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Abstract 

Primary Objective:  This study explored over-selectivity (executive dysfunction) 

using a standard unsupervised categorization task.  Over-selectivity has been demonstrated 

using supervised categorization procedures (where training is given), however, little has been 

done in the way of unsupervised categorization (without training).   

Methods and procedure:  A standard unsupervised categorization task was used to 

assess levels of over-selectivity in a traumatic brain injury (TBI) population.  Individuals with 

TBI were selected from the Tertiary Traumatic Brain Injury Clinic at Swansea University and 

were asked to categorize two dimensional items (pictures on cards), into groups that they felt 

were most intuitive, and without any learning (feedback from experimenter).  This was 

compared against categories made by a control group for the same task. 

Outcomes and results: The findings of this study demonstrate that individuals with 

TBI had deficits for both easy and difficult categorization sets, as indicated by a larger 

amount of one-dimensional sorting compared to control participants.   Deficits were 

significantly greater for the Easy condition.   

Conclusions: The implications of these findings are discussed in the context of over-

selectivity, and the processes that underlie this deficit.  Also, the implications for using this 

procedure as a screening measure for over-selectivity in TBI are discussed. 

 

 

 

 

 

 

 



Introduction 

 

Category learning is an essential part of making sense of the world around us, by organising 

information most efficiently through an information minimization approach.  Disruption in 

the ability to form categories has been shown to translate into difficulties with learning 

language and perceptual discriminations [1, 2].  It is therefore important to study 

categorization abilities in several different populations, including people with TBI because 

this is a condition which predominantly implicates the prefrontal cortex, often without serious 

impairment of measurable aspects of memory or intellectual ability [3, 4].  Instead, and more 

frequently, deficits in decision making and planning daily activities are present [5], as well as 

the flexibility of rule use as part of executive function [6, 7].  In experimental settings, the 

prefrontal cortex has been shown to be important when completing complex tasks which 

require explicit rules, such as those found in categorization tasks [8].  In addition to this, 

individuals with TBI have demonstrated a lack of ability in making categorical 

discriminations between the different features of objects [9]. 

There are many types of categorization paradigms and each relies upon different 

aspects of cognition.  For example, supervised categorization [2] which uses feedback from 

the experimenter to learn which items belong to which existing categories.  In experiments, 

the participant is given several items and receives corrective feedback when an item is placed 

in the wrong category.  Categorization attempts to identify how individuals build knowledge 

about the world, by understanding how information about items around them is used (e.g., 

dimensions, colour, semantics etc.) to form categories.  A real world example of this could be 

learning the category of ‘table’ or ‘chair’ for the first time.  A table can have several shapes 

(long, short), colours, functions (to eat, to work), possible labels (table, desk) etc.  When 

learning this for the first time, corrective feedback is given from the environment (maybe a 



parent or a teacher in this case), allowing the individual to learn, and eventually form a 

complete category concept for ‘table’.  Experiments using supervised categorization 

procedures have demonstrated that after TBI, individuals have difficulty abstracting from a 

prototype. Prototype abstraction is a form of supervised categorization (where corrective 

feedback is given) that helps individuals learn the pre-specified category structure of a set of 

items when given feedback about whether their decisions are correct (i.e., using the average 

representation of a learned category and applying it to other situations) [10]. 

   Research in autism spectrum disorders [2] has indicated that over-selectivity (the 

inability to process all the dimensions of items) is responsible for an inability to abstract 

prototypes.   Though autism is quite different from TBI, both populations have demonstrated 

over-selective responding (attentional/ category coherence problems) with categorization 

tasks.  Over-selectivity (the dependent measure in the present study) is where an individual 

uses some parts of the environment at the expense of others (e.g., placing too much attention 

on one property of the items and ignoring or failing to process others) [2]. Various cognitive 

deficits lead to over-selectivity, and there are the interventions used to remediate them [11].  

Over-selectivity in an autistic population has been attributed to attentional deficits [14], 

learning deficits [2] and retrieval deficits [15].  Also, over-selectivity in supervised 

categorization tasks has been identified in other clinical conditions, such as TBI [10, 16].   

The current study uses an unsupervised categorization procedure [11] which involves 

no learning on the part of the participant. It is based, instead, on the intuitive similarity of 

items [12].  For example, the participant is given a range of items and must categorize these 

on the basis of what they feel is most intuitive, based on category coherence [13].  

Unsupervised categorization is therefore based on attentional and coherence aspects of 

cognition, as there is no pre-defined rule from which to learn how to categorize.  For 

example, when you see items which you have never encountered before, you could group 



them into categories which you feel best discriminates the items, maybe based on size, or 

colour, etc., but there will be no, or very little, semantic information upon which to base the 

category decision.  This type of task is designed to explore categorising without prior 

learning, based on more attentional/category coherence mechanisms and not learning 

mechanisms.   The identification of specific cognitive deficits (i.e., over-selectivity) during 

unsupervised categorization in TBI could have important implications for the types of 

interventions used and developed in clinical practice, for example, assessing 

attentional/coherence based over-selectivity (through unsupervised categorization 

procedures) as well as more learning based over-selectivity (as found with supervised 

categorization procedures).   

Up to this present time, here has been no research examining the abilities of a TBI 

population using the unsupervised categorization paradigm, which is the primary aim of this 

study.  The over-selectivity in a TBI population when using a supervised task, makes it 

reasonable to assume that over-selectivity will be found in an unsupervised task because, 

although these tasks use different cognitive processes, TBI patients tend to have short term 

decision and planning-based problems [5], which is consistent with the type of cognition the 

unsupervised categorization task demands.   Therefore, it is likely that the TBI population 

will display greater over-selectivity compared to the control group.     

 

Method 

Participants 

The TBI population was selected from a cohort referred to the Head Injury Clinic at Swansea 

University (N = 44).  Patients were referred because they exhibited long term executive 

deficits which affected their everyday activities and imposed constraints on community 



independence.  In all cases, the presumption of executive deficits was based on reports made 

by the patient’s relatives, then confirmed through a semi-structured clinical interview. 

TBI severity was determined by Glasgow Coma Scores at the time of hospital 

admission, (GCS = 9.54, SD = 1.2), indicating moderate brain injury. The mean time between 

injury and participation was 3.2 years (SD = 1.1).   The control group were 44 members of 

the general public that were matched for age (TBI = 34.7, SD=12.2; control = 36.2, SD = 

13.5) and intelligence (TBI mean IQ = 98.3, SD 12.6; control IQ = 99.4, SD14.7) as 

measured by the WAIS III, Wechsler, 1998.    

 

The Categorization Task 

A standard approach for measuring one vs. two dimensional sorting was employed as 

in previous studies [11, 17] [18, 19] (see Fig 1).   Stimuli were based on two dimensions 

(body and legs), and the experimenter counted how many categorization sorts used both the 

leg and body dimensions.  If the participant categorised all big leg items with other big leg 

items, and all small leg items with other small leg items, but ignored the body size for any of 

the items, then this would be classified as a one-dimensional (over-selective) sort. A simple 

example is of four items with different dimensions, e.g. Item A, legs at 10CM, body at 

11CM; Item B, 10CM for legs and 11CM for body; Item C, 10CM for legs, 1CM for body; 

and Item D, 10CM for legs and 1CM for body.  If the category ‘ABC’ was made and ‘D’ was 

categorized as separate then ‘C’ would be counted as a one dimensional sort (one count of 

over-selectivity), as only the one dimension of legs was used and not body.  If both 

dimensions had been use, then two categories of ‘AB’ and ‘CD’ would have been produced.  

This would therefore have been counted as two, two-dimensional sorts and no counts of over-

selectivity.  

 



--------------------Figure 1 here-------------------- 

 

Figure 2 illustrates this point with a more specific example for an Easy Categorization 

task. A category formation of {0, 1, 2} {6, 7, 8} {5, 3, 4} {11, 9 ,10} {12, 13, 14, 15} is 

suggested by the simplicity model [11, 20-22] which optimises items within categories based 

on the number of dimensions used when categorising items using two dimensions.  If a 

classification is made whereby 10 is categorised with {0, 1, 2} instead of {11, 9} then that 

would be recorded as one count of over-selectivity (one-dimensional sorting), as one of the 

dimensions of 10 is identical in size to that of the items (0 and 2) in the category {0, 1, 2} 

whilst the other dimension is completely different in size.  This would suggest that the 

participant was not using both dimensions, which would produce a category {11, 9, 10}, 

where both dimensions are similar in size, as suggested by the simplicity model [11, 20-22].  

If the outcome category {0, 1, 2, 10} was created then this would demonstrate that the 

participant would only be using a single dimension in categorising the item, and therefore an 

example of over-selectivity (one-dimensional sorting). 

 

--------------------Figure 2 Here-------------------- 

 

For this study (see Fig 1) the stimuli used resembled simple two dimensional 

schematic representations (spiders) with two dimensions that were altered between stimuli, 

the legs and the body, which were between 40mm and 80mm (using a Weber fraction of 8%; 

see [21] for a full explanation of the computational principles). The stimuli were presented on 

individual cards and each set (two sets in total) had 16 items, each differing in how intuitive 

(how easy) they were to categorize.  The simplicity model was used [20-22] to develop the 

category structure in terms of how easy or difficult (how intuitive) they were to categorise.   



When given several items in a set of stimuli using two dimensions, the simplicity model uses 

the spatial distances between the items dimensions, by attempting to reduce the spatial 

distance and the number of comparisons needed, using categories.  The organisation of the 

model is complex, and uses a computation term of code-length to identify maximum within 

group similarity and minimum between group similarity [20-22].  What is important in terms 

of the present study, is not the complex way the model computes the categories, but that the 

outputted categories of the simplicity model are those which are optimal for using two 

dimensions when given particularly noisy stimuli sets, a finding validated with large 

participant numbers [20-22].  Again, this model was used just to develop the category 

structures (i.e., to give sizes for the legs and bodies for each item) in terms of easy and 

difficult. It is not used in any analysis for this present study.  The two categories used in this 

study, based on the simplicity model (see Fig 2) were ‘Five Clusters’, which is the easiest, 

and the ‘Random Clusters’, which is the more difficult to categorize.   

 

Procedure 

Participants were assessed individually.  Stimuli were shuffled and taken out of a 

folder in random order then spread out on a large table.  Instructions were provided (in 

scripted form) which asked the participant to categorize the items in a way they felt was most 

intuitive based on perceptions of similarity.  They were also instructed that similar objects 

should end up in the same categories and that any number of categories were allowed.  There 

was no time limit on this task however the task typically lasted just a few minutes.  

Participants were not influenced in how they made the categories, and if they asked any 

questions during the task, they were redirected to the instructions.  The stimuli sets were 

shuffled after each participant.  The sets were also counterbalanced between participants so 

that there were no order effects.   



 

 

 

Results 

--------------------------- 

Table 1 about here 

--------------------------- 

 

Table 1 shows the number of one-dimensional classifications that were made by the 

TBI and the control group for the conditions Easy and Difficult.  On inspecting the data both 

TBI and control groups produced more one-dimensional (over-selective) sorts for the 

Difficult condition, as compared with the Easy condition.  The TBI population had a greater 

number of one-dimensional sorts for both the Easy and Difficult conditions compared to the 

control group. 

A mixed two-factor Analysis of Variance (ANOVA) was used with participant group 

(TBI or control) as the between factor and the categorization task difficulty (Easy or 

Difficult) as the within level, with the number of one-dimensional sorts (over-selectivity) as 

the DV.  The results showed a significant increase in the number of one dimensional sorts for 

both groups when task difficulty increased (F(1, 86) 113.628, p< 0.001, for the main effect, 

task difficulty).   When comparing the interaction between task difficulty and participant 

group (TBI or control), the results indicated that the number of one-dimensional sorts made 

by TBI and control groups were significantly different, (F(1, 86) 3.277, p < 0.05) which 

suggests (along with the descriptive statistics) that the TBI had significantly more one-

dimensional sorts, compared to the control, across both conditions.  Crucially, the interaction 

shows that the data for both groups were ordinal, allowing the main effect to be supported.  



The other main effect, the number of one dimensional sorts between groups, was significant, 

(F(1, 86) = 22.599, p < 0.001) indicating that the TBI group had a greater number of one-

dimensional sorts compared to the control group.  

To analyse this further, a series of t-tests were used to compare post hoc interactions, 

and a Bonferroni correction was used as a conservative estimate for alpha (0.01).  For TBI vs. 

control in the Easy condition the results (which along with the descriptive statistics) show 

that the TBI group were making more one-dimensional sorts as compared with the control 

group for the Easy condition (were t(86) = 6.051, p < 0.001).  In the Difficult condition the 

results again indicated that the TBI group made more one dimensional sorts as compared to 

the control (t(86) = 1.784, p = 0.04), although this was above the conservative Bonferroni 

corrected alpha of 0.01. For the TBI group, Easy vs. Difficult categorizing was significantly 

different (t(43) = 7.46, p < 0.001), indicating there were more one-dimensional sorts for the 

difficult condition.  Finally, for the control group, Easy vs. Difficult, categorizing revealed 

more one-dimensional sorts for the more difficult condition as compared to the Easy 

condition (t(54) = 8.518, p < 0.001). 

 

Discussion 

The present study explored whether there would be greater levels of one-dimensional 

sorts in a TBI population as compared to a control using a standard unsupervised 

categorization task with two levels of task difficulty.  One-dimensional sorts were used as an 

indicator of over-selectivity in both the TBI and control populations.   

The main findings were that there were more one-dimensional sorts when the task 

difficulty increased for both groups and that the TBI group displayed more one-dimensional 

sorts than the control group in both the Easy condition and the Difficult conditions (in the 



Difficult condition it was marginally non-significant when using a conservative Bonferroni 

correction). 

The findings demonstrate that the TBI population were over-selecting when using an 

unsupervised categorization task.  This means they have difficulty with tasks involving 

attention and category coherence which is consistent with other work [23].  They also 

demonstrated that by increasing task difficulty, over-selectivity increases, both in control and 

clinical populations.  Our findings are also largely consistent with work conducted in the area 

of autism, when using the same task [11].  Though autism and TBI are very different clinical 

disorders, there may be some commonality in the types of cognitive processes being deficient 

(under developed or damaged), therefore, some of the interventions and protocols for 

treatment and diagnosis (especially in relation to diagnostics for over-selectivity) may be 

useful for both populations.  However, this is entirely speculative at this stage, and would 

need much further work to verify. 

In terms of the present results, evidence is given which seem to support the case for 

attentional/coherence based deficits, as unsupervised categorization does not involve aspects 

of learning (whereas supervised categorization does).  This does not mean that learning based 

deficits are not present in TBI when using categorization tasks. Our results are also 

complimentary to previous work [2] and helps provide a bigger picture of cognitive deficits 

in a TBI population in relation to over-selectivity and categorization. 

In terms of potential applications, these findings have important implications for 

possible methods for screening over-selectivity in a TBI population and identifying the most 

appropriate forms of interventions to reduce over-selectivity in this group.   It will also be 

important to study other types of category learning in TBI populations, such as relational 

category paradigms [24], using abstract relational properties (such as ‘bigger than’ and 

‘smaller than’) based on inference learning, rather than specific dimensional sizes, when 



categorizing.  As such, this work may also be integrated into broader models of 

categorization, based in cognitive and behavioural science [25], to allow for specific TBI 

intervention protocols being developed which could diagnose and remediate over-selectivity.   

Further studies could explore milder forms of TBI to see whether similar cognitive 

deficits of over-selectivity occur, as there should be no expectation that there should be until 

empirically verified. Finally, an exploration could be made in terms of how these findings fit 

in terms of neurological mapping of over-selectivity through fMRI work.  To date, fMRI 

work has not been conducted specifically for over-selectivity.  This would potentially allow 

new ideas from empirical findings to further develop the theoretical and applied levels of 

research into cognitive dysfunction after brain injury.  It would also allow for further 

understanding as to the very specific cognitive components involved in over-selectivity in 

TBI.  For example, it could provide support for an attentional, retrieval or information 

process based theory.  These are all exciting avenues of research for the future.   
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