfield, 1998). Finally, if those cues are sufficiently credible, they are 

integrated with the internal cues to produce a confidence judgment. We have focused on the 

first of these three stages, the assessment of internal cues. However, we do not mean to 

downplay the role of external cues. The internal signals that indicate evidence strengths are 

likely very fragile, and may decay quite quickly (Brewer, Keast, & Rishworth, 2002). Thus, 

rather than contradicting the cues-based inference model, the current results supplement it by 

elaborating on the nature of the internal cues assessed in the first stage of the model. Refining 

our understanding of how these internal cues related to confidence should be a high priority 

for future research. 

Our paradigm differs in many ways from the standard eyewitness identification 

paradigm, in which participants typically encode a single target engaged in a mock crime, and 

then, after a variable delay, view a single target-present or target-absent lineup. For example, 

our participants completed many trials, they knew that they would need to attempt to identify 
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each target as he was being encoded, and they only had to store the memorial representation 

for a short time (2000 ms). Furthermore, we used the same image of the target at study and 

test, potentially allowing for low-level image matching rather than true face matching (Bruce, 

1982). In contrast, real eyewitnesses must cope with the demands placed on their visual 

processing systems by changes in lighting, viewpoint, distance, and, in the cases of a 

photographic lineup, the shift from a dynamic encoding stimulus to a static test image 

(Megreya & Burton, 2008).  However, despite these differences, it is important to stress that 

the decision frame is the same: the participant has a target stored in memory, and must search 

for that target in an array of faces that may or may not include that target. Though lacking in 

ecological validity, the ‘mini-lineup’ paradigm adopted here is better suited to the sorts of 

repeated testing that is associated with exploring and refining aspects of theory (see, for 

example, Weber & Brewer, 2004, 2006). In contrast, in a single-trial identification paradigm, 

individual differences can easily overwhelm subtle effects, which can hinder theoretical 

advances. Of course, before generalizing these findings to eyewitness identification 

decisions, it will be necessary to test whether they ‘scale up’ to more ecologically valid 

paradigms. 

Conclusions 

 Across five experiments, we provided evidence that similar cognitive mechanisms are 

involved in producing confidence judgments in complex decisions (i.e., multiple-alternative 

and compound decisions) as in simple, two-alternative decisions. When we systematically 

varied the similarity between the target and the weakest item in the choice array, confidence 

in positive decisions increased, and response latency decreased. These results suggest that 

confidence judgments for positive decisions incorporate information about the relative 

evidence for a chosen item over the unchosen items. Of course, confidence judgments also 

appear to contain information about the absolute strength of the chosen item (e.g., 



CONFIDENCE IN COMPLEX DECISION TASKS 50 

 

Teodorescu et al., 2016); indeed, recent research using words as stimuli suggests that absolute 

information may play a large role in confidence judgments (Zawadzka et al., 2016). It is 

possible that the contributions of relative and absolute evidence to confidence judgments vary 

as a function of task demands and of the complexity of the stimuli. Formal modelling of 

compound decisions seems warranted to answer questions such as whether the relationships 

between confidence, accuracy, and response latencies in compound decisions are better 

explained by diffusion (e.g., Moran et al., 2015; Pleskac & Busemeyer, 2010) or accumulator 

(e.g., Brown & Heathcote, 2008; Van Zandt, 2000) processes, and to clarify the informational 

basis of confidence judgments in negative decisions. 
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Footnote 

1
Tulving (1981) drew a distinction between two types of similarity: perceptual similarity (the 

perceived similarity between two physically present items), and ecphoric similarity (the 

similarity between a physically present item and a memorial representation). Though some 

researchers have attempted to dissociate perceptual and ecphoric similarity (e.g., Dobbins, 

Kroll, & Liu, 1998; Heathcote, Freeman, Etherington, Tonkin, & Bora, 2009), we make no 

such attempt here. Rather, perceptual and ecphoric similarity are confounded (as a lure 

becomes less perceptually similar to the target, it is also less ecphorically similar to the 

representation of that target). As a consequence, it should be noted that, though we preserved 

the perceptual similarity relationships across target-present and target-absent trials, we did 

not preserve the ecphoric similarity relationships; ecphoric similarity would have been 

substantially higher on target-present trials than on target-absent trials. The implications of 

this are discussed in the General Discussion. 

2
As η

2
 can only be positive, a 90% confidence interval, rather than a 95% confidence interval, 

is appropriate (Steiger, 2004). 

3
Analyses were repeated with the outliers included. These analyses are reported in the 

Supplementary Materials. In all but two cases, the results were not changed by the inclusion 

of the outliers. The discrepancies are noted where they occur. 

4
In all of the correlational analyses, the degrees of freedom vary between conditions, as a 

coefficient could not always be calculated for each participant – for example, if confidence or 

accuracy was constant.  
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Table 1. 

Mean discriminability and choosing rates, with standard deviations, as a function of 

similarity 

 

 

Experi

ment 

 Similarity level 

 High  Medium-High  Medium-Low  Low 

 M SD  M SD  M SD  M SD 

d'-identification 

1  0.81 0.50  1.42 0.88  1.72 1.06  2.50 1.41 

2  0.53 0.38  0.75 0.49  0.84 0.46  0.87 0.49 

3  1.78 1.29  2.71 1.08  3.89 1.26  2.87 1.41 

4  0.48 0.50  0.50 1.16  0.84 0.65  0.65 0.93 

5   0.55 0.79  0.86 0.91  1.58 1.21  1.26 0.87 

d'-detection 

3  1.81 1.71  2.06 1.46  2.16 1.41  2.14 1.31 

4  1.29 1.31  1.60 1.36  1.41 1.55  1.46 1.36 

5   1.61 1.29  1.35 1.17  1.14 1.17  1.29 1.39 

Choosing rates 

3  .73 .17  .75 .14  .72 .14  .68 .15 

4  .81 .15  .81 .14  .81 .16  .80 .14 

5   .79 .18  .70 .16  .67 .22  .72 .19 
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Figure 1. 

 

 

 

 

 

 

Example target face with siblings (top) and target-replacement with siblings (bottom). 
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Figure 2. Mean confidence ratings (top panel) and response latency (bottom panel) for 

correct target identifications in Experiment 1. Error bars represent 95% confidence intervals. 

An asterisk indicates that the 95% CI of the difference excluded zero.   
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Figure 3. Mean confidence ratings (top panel) and response latency (bottom panel) for 

correct target identifications in Experiment 2. Error bars represent 95% confidence intervals. 

An asterisk indicates that the 95% CI of the difference excluded zero.   
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Figure 4. Mean confidence ratings (top panel) and response latency (bottom panel) for 

correct target identifications in Experiment 3. Error bars represent 95% confidence intervals. 

An asterisk indicates that the 95% CI of the difference excluded zero.   
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Figure 5. Mean confidence ratings (top panel) and response latency (bottom panel) for 

correct rejections in Experiment 3. Error bars represent 95% confidence intervals. An asterisk 

indicates that the 95% CI of the difference excluded zero.   
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Figure 6. Mean confidence ratings (top panel) and response latency (bottom panel) for 

correct target identifications in Experiment 4. Error bars represent 95% confidence intervals.   
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Figure 7. Mean confidence ratings (top panel) and response latency (bottom panel) for 

correct rejections of target-absent trials in Experiment 4. Error bars represent 95% confidence 

intervals. 
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Figure 8. Mean confidence ratings (top panel) and response latency (bottom panel) for 

correct target identifications in Experiment 5. Error bars represent 95% confidence intervals. 

An asterisk indicates that the 95% CI of the difference excluded zero.   
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Figure 9. Mean confidence ratings (top panel) and response latency (bottom panel) for 

correct rejections in Experiment 5. Error bars represent 95% confidence intervals. An asterisk 

indicates that the 95% CI of the difference excluded zero.   
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