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Abstract: A detailed understanding of past temporal patterns and spatial expression of 

temperature variations is important to place recent anthropogenic climate change into a 

longer term context. In order to fill the current gap in our understanding of northwest 

European temperature variability, point-by-point principal component regression was 

used to reconstruct a spatial field of 0.5° temperature grids. A sequence of 

reconstructions utilizing several combinations of detrending and disturbance correction 

procedures, and a selection of tree-ring parameters (including ring-width (RW), 

maximum latewood density (MXD) and blue intensity (BI)) was used in an evaluation 

of reconstruction skill. The high resolution of the reconstructed field serves also as a 

diagnostic tool to spatially assess the temperature reconstruction potential of local 

chronologies. Best reconstruction results, reaching calibration r2 = 65.8% and 

verification r2 = 63.7% in central Scotland over the 1901-1976 period, were achieved 

using disturbance-corrected and signal free detrended RW chronologies merged with 

blue intensity data after low-pass (high-pass) filtering the RW (BI) chronologies. 

Calibration and verification r2 > 50% was attained for central, north and east Scotland, 

> 40% in west and northwest, and > 30% in southern Scotland with verification of 

nearly all grids showing some reconstruction skill. However, the full calibration 

potential of reconstructions outside central Scotland was reduced either due to residual 

disturbance trends undetected by the disturbance correction procedure or due to other 

climatic or non-climatic factors which may have adversely affected the strength of the 

climate signal.  

 

 

Keywords: dendroclimatology, tree-ring, temperature, spatial reconstruction, Scots 

pine, Scotland 
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Introduction 

 Anthropogenically induced climate change presents a monumental challenge for 

the international community (IPCC, 2014). To provide a context for recent climatic 

trends and their link to anthropogenic activity, it is essential to continue improving our 

understanding of ‘natural’ climatic variability and mean state changes in the past. 

Considering the temporal and spatial limitations of the available network of 

instrumental measurement stations, which provide direct records of past temperature 

variability, palaeoclimatic proxy archives in general, and in particular annually resolved 

and absolutely dated tree-ring records, represent a valuable resource for extending and 

improving our understanding of climatic behaviour in the past. Data from tree rings can 

additionally offer valuable information about climatic and environmental conditions in 

locations for which no instrumental records exist. 

 While large-scale hemispheric reconstructions of climatic variability have 

received considerable attention, the importance of moving the focus towards the 

development of finer scale, denser networks of regional reconstructions has been 

highlighted (e.g. Ahmed et al., 2013; Jones et al., 2009; Wilson and Luckman, 2003). 

By increasing the spatial resolution of reconstructions, a more accurate understanding of 

local and regional-scale climatic variability can be achieved if actual regional variations 

are captured.  

 A range of techniques have been developed to investigate large scale spatial 

patterns of recent and pre-instrumental climatic variability. Researchers have in the past 

utilised a range of methods for the development of spatial climate reconstructions, 

including for example regularized expectation maximization (RegEM - Schneider, 

2001; Zhang et al., 2004), Canonical Regression / Canonical Correlation Analysis 
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(CCA - Barnett and Preisendorfer, 1987; Fritts, 1976) and orthogonal spatial regression 

(OSR - Briffa et al., 1986; Cook et al., 1994).  

 The point-by-point regression (PPR – Cook et al., 1999) method is used here to 

reconstruct summer temperature grids covering Scotland. PPR utilises principal 

component regression (PCR) to reduce a network of site chronologies to the dominant 

modes of variance and these PC scores are used for regression based reconstruction of 

the target predictand. PPR is a nuance over OSR methods as it only utilises sites for a 

particular location within a specified distance. Therefore, one important characteristic of 

PPR is that it utilises 'local' chronologies proximal to the reconstructed grids and, unlike 

some approaches, does not rely on large scale teleconnections (Dannenberg and Wise, 

2013). The PPR method was initially developed and applied by Cook et al. (1999) to 

reconstruct nearly 300 years of drought over the conterminous United States as 

expressed by gridded Palmer Drought Severity Index (PDSI) data. This work was 

expanded to investigate up to 1200 years of drought history in the western United States 

(Cook et al., 2004). More recently, the approach was also applied outside North 

America to reconstruct spatial patterns of monsoon variability and drought in Asia 

(Cook et al., 2010) and Europe (Cook et al., 2015). Using the same method, a 

hydroclimatic reconstruction was also performed by Seftigen et al. (2014) for 

Fennoscandia and Fang et al. (2011) applied the approach to reconstruct precipitation 

patterns in China. A spatial reconstruction of drought was also developed by Touchan et 

al. (2011) for northwest Africa and Cook et al. (2016) performed a spatiotemporal 

analysis of drought in the Mediterranean based on the Cook et al. (2015) reconstruction.  

 Despite its origins and predominant application in the context of hydroclimate 

(and drought) reconstruction, the utilisation of PPR to reconstruct temperature, though 

more limited, has also been successfully undertaken. For example, the method has been 
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used to reconstruct temperature for China (Shi et al., 2012) and the broader East Asian 

region (Cook et al., 2013). A modified version of PPR has also been used to develop a 

500 year multi-proxy temperature reconstruction for China (Yang et al., 2013). 

Utilisation of the PPR approach for the reconstruction of European climate has so far 

been limited and although Luterbacher et al. (2004) used OSR to perform a climate field 

reconstruction of European temperature, the work described in this study is the first 

instance of a PPR based spatial reconstruction of temperature in Europe.  

Herein, a series of experiments is presented in which summer temperature grids 

are reconstructed as a spatial field spanning 54.5°N - 59°N and 1.5°W - 7.5°W 

representing Scotland (Figure 1). Rather than primarily focusing on the methodological 

subtleties of the PPR process itself, which have already been extensively investigated 

(e.g. Cook et al., 1999; 2013), this study focuses on differences in reconstruction 

characteristics as a result of selecting particular sets of tree-ring parameters and 

applying various methods for the development of tree-ring chronologies (including 

standardisation and non-climatic disturbance trend removal). Additionally, this work 

applies the method on a smaller scale than has typically been performed in the past by 

reconstructing a field with a 0.5°-by-0.5° grid resolution, which is appropriate 

considering the relatively small size of the investigated region. The purpose of this 

research is therefore not merely to attempt the development of a robust spatial 

temperature reconstruction, but also to develop an understanding of the strengths and 

weaknesses of the current Scottish tree-ring network used to develop the 

reconstructions. The subsequent implications of differences in the strength and 

robustness of individual grid reconstructions allows PPR to be applied here as a 

diagnostic tool, indicating where chronology improvement is required in the future. 
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Methods 

2.1 Study area 

Scotland experienced a protracted period of deforestation, reaching an all-time 

high in the first half of the 19th century followed by reforestation efforts in the 20th 

century and particularly after the Second World War (Mather, 2004). Total forest cover 

in Scotland likely reached a minimum of ~5% between the 17th and early 20th century 

(Mather, 2004; Smout et al., 2005), and increased to 17.8% by 2010 (Forestry 

Commission, 2011), though only ~1% of semi-natural forest cover remains in Scotland 

at present (Crone and Mills, 2002). The current forests mostly consist of residual semi-

natural pine stands and represent the NW limit of the range of Scots pine in Eurasia 

(Kinloch et al., 1986).  

Scotland is characterised by a temperate oceanic climate (Gallardo et al., 2013). 

The strong influence of the Gulf Stream moderates and contributes to the mild climate 

conditions (Dawson, 2009). Mean annual temperatures generally remain around 9-10°C 

in lowland areas of the mainland but decrease in the north and with increasing elevation, 

with lowest mean temperatures of ~1°C in high elevations in the Cairngorm Mountains 

of central Scotland (Met Office, 2015). Summer temperatures in Scotland are among the 

coolest in Europe. Precipitation is primarily controlled by distance from the Atlantic 

Ocean and topography / orography with most precipitation concentrated in parts of the 

west and northwest of the country, decreasing towards the east and southeast. Mean 

annual precipitation reaches 4000 mm in parts of the west Highlands with lows of <700 

mm in parts of the east coast (Met Office, 2015; Steven and Carlisle, 1959). There is a 

steep precipitation gradient from west to east with amounts in parts of west and 

northwest among the highest in Europe, while precipitation in the east of Scotland are 
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more typical for the European continent. Wind is an important limiting factor which 

restricts the northern limit of pine in Scotland and also acts to lower the tree-line 

elevation (Körner, 1998; Moir, 2008) due to high wind stress in the west and northwest 

of the country (Quine and White, 1993). 

NW Europe is particularly sensitive to the influences of synoptic scale 

atmospheric and oceanic phenomena and climatic modes of variability such as the North 

Atlantic Oscillation (NAO - Hurrell, 1995; Hurrell and van Loon, 1997), the Arctic 

Oscillation (Thompson and Wallace, 1998) and the Atlantic Multidecadal Oscillation 

(Schlesinger and Ramankutty, 1994). Climate in Scotland is strongly affected by 

weather patterns associated with the influence of North Atlantic climate. The NAO is a 

dominant pattern of atmospheric circulation in the North Atlantic and an important 

determinant of weather and climate in Scotland and other parts of Europe with the 

strongest influence in winter months. (Hurrell, et al., 2003; Hurrell and Deser, 2010). In 

Scotland, a positive phase of the NAO typically leads to increased precipitation, milder 

temperatures and increased wind-storm occurrence and severity, whereas a negative 

phase leads to more common incidence of seasonal temperature extremes (e.g. colder 

winter conditions) and reduced precipitation (Hurrell and Deser, 2010; Trigo et al., 

2002). Tree-ring chronologies from Scotland are ideally suited (due to their location and 

seasonal response) to reconstruct the summer counterpart of the NAO (SNAO), whose 

southern node is centred on Scotland (Folland et al., 2009; Linderholm et al., 2009). 

 

2.2 Tree-ring network and chronologies 

 Based on a network of 44 ‘living’ Scots pine sites around Scotland (Figure 1), 

40 ring width (RW), 16 blue intensity (BI) and 8 maximum latewood density (MXD) 

chronologies were used to develop a spatial temperature reconstruction for Scotland 
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(see Table 1). Chronologies from 4 sites in the northwest Cairngorms were excluded 

from analysis and retained for the development of an independent temperature 

reconstruction extended with subfossil samples from the same area as part of a separate 

study (Rydval et al., in review). Additionally, 14 chronologies consisting of composite 

(combined high frequency (highpass) BI and low frequency (lowpass) RW data) from 

14 of the sites were also used for the reconstruction of the temperature field. RW and 

MXD chronologies were supplemented with data from 7 sites previously used in the 

Hughes et al. (1984) Edinburgh summer temperature reconstruction, and which are 

available from the International Tree-Ring Data Bank (ITRDB, 2014). 

 

2.3 RW chronology development 

 Measurement of samples was performed according to established 

dendrochronological practices (Stokes and Smiley, 1968) with either CooRecorder 

using scanned images (Larsson, 2014) or a Velmex traversing measuring stage (directly 

from sample) to a precision of 0.001 mm. CDendro (Larsson, 2014) and COFECHA 

(Holmes, 1983) were used to verify series crossdating. Ring-width chronologies were 

developed by detrending measurement series using negative exponential or linear 

functions (NX) in ARSTAN (Cook and Holmes, 1986) or NX with signal free 

standardisation (SF) (Melvin and Briffa, 2008). 

The impact of disturbance related to human activity on forest ecosystems is not 

uncommon and has been reported for example in Scandinavia even in areas considered 

undisturbed (Josefsson et al., 2010) and has been shown to affect the climate signal in 

ring-width (RW) chronologies from such locations (Gunnarson et al., 2012). Rydval et 

al. (2016) identified the presence (and succeeded in reducing the influence) of 

disturbance-related growth release trends in several Scots pine ring-width (RW) 
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chronologies which were attributed to a history of extensive woodland timber extraction 

over several centuries in Scotland. Since the presence of disturbance trends in RW 

chronologies can obscure decadal and longer term trends related to climatic variability, 

use of these ‘disturbance-corrected’ chronologies in temperature reconstructions is 

explored here. 

 The potential presence of disturbance trends (hypothesised to be primarily 

related to timber extraction and clearance) in some chronologies of the Scottish tree-ring 

network was assessed in Rydval et al. (2016) using the curve intervention detection 

(CID) method. This time-series-based intervention detection technique based on 

methods presented in Druckenbrod (2005) and Druckenbrod et al. (2013) objectively 

detects disturbance trends in individual RW series. As part of the disturbance detection 

procedure a constant of 1 mm is added to all series measurements to enable effective 

detection and correction without the loss of information. In the procedure individual 

series are power transformed (Cook and Peters, 1997) and detrended using negative 

exponential or linear function. For each series disturbance trends are identified as 

outliers from a distribution of running means (with window lengths from 9 to 30 years) 

based on a residual time series of AR model estimates and the detrended RW series 

(Druckenbrod et al., 2013). From this distribution, outliers are classified when a running 

mean value exceeds a scale of 3.29 from the bi-weight mean (Mosteller and Tukey, 

1977) of the distribution. The disturbance trend is then removed by fitting a curve 

(Warren, 1980) to the RW series at the point where the disturbance-related growth 

release is identified. The procedure is performed iteratively for each series until no 

further outliers are identified.  

This time-series-based intervention detection method was shown to successfully 

reduce the influence of disturbance in the majority of Scottish chronologies affected by 
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disturbance. A detailed description of this method and its application to the Scottish RW 

chronologies used in this study is presented in Rydval et al. (2016). In that study, an 

assessment of whether the before correction (pre-CID) or after correction (post-CID) 

versions of SF chronologies should be utilised to reconstruct summer temperature was 

performed using correlation analysis to compare the RW chronologies with instrumental 

temperature data and a Scotland-wide MXD chronology composite. The selection of 

chronology versions to be used here for temperature reconstruction was based on that 

assessment and the results of this selection process are summarised in Table 1. A 

summary of pre- and post-CID chronologies, representing three regional groupings, and 

a comparison with instrumental temperature data is presented as supplementary Figure 

S1. 

  

2.4 BI and MXD chronology development 

 The process for the development of BI chronologies and the set of procedures 

associated with it have evolved over time (i.e. sample treatment and measurement 

techniques have changed and developed). Wilson et al. (2012) noted that limitations in 

the low frequency component existed in some of the earlier generated Scottish BI 

chronologies because of inadequate resin extraction and this observation was supported 

by a more detailed examination of BI in Rydval et al. (2014). Consequently, the 

expression of low frequency trends in these data may be limited and express non-

climatic trends related to colour differences between the heartwood and sapwood. 

 Although older MXD series data (Hughes et al., 1984) were obtained from the 

ITRDB tree-ring archive, the remaining (more recently developed) MXD and BI 

chronologies were developed following the procedures described in Rydval et al. 

(2014). An ITRAX multiscanner from Cox Analytical Systems was used to generate the 
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newer MXD data following standard sample preparation techniques (Schweingruber et 

al., 1978). A twin-bladed circular saw was used to cut 1.2 mm thick laths followed by 

24 hour resin extraction treatment with ethanol in a Soxhlet apparatus. After air drying 

to 12% water content, the laths were X-rayed in the ITRAX system to produce 1270 dpi 

inverted grey scale images subsequently calibrated using a 1.274 g/cm3 cellulose acetate 

calibration wedge from Walesch Electronic (Schweingruber, 1988). The density data 

were measured from the images using WinDendro (Guay et al., 1992). For two sites 

(Ballochbuie and Glen Affric) for which both archived and newly developed MXD data 

exist, the older and newer subsets were combined as no significant differences were 

identified between the subsets. 

For BI measurement, samples were immersed in acetone for a 72 hour period to 

extract resins and sanded after drying up to 1200 grit grade. The samples were scanned 

with a Canon CanoScan 9000F flatbed scanner along with SilverFast Ai (v.8.0.1.24) 

software. A Kodak IT8.7/2 calibration target was used with the SilverFast IT8 

calibration procedure to calibrate the scanner and samples scanned with 2400 dpi 

resolution. A box with a non-reflective inner surface was used while scanning to avoid 

ambient light biases. BI was measured with CooRecorder software (Larsson, 2014) and 

BI series were then inverted. For the purposes of this study, detrending of MXD and BI 

series (after inversion) was performed by fitting negatively sloping (or zero slope) linear 

functions. Index calculation was carried out by subtraction in ARSTAN and 

stabilisation of chronology variance was performed (Osborn et al., 1997). 

 All chronologies used for further analysis were truncated to periods with EPS ≥ 

~0.7 and replication ≥ 8 series for BI and RW (Table 1). The same EPS limit and 

replication of ≥ 5 series was used as the cut-off for MXD data. Although an EPS 

threshold of 0.85 is commonly used, a lower limit of 0.7 was adopted to maximise the 
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useable chronology span and due to the fact that the common regional signal is 

effectively increased as a result of the utilisation of PCR rather than utilising 

chronologies individually. 

 

2.5 Composite highpass BI / lowpass RW chronology development 

 Previous research by Guiot (1985) demonstrated potential advantages of 

applying digital filtering techniques to perform a climate reconstruction by 

decomposing a predictor and predictand into separate frequency bands using mutually 

exclusive filters. This technique was further explored by Osborn and Briffa (2000) who 

investigated timescale-dependence in the context of temperature reconstruction 

development by performing regression separately on several frequency bands of 

decomposed predictor / predictand timeseries, noting that this can lead to improved 

estimation of past temperature. The approach of Guiot (1985) was also successfully 

applied by Guiot (2012) to perform a multi-proxy reconstruction of April to September 

European temperature. Herein, however, a variation on the approach applied in Briffa et 

al. (2013) is explored by combining separate frequency bands from chronologies of two 

parameters. This procedure was performed in an attempt to exploit some of the 

advantages of BI (i.e. stronger high frequency response to temperature than RW - 

Rydval et al., 2014) and RW chronologies (i.e. stronger expression of low frequency 

trends and not biased by colour changes in the wood) after undertaking non-climatic 

disturbance trend removal (Rydval et al., 2016). 

 For each site where sufficiently long and well replicated BI and RW 

chronologies were available (based on criteria discussed above), new composite time-

series were developed by combining high to intermediate frequency bands of BI 

chronologies with low to intermediate frequency bands of RW chronologies using the 
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program AnClim (Štěpánek, 2008). Although the optimal seasonal response of the two 

tree-ring parameters differed for some site chronologies, in such cases a compromise 

was reached to find a common climatic season in order to assess coherency at a range of 

frequencies between the tree-ring and instrumental temperature data of the respective 

0.5° grid. For this purpose, coherence analysis was applied to predictor (BI / RW) and 

predictand (mean seasonal temperature) data to determine a common frequency cut-off. 

This cut-off was identified for each pair of site chronologies as the intersection of 

decreasing coherence between BI and instrumental data from higher to lower 

frequencies and decreasing coherence between RW and instrumental data from lower to 

higher frequencies (see figure S2 in Supplementary Information for an example). The 

RW (BI) chronologies were then lowpass (highpass) filtered using a Gaussian filter with 

the identified frequency cutoff. The 0.5° grid seasonal instrumental temperature series 

were also filtered to produce lowpass and highpass filtered versions using the same 

cutoff for the common season identified for each respective pair of RW / BI 

chronologies. The lowpass (highpass) filtered RW (BI) series were then scaled (same 

mean and standard deviation; Esper et al., 2005) to their corresponding lowpass 

(highpass) filtered seasonal temperature series and the lowpass RW and highpass BI 

components subsequently added together to form a single composite BI / RW 

chronology. 

 

2.6 Reconstruction procedure 

 The PPR method was used here to reconstruct spatial patterns of past 

temperature variability within a grid consisting of 76 individual 0.5° CRU TS3.10 mean 

temperature boxes (Figure 1; Harris et al., 2014). Additional reconstruction assessments 

were also performed using Scottish mainland temperature (SMT) data published by 
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Jones and Lister (2004), which are composed of 5 instrumental records from mainland 

stations (Auchincruive/Paisley, Braemar, Eskdalemuir/Dumfries, Leuchars/Edinburgh 

and Wick - see inset map in Figure 1 for approximate record locations. Note that the 

Auchincruive, Eskdalemuir and Leuchars series were extended with the Paisley, 

Dumfries and Edinburgh series respectively - see Jones and Lister (2004) for details). 

Although some variability regarding the optimal season for the range of site and 

parameter chronologies was identified, overall, July-August (JA) was found to be the 

predominant consistent optimal season for BI, MXD and composite (highpass BI / 

lowpass RW) chronologies. A good response to JA temperatures was also evident in the 

RW data. The JA season was therefore selected as the compromise reconstruction 

target. This selection was also partly motivated as Hughes et al. (1984) reconstructed 

this season.  

 For the PPR procedure, an initial search radius of 35 km was used to identify 

chronologies within or in close proximity to each reconstructed grid. If within this 

search radius a suitable number of chronologies could not be found, the radius was 

expanded by an additional 50 km. By restricting the search radius in this way and 

including only proximal chronologies, a more spatially explicit spatial reconstruction 

can be achieved. 

Prior to principal component analysis, chronologies were screened using 

correlation with the instrumental data (1-tailed p < 0.10) to exclude weak chronologies. 

Only tree-ring data for the 'current year' (t = 0) were used as predictor variables. Lagged 

predictors (i.e. from previous or subsequent years relative to the reconstructed year) 

were not considered in the analysis as no significant influence of previous year's climate 

was found. This observation is in line with Grace and Norton (1990) who also found no 

significant positive relationship with climate of the prior summer season relative to the 
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year of ring formation. In order to maximise the temporal extent of each grid-box 

reconstruction, a nested approach was performed. This procedure iteratively re-

calculates the PCR as each shorter series is removed, producing an ensemble of multiple 

reconstructions for each grid-box, each based on decreasing numbers of predictor 

chronologies back in time (Cook et al., 2002). The different sections of reconstructions 

were scaled and spliced to the most recent (maximum predictor) reconstruction in order 

to  correct for systematic changes in the variance structure which can occur due to 

changing (likely weakening) calibration strength related to the reducing number of 

predictors back in time. 

 

2.7 Reconstruction calibration and verification 

 For initial tree-ring parameter and detrending tests, the 1901-2006 period was 

used for an assessment of reconstruction skill with a split (1901-1953) calibration and 

(1954-2006) verification period followed by a repeat of the exercise with a 'reversed' 

(1954-2006) calibration and (1901-1953) verification period. Calibration and 

verification statistics were then computed using an average of the 'forward' and 'reverse' 

results. The r2 statistic was calculated for the calibration (CRSQ) and verification 

(VRSQ) periods, and the Coefficient of Efficiency (CE) determined for the verification 

period. The CE statistic is related to the Reduction of Error (RE) statistic which 

measures whether a reconstruction provides a better estimate of climatic variability than 

the mean of the instrumental data in the calibration period. However, CE can be viewed 

as a true representation of regression r2 when applied to independent data and is more 

difficult to pass because the verification period (rather than the calibration period) is 

used as the reference (Briffa et al., 1988; Cook et al., 1994). Although most studies that 

include some assessment of reconstruction skill frequently also report RE, this metric 
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was omitted in this study in favour of utilising the more stringent CE metric. An 

additional 'early' independent verification period (1872-1900) was used to further assess 

reconstruction performance using the full (1901-2006) calibration period. For this early 

(1872-1900) independent period, all gridded July-August mean temperature series were 

extended by scaling the SMT data to each gridded temperature series according to their 

common period of overlap. 

 To allow the incorporation of 'older' MXD chronologies not updated since the 

late 1970s, while simultaneously also providing an even more stringent verification 

procedure, the 1901-1976 period was used for calibration and verification for the final 

reconstruction. For this set of reconstructions, 'forward' (1901-1938 cal. / 1939-1976 

ver.) and 'reverse' (1939-1976 cal. / 1901-1938 ver.) split-period calibration and 

verification was performed followed by a final calibration over the full 1901-1976 

period. In this case, two independent verification periods (late: 1977-2006 and early: 

1872-1900) were used for an additional evaluation of reconstruction skill outside the 

full 1901-1976 calibration period. 

 

Results 

 A summary of PPR reconstruction tests, which demonstrate the effect of varying 

the minimum number of site chronologies required to perform a reconstruction for each 

grid-box using calibration and verification statistics, is presented in Figure 2. Apart 

from the early independent period verification r2 (VRSQ) results, all other results show 

that the greatest overall improvement and decrease in the inter-quartile range occurs 

when the minimum number of chronologies is increased from three to four. Thereafter, 

any improvements due to further increases in the number of chronologies are more 

subtle. Oddly, the early (1872-1900) period verification r2 results show a decrease in the 
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median when increasing the number of chronologies from three to four. There is also a 

decrease in the upper quartile as the number of chronologies increases to six and 

decreases further still with seven chronologies. Based on this ensemble of calibration 

and verification test results, a minimum of four chronologies was selected as a suitable 

limit to perform PPR. For all further PPR analysis, the search radius was therefore 

iteratively expanded until a minimum of 4 chronologies were identified and entered into 

the PCR procedure. 

 The spatial representation of a series of tests involving calibration and 

verification statistics (Figure 3), using various tree-ring parameters and standardisation 

techniques, indicates a sensitivity of results to the characteristics, treatment and type of 

the input data used. Specifically, the weakest results are obtained when only using RW 

chronologies with NX detrending and without CID correction, with the vast majority of 

grids portraying weak calibrated coherence and failing verification CE (VCE).  

Limited improvement is observed both in the strength of calibration and 

verification when signal free and selected CID-corrected versions of RW chronologies 

are used (Table 1; Figure 3b). The addition of BI data (Figure 3c) considerably 

improves the calibration and verification r2 results, although in general the verification 

and early independent period verification CE do not exhibit any improvement. A further 

marked improvement in all statistics is apparent with the application of only the 

composite chronologies (Figure 3d). Importantly, with a few exceptions, the vast 

majority of grids pass verification (CE > 0), although with weaker results in the west 

and northwest. Compared to the analysis in Figure 3d, which only includes the 

composite chronologies, the inclusion of new MXD data in addition to the composite 

chronologies (Figure 3e) in general yields similar results. However, in the latter version 

all reconstructions pass the verification tests despite slightly weaker overall verification. 
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 To allow the inclusion of additional MXD data used by Hughes et al. (1984), the 

analysis from Figure 3e was repeated with a shorter (1901-1976) calibration and 

verification period (Figure 4). The calibration and verification r2 and VCE are broadly 

similar to their Figure 3e counterparts, although notably somewhat weaker for southern 

and northwest Scotland. In contrast to the results of Figure 3e, early period VCE results 

appear stronger in the west and northwest and weaker in the east and south of Scotland. 

A pattern of weaker late independent period VCE is apparent in the northwest and also 

in southern Scotland.  

 The distribution of many Scottish mainland instrumental temperature records is 

spatially biased to locations in (north-) eastern and southern Scotland, as is also 

reflected in the composition of the SMT temperature dataset (see inset map in Figure 1). 

For this reason, gridded temperature data in NW Scotland may include a possible bias to 

the Stornoway station in the Outer Hebrides with more of a maritime influence. To 

explore spatial variations in reconstruction skill as a function of site chronologies while 

disregarding differences in the gridded temperature dataset, an additional reconstruction 

of the field was performed. By undertaking the analysis presented in Figure 4 with a 

single common instrumental temperature series for all grid boxes (i.e. using the Jones 

and Lister (2004) SMT July-August temperature data – see Figure S3 in Supplementary 

Information) the influence of differences between local gridded temperature series on 

reconstruction results is removed and so differences arising only from variations in the 

tree-ring chronologies can be assessed more clearly. Any limitations of using a single 

temperature series for this analysis should be minimal considering the high degree of 

agreement of the SMT series with the gridded temperatures (r > 0.96 with the majority 

of Scottish mainland grid boxes and r > 0.9 with all investigated grid boxes – see Figure 

S4 in Supplementary Information). In this way, a sense of any limitations of the 
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instrumental temperature datasets, as well as the relative strengths and weaknesses of 

the tree-ring chronologies, can be gained. Despite some minor differences, these results 

broadly agree with the patterns identified in Figure 4.  

 Using the same input chronologies as in Figure 4, the early (1872-1900) and late 

(1977-2006) verification CE displayed in 50 year steps from 1850 back to 1650 express 

the decreasing spatial coverage and (generally) decreasing strength of the nested 

reconstructions as the number of chronologies in each nest declines in earlier time 

periods (Figure 5). While the VCE results for 1850 are largely comparable to those of 

the most recent nest in Figure 4, by 1800 a group of grids in the south do not pass late 

independent period VCE. For the reconstruction nests extending back to 1750, 

weakening of the verification results is apparent, with early independent verification 

period CE dropping to ≤ 0 in a set of grids in the east and northeast of Scotland. Most of 

the grid reconstructions in northern and northeast Scotland end between 1700 and 1750, 

although VCE results for most of the remaining grids do not show any considerable 

weakening and in fact some show improvement compared to the 1750 nests in certain 

areas (e.g. eastern Scotland). 

 Individual grid reconstructions from three example regions are presented in 

Figure 6. Absolute reconstructed temperatures (Figure 6a and 6b) show highest levels in 

the south, lower values in the northwest and the lowest temperatures in the central-east 

part of Scotland (see Figure S5 in Supplementary Information for separate plots of 

instrumental and reconstructed series for each of the three grid boxes). When expressed 

as temperature anomalies (Figure 6d), different trends and departures can be discerned 

in the regional patterns of temperature variability over time. In relation to the other two 

reconstructions, the amplitude of the central-east reconstruction is greater. While the 

general trends are similar between the three variants, some notable differences are 
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apparent. Temperatures are reconstructed as relatively higher from ~1730 until 1900 for 

the south in relation to reconstructions from the two regions farther north, which also 

exhibit greater overall similarity. Additionally, the late 19th century stands out as a 

relatively cooler period in the central-eastern Highlands. Although 1799 is reconstructed 

as the coldest year for the July-August season in the nearly 400 year reconstruction for 

central-eastern Scotland, this negative departure is less prominent in the northwest 

version and virtually absent in the southern reconstruction. Furthermore, some 

differences in trend are apparent, particularly in the southern grid reconstruction, around 

the mid-20th century and also in the early and mid-18th century. These differences may 

represent an expression of the weaker calibration / verification results of the southern 

grids (Figure 4 and 5). 

 Differences in reconstructed late 20th century temperatures are characterised by 

the greatest temperature increase for the central-east, a less prominent increase for the 

northwest and an even flatter reconstructed recent period for southern Scotland. 

Accordingly, correlations between reconstructed and gridded instrumental temperatures 

for the 1901-2006 period indicate that agreement with observed temperature is strongest 

for the central-east reconstruction (r2 = 63%; p < 0.001) followed by the northwest (r2 = 

48%; p < 0.001) and weaker still for the south of Scotland (r2 = 45%; p < 0.001). 

Examination of the regression residuals also indicates significant linear trends for the 

northwest and south Scotland reconstructions (correlation between residuals and time - 

r(south) = 0.35, p < 0.001; r(northwest) = 0.39, p < 0.001; r(central-east) = 0.07, p = 0.508). 

Sliding correlations between each reconstruction pair (Figure 6c) indicate strong 

agreement between the central-east and northwest reconstructions for most of their 

common period. Agreement between the south and central-east reconstructions is 

generally weaker than between the south and northwest versions, although weaker 
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agreement of the southern reconstruction in relation to the other two versions is evident 

in the second half of the 20th century. The correlation between the south and central-east 

reconstructions decreases markedly for much of the period prior to ~1760. 

 

Discussion 

 Ensemble test results have been shown to enable an informed decision about 

selecting a suitable minimum number of input chronologies while also attempting to 

retain information about patterns of spatial variability which may otherwise be lost with 

the integration of information from chronologies over a larger area. The greatest gains 

are achieved when the minimum number of chronologies used increases from three to 

four. Increasing the number of chronologies beyond four may still result in some, 

though limited, improvement (Figure 2). One exception are the weaker VRSQ (1872-

1900) results as the number of predictor chronologies increases. This may simply reflect 

the inclusion of chronologies, which happen to be weaker over this particular period, in 

a larger number of grid-box reconstructions. For the reconstruction of this particular 

temperature grid, the selection of four chronologies as the minimum number of 

predictors is, therefore, a reasonable compromise between preserving regional detail in 

spatial patterns of variability and developing statistically robust temperature 

reconstructions. 

 Clearly, it is not possible to develop reliable reconstructions for the majority of 

Scotland using only RW data and standard NX detrending (Figure 3a). Although the 

application of more refined methods such as signal free detrending in combination with 

CID-based disturbance correction improves results, indicating that disturbance is a 

contributing factor to the poor results, they still remain relatively weak due to the 

limited strength of RW as a predictor of high frequency temperature (Figure 3b). The 
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addition of BI chronologies helps to improve the strength of CRSQ and VRSQ (Figure 

3c) due to the stronger high to intermediate frequency response of BI to temperature. 

However, BI chronologies alone (as traditionally developed) do not augment the results 

of the verification tests (i.e. VCE) due to the weaker expression of lower frequency 

trends related to heartwood / sapwood colour differences (Rydval et al., 2014). The 

combination of BI and RW data to form composite chronologies substantially improves 

both calibration and verification results (Figure 3d) beyond that achieved using each 

parameter separately by reducing some of the limitations of each parameter. In the 

absence of MXD data, this BI / RW composite still provides improved temperature 

reconstructions for most parts of Scotland, although the addition of MXD chronologies 

(Figure 3e) does improve verification of some grids in the northwest. Thus, the latter 

option is currently the most appropriate for reconstructing temperature with tree-ring 

data in Scotland. 

 Absolute differences in reconstructed temperature from the three selected 

regions (Figure 6) reflect latitudinal and elevational differences represented in the 

gridded data. The generally good agreement between the central-east and northwest 

reconstructions before about 1990 indicates that considerable confidence can be placed 

in the reconstructions back to the mid-18th century and that any limitation of the 

northwest reconstruction is restricted to the most recent ~20 year period. However, 

greater disagreement before ~1750 suggests that the reliability of these earlier 

reconstructed segments may be questionable and is likely a consequence of lower 

sample replication and the small number of chronologies in this ‘early’ period. As also 

indicated by the calibration and verification assessment statistics, the southern 

reconstruction is the least reliable due to periods of disagreement with the two other 

reconstructions, weaker agreement with instrumental data and its failure (similarly to 
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the northwest reconstruction) to capture the late 20th century temperature increase as 

indicated by the linear residual trend. 

 Although some grid-box reconstructions represent an interpolation of 

chronology predictors located outside the grid-boxes, others (such as the example 

southern series in Figure 6) are essentially spatial extrapolations with respect to the 

location of sites used to reconstruct them (Figure 1). Although these extrapolated grid-

box reconstructions express some skill, the absence of chronologies from peripheral 

locations could contribute to reduced calibration and verification strength for those 

areas. 

 Additionally, because the longer SMT record (extending back to 1866) was 

developed with instrumental records from southern and eastern parts of mainland 

Scotland (see inset map in Figure 1), one might argue that the record may not be 

representative of temperatures in the west or northwest of Scotland and therefore may 

not be a suitable dataset for extending the gridded temperature series before 1901. 

However, the strong early independent period (1872-1900) VCE results in Figure 4 for 

the northwest suggest that this record is still of relevance to those areas, which is also 

supported by strong agreement between the SMT and gridded data in these locations 

(see supplementary Figure S4). Furthermore, the relatively weak late period VCE 

results (representing analysis involving the gridded temperature data) suggest that the 

post-1976 period is the source of the weaker results for the northwest and therefore 

likely reflects limitations in the tree-ring data. One may also argue that rather than being 

a limitation of the site chronologies, a possible alternative explanation for weaker 

results in the northwest may relate to a limitation of the gridded instrumental dataset 

itself which may not be representative of the local conditions in this area due to limited 

spatial and temporal coverage of instrumental records in some (particularly the 
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marginal) areas of Scotland. However, because similar results to those achieved when 

using the CRU TS3.10 gridded temperature data (Figure 4) were obtained when using 

only SMT data for each grid (see Figure S3 in Supplementary Information), this again 

suggests that areas with weaker calibration and verification results likely reflect 

limitations of the tree-ring chronologies rather than any limitations of the actual 

instrumental data. 

 Calibration and verification is strongest around central Scotland and generally 

weaker in the northwest and particularly the south, which is expressed in Figure 6 by 

flatter late 20th century reconstructed temperatures for both areas in addition to a 

relatively warmer 19th century in the south. The weaker reconstructions (particularly in 

the south) could be attributed to some combination of three primary factors including; 

1) differences in site elevation (and perhaps also latitude) (Table 1) that may affect the 

importance of temperature in limiting growth, 2) limitations of the CID procedure 

(which would arguably affect the West Highland chronologies more than sites in the 

Cairngorms as they generally experienced a greater degree of human related disturbance 

particularly around the Napoleonic Wars at the beginning of the 19th century – Rydval 

et al., 2016), and 3) differences in the number of chronologies entering PCR analysis.  

 It is interesting to note that reconstruction strength coincides with elevational 

(and latitudinal) variations reflected by differences in mean temperature across Scotland 

(Figure 6a), with higher mean temperatures in the northwest and higher still in the 

south. While it is true that some grid-box series are reconstructed using chronologies 

from sites that are not in their immediate vicinity, sites in the (north-) west and south are 

generally located at lower elevations than sites in the central-east area (Figure 1 and 

Table 1). Therefore, because reconstructions in the northwest and south are primarily 

developed with chronologies from lower elevation sites, the weaker reconstruction 
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results may partly be related to a potentially weaker temperature signal in lower 

elevation and / or more southern site chronologies (i.e. farther away from the treeline). 

 Likewise, differences in the variance of the reconstructions in Figure 6 could 

also be explained by differences in site elevation / latitude and perhaps related 

differences in chronology sensitivity to temperature since the southern reconstruction is 

the least variable (σ2
(1901-2006) = 0.26) followed by the northwest reconstruction (σ2

(1901-

2006) = 0.32) while in contrast the central-east reconstruction contains the most variance 

(σ2
(1901-2006) = 0.71). This would presumably be due to variations in the ability (of stands 

at different sites) to capture temperature information. Although the variance of the 

gridded instrumental data (σ2
(northwest) = 0.69; σ2

(central-east) = 1.02; σ2
(south) = 0.93 for 1901-

2006) also differs and a lower amount of explained variance from the regression (Figure 

6d) would also lead to a reduction in variance, the differences alone are not sufficient to 

explain these variations, particularly between the central-east and south reconstructions. 

However, these factors may largely account for the lower variance of the northwest 

reconstruction. Although previous research has suggested that differences in site 

elevation may not have a strong influence on growth response to temperature in 

Scotland (Grace and Norton, 1990), these conclusions were reached from only a small 

number of sites in the NW Cairngorms where calibration is strong. Although a detailed 

examination of such effects is beyond the scope of this study, the importance of such 

factors should, however, be investigated and re-evaluated in the future using a more 

extensive network of sites.  

 A comparison of the southern reconstruction with the other two in Figure 6d 

suggests that the influence of disturbance was either not entirely removed or that other 

factors affected growth. The limited performance of southern reconstructions can, in 

part, be accounted for by the versions of RW chronologies used to develop these 
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reconstructions. Although a general improvement was observed by using CID-corrected 

chronologies (Rydval et al., 2016), the method may not have accurately identified all 

disturbance events. More importantly, some disturbance trends may have remained 

because pre-correction chronologies were used for reconstruction (see Table 1) when 

post-correction versions showed no improvement. The Glen Falloch chronology, which 

is the longest of the southern sites, is one example where the pre-correction version was 

used. There is therefore a need to focus on updating and extending chronologies at other 

southern sites such as Glen Orchy and Coille Coire Chuilc, where additional suitable 

older stands exist (or which could be extended with historical material), in order to 

develop 'cleaner' reconstructions for this region. 

 While not specifically assessed as part of the work presented herein, the 

importance of additional factors such as high wind stress and high rates of precipitation 

leading to excessive soil moisture in parts of the Highlands should not be 

underestimated and may require additional examination in the future. The most practical 

approach for improving reconstructions in areas with currently weaker results or limited 

reconstruction length would involve the development of additional chronologies and 

increasing early period replication in chronologies containing relatively few older tree 

series. New sites from more marginal parts of the network could also be sampled (where 

living stands exist) or existing chronologies extended using subfossil or historical 

material where possible. 

 As suitable subfossil sites in the Highlands are rare, the fact that the majority of 

subfossil samples have been collected from lochs (lakes) located in the central-east 

(north Cairngorms) region and used to develop a continuous ~800 year chronology is 

important in relation to the findings of this study. The strong calibration results indicate 

that it is among the most suitable areas in Scotland to develop an extended 
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reconstruction. Substantial sub-fossil material has been sampled from Glen Affric which 

should enable a significant extension of this record. However, severe disturbance effects 

at this location, which may not have been completely removed using CID (Rydval et al., 

2016), are still an issue which would need to be addressed in the future. Temporal 

extension of chronologies from both these regions may also be possible using samples 

from historical structures. A further effective option to improve the quality of 

reconstructions would involve re-processing existing samples to develop either new 

MXD chronologies or developing additional BI chronologies in order to increase the 

total number of sites for which composite BI / RW chronologies could be produced. 

 On the whole, the analysis presented herein highlights the importance of 

developing an awareness and appreciation of tree growth response within the interplay 

of often confounding climatic, ecological and anthropogenic factors in order to 

appropriately assess the suitability of tree-ring data for climate reconstruction. Such 

intricacies have often been overlooked by dendroclimatologists in the past.  

 

Conclusion 

 This study utilised an extensive Scottish pine tree-ring network to derive spatial 

field information by adopting a reconstruction approach specifically intended to 

preserve sub-regional variations and assess the temperature reconstruction potential of 

this network. The reconstruction of temperature grids using only conventionally 

detrended RW data produced weakly calibrated and poorly verified models. Calibration 

and verification results generally improved after CID disturbance correction and signal 

free detrending (Melvin and Briffa, 2008), and with the addition of BI chronologies. 

Further improvement in reconstruction 'quality' was observed by using composite 

chronologies and by including MXD data. 
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 Weaker calibration results in the northwest likely resulted from limitations in the 

currently available tree-ring data rather than the gridded temperatures. Limited 

improvement of some grid reconstructions can be partly attributed to imperfect 

disturbance detection in CID-corrected chronologies and the use of pre-correction RW 

chronologies in some instances. However, the CID approach generally improved 

temperature reconstruction results. Additional factors probably also contributed to 

weaker results in some areas and so the relationships between tree growth, climatic and 

non-climatic factors should be investigated further. 

 Further improvement of reconstruction length and robustness can be achieved by 

sampling new sites, developing more BI and MXD chronologies from existing samples, 

and by including additional samples from longer lived trees and subfossil samples 

(where material exists). Importantly, the strongest calibration / verification and overall 

reconstruction results were developed from sites in the Cairngorms (central-east sector). 

This is encouraging as the majority of subfossil material comes from this region and has 

been used to develop an extended temperature reconstruction for Scotland (Rydval et 

al., in review). More generally, this work emphasises the importance of appreciating the 

interaction of climatic and non-climatic factors when reconstructing climate. 
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Figure 1: Map of Scotland and location of field containing 76 individual 0.5° reconstruction 

grids along with the location of RW, BI, MXD and composite BI/RW site 

chronologies used for spatial reconstruction. (Approximate locations of instrumental 

records included in the SMT temperature series are marked in the inset map.) 
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Figure 2: Calibration and verification statistics for an ensemble analysis with varying minimum 

required number of site chronologies for grid reconstruction. Each panel comprises 

data from all 76 grid boxes (Q1, Q3 represents the inter-quartile range). 
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(a) 

         
                CRSQ                               VRSQ                              VCE           VCE-early (1872-1900)         

      

(b) 

       
                CRSQ                               VRSQ                              VCE           VCE-early (1872-1900)         

 

(c) 

       
                CRSQ                               VRSQ                              VCE           VCE-early (1872-1900)         
 

 
 

Figure 3: Mean of forward (cal. 1901-1953 / ver. 1954-2006) and reverse (cal. 1901-1953 / ver. 

1954-2006) calibration (CRSQ), verification (VRSQ) r2 and verification CE (VCE), 

and early independent verification period CE (VCE 1872-1900) with predictor data 

including (a) RW (NX, pre-CID); (b) RW (SF, pre/post-CID); (c) RW (SF, pre/post-

CID) & BI – separate chronologies; (d) RW (SF, pre/post-CID) + BI – composite 

chronologies and (e) RW (SF, pre/post-CID) + BI - composite chronologies & 

separate MXD chronologies.   
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Figure 3 (continued): 
 

(d) 

       
                CRSQ                               VRSQ                              VCE           VCE-early (1872-1900)         
 

(e) 

        
                CRSQ                               VRSQ                              VCE          VCE-early (1872-1900)         
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                              CRSQ                                      VRSQ                                      VCE 
 

   
                                      VCE-early (1872-1900)          VCE-late (1977-2006) 

 

 
 

Figure 4: Mean of forward (cal. 1901-1938 / ver. 1939-1976) and reverse (cal. 1939-1976 / ver. 

1901-1938) calibration (CRSQ), verification (VRSQ) r2 and verification CE (VCE), 

and early (1872-1900) and late (1977-2006) independent verification period CE. 

Reconstructions are based on RW (SF, pre/post-CID) + BI - composite chronologies 

& separate MXD chronologies. 
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  (a)  

     
                             VCE-late 1850                 VCE-late 1800                 VCE-late 1750 
 

   
 VCE-late 1700                 VCE-late 1650 

 

 
 

(b)  

     
                           VCE-early 1850              VCE-early 1800               VCE-early 1750 
 

   
 VCE-early 1700               VCE-early 1650 

 

Figure 5: Independent verification CE (VCE) for the (a) late (1977-2006) and (b) early (1872-

1900) period with reconstruction nests in 50 year intervals. Reconstructions are based 

on RW (SF, pre/post-CID) + BI - composite chronologies & separate MXD 

chronologies. (White grids signify no available data for a specific period. Grey grids 

represent VCE ≤ 0.)  
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Figure 6: Reconstructions for selected grid boxes from the central-east, northwest and south of 

Scotland. Reconstructions are displayed as absolute reconstructed July-August 

temperatures (a) over the 1872-2006* period together with the respective instrumental 

temperature for each location, (b) for the full reconstruction length including low-pass 

filtered (20-yr Gaussian filter) versions, (c) with moving 31-year correlation windows 

for each reconstruction pair, (d) as temperature anomalies relative to the 1961-1990 

period including low-pass filtered versions and (e) showing the number of predictor 

chronologies and CE for the 1872-1900 period. (* Instrumental temperatures before 

1901 are represented by Jones and Lister (2004) temperature data scaled to each 

gridded temperature series over the common period of overlap.) 
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Site name Site code 

Site 

elevation 

(m a.s.l.) 

RW version 

used 
RW range BI range 

composite 

RW/BI range 

MXD 

range 

Abernethy - east ABE 340-450 post-CID 1749-2009 - - - 
Abernethy - north ABN 240-340 post-CID 1863-2009 - - - 

Achnashellach East / 

West 1 
ACEW 100-130 

pre-CID / 

post-CID 
1742-2009 - 2 1872-2008 3 - 

Alladale ALD 280-380 post-CID 1731-2012 1768-2011 1737-2012 - 

Bachnagairn BAG 500-560 post-CID 1838-2008 - - - 

Ballochbuie BAL 300-500 pre-CID 1663-2011 1736-2010 1733-2010 1727-2010 
Badan Mosach BAM 370-420 post-CID 1840-2008 - 2 - - 

Coille Choire Chuilc CCC 210-280 post-CID 1825-2011 1825-2011 1830-2010 - 

Coulin COU 250 post-CID 1697-2009 1763-2008 1764-2008 1765-1978 
Creag Fhiaclach CRF 500-550 post-CID 1756-2009 1792-2008 1792-2008 - 

Carn Elrig CRNE 480-540 pre-CID 1821-2008 - - - 

Drimmie DRIM 215 pre-CID 1831-2010 - - 1837-1976 
Glen Affric GAF 300 post-CID 1712-2013 1763-2012 1747-2012 1769-2012 

Glen Derry East GDE 480-530 pre-CID 1742-2008 - - 1784-1978 

Glen Derry North GDN 530-600 pre-CID 1604-2010 1621-2009 1621-2009 - 

Glen Derry West GDW 450-520 pre-CID 1768-2008 - - - 

Glen Feshie GF 480-540 pre-CID 1847-2006 - - - 

Ghleann East GLE 490-540 pre-CID 1749-2008 - - - 
Glen Falloch GLF 160-200 pre-CID 1595-2011 1628-2010 1624-2010 - 

Glen Garry GLG 190 pre-CID 1793-2009 - - - 
Ghleann West GLW 480-550 pre-CID 1760-2008 - - - 

Glen Orchy South GOS 200-210 post-CID 1829-2009 1845-2008 1864-2008 - 

Grudie GRD 70-120 post-CID 1716-2009 - - - 
Glen Tanar GTA 306-379 pre-CID 1803-2012 - - - 

Loch Hourn HOU 90-240 post-CID 1853-2007 - - - 

Inverey INV 500-550 pre-CID 1730-2011 1725-2010 1733-2010 1735-1976 
Loch Maree LM 100 post-CID 1745-2009 1824-2008 - 4 1808-1978 

Glen Loyne LOY 240-370 post-CID 1542-2007 - - - 

Luibeg LUI 460-540 pre-CID 1702-2008 - - - 
Meggernie MEG 325 pre-CID 1848-2011 1848-2010 - 4 - 

Mar Lodge ML 350 pre-CID 1835-2008 - 2 - - 

Loch Morlich MOR 410-450 pre-CID 1775-2009 - - - 
Punch Bowl PNB 450-550 post-CID 1837-2008 - - - 

Quoich QUO 430-500 pre-CID 1704-2011 1765-2010 1764-2010 - 

Rannoch RANN 320 post-CID 1788-2010 - - - 
Rhiddoroch RHD 180-230 pre-CID 1760-2012 1766-2011 - 4 - 

Ryvoan RYO 420-480 pre-CID 1790-2011 1797-2010 1792-2010 1800-2010 

Shieldaig SHG 10-100 pre-CID 1860-2011 - 2 - - 
Upper Glen Feshie UGF 400-520 pre-CID 1761-2010 1758-2009 1761-2009 - 

        
 

Table 1: Summary of site elevation, RW chronology versions (pre- or post-CID correction) 

used for temperature reconstruction and RW, BI, composite RW/BI and MXD 

chronology range used for reconstruction after truncation - EPS ≥ 0.7 and minimum 

number of RW, BI series ≥ 8 and MXD series ≥ 5 (1 For this study both 

Achnashellach sites were composited together to improve replication. 2 BI chronology 

not used due to poor signal strength and / or insufficient chronology length. 3 Signal 

strength sufficiently strong to include BI high frequency in composite RW/BI 

chronology. 4 Composite RW/BI chronology not developed due to poor coherence of 

RW low frequency with climate.). 
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Figure S1: Pre- and post-CID chronologies (negative exponential detrending with signal free) 

for the (a) central-east, (b) northwest, (c) and south Scotland regions and their 

comparison with the Jones and Lister (2004) July-August Scottish mainland 

temperature (SMT) series. 
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Figure S2: Coherency analysis of RW and BI chronologies from the Cairngorms (central 

Scotland) with SMT July-August temperature data. (The vertical dashed line 

highlights coherence intersection of the RW and BI data.) 
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                              CRSQ                                      VRSQ                                      VCE 
 

   
                                       VCE-early (1872-1900)          VCE-late (1977-2006) 
 

 
 

 

Figure S3: Mean of forward (cal. 1901-1938 / ver. 1939-1976) and reverse (cal. 1939-1976 / 

ver. 1901-1938) calibration (CRSQ), verification (VRSQ) r2 and verification CE 

(VCE), and early (1872-1900) and late (1977-2006) independent verification period 

CE. Reconstructions are based on RW (SF, pre/post-CCT) + BI - composite 

chronologies & separate MXD chronologies. In contrast to Figure 3, the SMT mean 

July-August temperature served as the reconstruction target for all grids. 
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Figure S4: Spatial correlation plot of Jones and Lister (2004) SMT July-August mean 

temperature series with 0.5° CRU TS3.10 mean temperature grid boxes for the 

1901-2006 period. 
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Figure S5: Local CRU TS3.10 mean July-August instrumental and reconstructed temperatures 

for grid boxes in (a) central-east, (b) northwest and (c) south Scotland. 
 

 

 


