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Abstract

This paper is concerned with the renormalized stochastic entropy solutions of stochastic
scalar conservation law forced by a multiplicative noise on a bounded domain with a non-
homogeneous boundary condition. We first introduce a notion of renormalized stochastic entropy
solution and then establish the existence and uniqueness of a renormalized stochastic entropy
solutions for a general L'-data. Our results allow us to give a positive answer to an open problem
posed by Bauzet, Vallet and Wittbold in [4].
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1 Introduction

Let D be a bounded open set in RN with boundary D in which we assume the boundary 9D is
Lipschitz in case the space dimension N > 1. Let T > 0 be arbitrarily fixed. Set @ = (0,T) x D
and ¥ = (0,7T) x 9D. Let (0, F,P;{Fi}e0,r1) be a given probability set-up. In this paper, we
are interested in the first order stochastic conservation laws driven by a multiplicative noise of the
following type

du — div(f(u))dt = h(u)dw(t), inQxQ, (1.1)
with initial condition
uw(0,:) = ug(+), in D, (1.2)
and boundary condition
u=a, on, (1.3)

for a random scalar-valued function v : (w,t,z) € Q x [0,T] X D — u(w,t,z) =: u(t,x) € R, where
f=(f1,...., fn) : R — R¥ is a differentiable vector field standing for the flux, i : R — R is measur-
able and w = {w(t) }o<i<7 is a standard one-dimensional Brownian motion on (€2, F,P; {F3 }1e(0,77)-

*corresponding author.



The initial data uy : D € RY — R will be specified later and the boundary data a : ¥ — R is
supposed to be measurable.

Problem (1.1)-(1.3) was studied recently by Kobayasi-Noboriguchi [16] and Lv-Wu [21] via
kinetic solution approach and Kruzhkov’s semi-entropy method, respectively. By introducing a
notion of kinetic formulations in which the kinetic defect measures on the boundary of domain
are turncated, Kobayasi-Noboriguchi [16] obtained the well-posedness of (1.1)-(1.3). Motivated by
the deterministic case [1, 24], Lv-Wu [21] (see also [22]) introduced a notion of stochastic entropy
solutions of (1.1)-(1.3) and obtained the existence and uniqueness of stochastic entropy solutions
by utilising vanishing viscosity method and Kruzhkov’s technique of doubling variables.

When h = 0, the deterministic problem (1.1)-(1.3) is well studied by many authors in the lit-
erature, see for example [1, 24| and references therein. The authors of [24] studied the problem
(1.1)-(1.3) with h = 0 in the L!-setting. In order to deal with unbounded solutions, they have de-
fined a notion of renormalized entropy solution which generalizes the definition of entropy solutions
introduced by Otto in [23] in the L*° frame work. They have proved existence and uniqueness of
such generalized solution in the case when f is locally Lipschitz and the boundary data a verifies
the following condition: faz(a) € LY(X), where fq, is the “maximal effective flux” defined by

fmaz(a) = {sup|f(u)|, w€[-a”,a"]}.

They gave an example to illustrate that the assumption a € L'(X) is not enough in order to prove
a priori estimates in L'(Q), and that the assumption should be f,,.z(a) € L*(X). Furthermore,
in [1], the authors revisited the problem (1.1)-(1.3) and introduced a notion of entropy solution to
the problem (1.1)-(1.3) with ~ = 0. Following [1], an entropy solution of (1.1)-(1.3) is a function
u € L>®(Q) satistying

IN

_/ §w+(x, k, CL(t, :L’))det / [(u - k)+€t - Xu>k(f(u) - f(k)) : Vﬂ dxdt
by Q

—|—/ (up — k)T€(0,-)dr  and (1.4)
D
- / w™ (@, k, alt, z))dSdt < /Q [(k = u)"& = Xau(F (k) = f(w) - VE] dadt
b
+/ (k — uo)*€(0, ) dz (1.5)
D
for any &€ € D([0,T) x RY), £ > 0 and for all & € R, where
+ ._ _ =
(ko) = _max (/) = £(5) (@)
(z, k = — -1
W (e ka) = max_ |((r) - f(s)) - i(a)
for any k € R, a.e. © € 9D, and 7 denoting the unit outer normal vector to dD. Here and in
the sequel, a A k := min{a,k} and a V k := max{a, k}. It is remarked that the above definition
of entropy solution is a natural extension of the definition of that given by Otto [23]. On the
other hand, Carrillo-Wittbold [5] obtained the existence and uniqueness of renormalized entropy
solutions of (1.1)-(1.3) with h = 0 = a.
Having a stochastic forcing term h(u)dw(t) in Equation (1.1) is very natural for problem mod-
eling arising in a wide variety of fields in physics, engineering, biology, just mention a few. The
Cauchy problem of equation (1.1) with additive noise has been studied in [15] wherein Kim pro-

posed a method of compensated compactness to prove, via vanishing viscosity approximation, the
existence of a stochastic weak entropy solution. Moreover, a Kruzhkov-type method was used there



to prove the uniqueness. Furthermore, in [25], Vallet and Wittbold extended the results of Kim to
the multi-dimensional Dirichlet problem with additive noise. By utilising the vanishing viscosity
method, Young measure techniques and Kruzhkov doubling variables technique, they managed to
show the existence and uniqueness of the stochastic entropy solution.

On the other other, concerning the case of multiplicative noise, for Cauchy problem over the
whole spatial space, Feng and Nualart in [11] introduced a notion of strong entropy solution in
order to prove the uniqueness for the entropy solution. Using the vanishing viscosity and compen-
sated compactness arguments, they established the existence of stochastic strong entropy solution
only in one space dimensional case. We would like to mention [2] where Bardos-le Roux-Nédélec
firstly proved the well-posedness of the initial-boundary value problem for multidimensional scalar
conservation laws. Moreover, Chen et al. [7] considered high space dimensional problem and they
proved that the multi-dimensional stochastic problem is well-posedness by using a uniform spatial
BV-bound. Following the idea of [11, 7], Lv et al. [19] considered the Cauchy problem of stochastic
nonlocal conservation law. Bauzet et al.[3] proved a result of existence and uniqueness of the weak
measure-valued entropy solution to the multi-dimensional Cauchy problem.

Using a kinetic formulation, Debussche and Vovelle [9] obtained a result of existence and unique-
ness of the entropy solution to the problem posed in a d-dimensional torus, (also see [16, 14]).

More recently, Bauzet et al. [4] studied the problem (1.1)-(1.3) with a = 0 (i.e., the homogeneous
boundary condition). Under the assumptions that the flux function f and h satisfy the global
Lipschitz condition, they obtained the existence and uniqueness of measure-valued solution to
problem (1.1)-(1.3) with a = 0 in the L%-setting. Lv et al. [20] extended the result of [4] to
the stochastic nonlocal conservation law. Meanwhile, Bauzet et al. [4] posed an open problem:
whether there exists a renormalized stochastic entropy solution to problem (1.1)-(1.3) with a = 0.
In the present paper, we aim to study this open problem and we end up with an affirmative answer.

Our object In this paper is the well posedness of renormalized stochastic entropy solutions of
problem (1.1)-(1.3). Encouraged and inspired by the deterministic case, we first give a notion of
renormalized stochastic entropy solution, and we then discuss the relation between the stochastic
entropy solution with renormalized stochastic entropy solution. In the end, the existence and
uniqueness of renormalized stochastic entropy solutions are established. We would like to point
out that there are two big difficulties arisen here: one is how to get the limit of stochastic term in
L'-setting, and the other is how to deal with the stochastic term in proving the uniqueness. The
solution to the former difficulty is that one can use the It6 isometry and the relevant convergence
in probability. The method used to solve the second difficulty is the Fubini’s Theorem and the
technique of doubling variables, which is stimulated by [4]. There are probably three methods
to deal with the stochastic term in proving the uniqueness so far. The first method is defining
the stochastic strong entropy solution [11], which is used to control the noise-noise interaction.
The second method is to use the regularity of viscous solution [4], which is only suitable to one
dimensional Brownian motion. The third method is to use the kinetic formulation [9], which is
suitable to cylindrical Brownian motion. Here we use a similar method to [4], but there is a
significant difference. Noting that in paper [4], the authors established a comparison result for two
solutions, one is stochastic entropy solution and the other is viscous solution. However, in this
paper, we will establish a comparison result for two solutions (see Lemma 4.1), one is stochastic
entropy solution and the other is renormalized stochastic entropy solution. Hence both solutions
have little regularity. Fortunately, one should have a method to overcome it if one can clearly know
how to get the stochastic entropy solution.

The paper is organized as follows. In Section 2, we introduce the notion of renormalized stochas-
tic entropy solution for (1.1)-(1.3), then discuss the relationship between the stochastic entropy so-



lution with renormalized stochastic entropy solution and lastly state out the main results. Section
3 is devoted to the proof of existence of renormalized stochastic entropy solution for (1.1)-(1.3). In
Section 4, uniqueness of renormalized stochastic entropy solution for (1.1)-(1.3) is established by
using Fubini’s Theorem and the technique of doubling variables.

We end up this section by introducing some notations.

Notations. In general, if G C R, D(G) denotes the restriction of functions u € D(RY) to G
such that support(u) N G is compact. The notation DT (G) stands for the subset of non-negative
elements of D(G). M(Q) denotes the space of functions measurable on Q.

For a given separable Banach space X, we denote by N2 (0,7, X) the space of the predictable
X-valued processes. This space is the space L?((0,7) x €, X) for the product measure dt ® dP
on Pr, the predictable o-field (i.e. the o-field generated by the sets {0} x Fp and the rectangles
(s,t) x A for any A € Fy, for t > s> 0).

Denote £* the totality of non-negative convex functions 7 in C*!(R), approximating the semi-
Kruzhkov entropies # — o such that n(z) = 0 if z < 0 and that there exists § > 0 such that
n'(z) = 1if z > §. Then 1’ has a compact support and n and " are Lipschitz-continuous functions.
&~ denotes the set {r:=n(—),n € ET} and £ = ET UE~. Then, for convenience, denote

sgn(‘]"(x) =1 if £ >0 and 0 else; sgn, (v) = —sgna'(—:v) sgng = sgn(‘]" + sgny ,

Fla,b) = sgno(a — b)[f(a) — fO); FYO(a,b) = sgng " (a —b)[f(a) — £()],

and for any n € £, F"(a,b) = / 7' (o —b)f'(o)do.
b

2 Entropy solution

The aim of this section is to give a definition of renormalized stochastic entropy solution. We
then discuss the relationship between the stochastic entropy solution with renormalized stochastic
entropy solution and present our main results. To this end, we first recall the definition of stochastic
entropy solution.

In paper [21], the authors gave the following definition of stochastic entropy solution of (1.1)-
(1.3). For convenience, for any function u of N2(0,T; L?(D)), any real number k and any regular
function n € £, denote dP-a.s. in Q by g, the distribution in D defined by

o= upk(p) = /D n(uo — k)p(0)dx + /Qn(u —k)Orp — F''(u, k)Vdzdt

+ /Q 7 (u— k)h(u)pdzdw(t) + % /QT)”(U — k)b (u)pdxdt

+/ 0 (a —k)pw" (z, k, a(t,x))dSdt;
2

o finalp) = /D Wil — k)p(0)dz + /Q i(u — k)rp — F(u, k)Y pddt

+ /Q 77 (u — k)h(u)pdrdw(t) + % /Q i7" (u — k)h? (u)pdadt

+/ i (a — k)ew™ (x,k, a(t, v))dSdt,
)

where w' (x, k,a(t,r)) and w™ (z,k,a(t,z)) are defined as in the introduction. Based on this, we
have the following



Definition 2.1 A function u of N2(0,T; L*(D)) is an entropy solution of stochastic conser-
vation law (1.1 ) with the initial condition ug € LP(D) and boundary condition a € L*(X), if
u € L?(0,T; L*(; LP(D))), p=2,3,--- and

t k() =0, pik(p) >0 dP —a.s.,
where o € DY((0,T xRY)), keR, ne &t andij € £~

We remark that for technical reasons, Bauzet et al. [4] gave a generalized notion of entropy
solution. And then the uniqueness result implies the existence of entropy solution in sense of
Definition 2.1. In fact, one can directly the existence of entropy solution in sense of Definition 2.1,
for more details see [22]. Under the following assumptions

(Hy): The flux function f : R +— RY is of class C?, its derivatives have at most polynomial
growth, f(0) = Ogn;

(H2): h: R+ R is a Lipschitz-continuous function with h(0) = 0;

(Hs3): up € LP(D), p> 2 and a € L>®(X),

Lv-Wu [21] obtained the existence and uniqueness of stochastic entropy solutions of (1.1)-(1.3)
in sense of Definition 2.1.

In our setting, for a continuos flux function f : R — RY and for any measurable boundary data
a: Y+ Rwith f(a,z) € LY(X) where f : Rx 9D + R is defined by f(s,z) := sup{|f(r)-7i(z)|, r €
[—s7,sT]}. Now we give the definition of renormalized stochastic entropy solution.

Definition 2.2 Let a € M(X) with f(a,z) € LY(X) and ug € LY (D). A function u €
LY (9 LY (Q) is said to be a renormalized stochastic entropy solution of the conservation law (1.1)-
(1.3) if there exist some families of non-negative random measures py = w(w;t,x) and v :=
vi(wit,x) on [0,T] x D such that

Eu(+[0,T] x D) — 0, Ev_y(-;[0,T] x D) = 0, as | — +00,
and the following entropy inequalities hold: for allk € R, for alll >k, for any & € DT([0,T) xRN),
Jnt=wre [ sgnitunt=mifund - £0) - ve
Q Q
2

+/ sgng (u AL — k)h(u A l)édzdw(t) + L / (1 — sgng (k —u AD)|R* (k)¢
Q Q

+/(u0/\l—k)+§+/sgnar(a/\l—k)ﬁwJ’(x,k,a/\l)
D b
> —(w,§), dP—a.s.,

and for all k € R, for all 1 <k, for any ¢ € DY([0,T) x RY),
[t =uviye— [ sgnse—uv i) - favi)- ve
Q Q
+/ sgng (k —u Vv )h(u Vv )édzdw(t) + L / (1 — sgng (uV1—k)h*(k)¢
Q 2Jq

+/(k—u0/\l)+§+/sgnar(k—avl)gw_(x,k,a\/l)
D b
> —(v,§), dP—a.s..



It is easy to see that the Definition 2.2 follows from Definition 2.1. In fact, by using the facts
lim ns(z) = 2, limnj(z) = sgng () and lim nf(z — k) = 0,(k) (0.(k) denotes the Dirac delta
0—0 6—0 0—0

function), we have
lim iy, 4(6) = /Q (u— k)t - /Q sgni (u — K)[f(u) = F(k)] - V€

+ /Q sgng (u — k)h(u)édxdw(t) + % /Q (1 — sgng (k —u)]h? (k)¢

+ /D<uo —k)te+ /E sgng (a — k)éw" (a, k. a)
= —x(§)-

It follows from the Definition 2.1 that fi;(£) < 0 almost surely. In addition, as in [5], we can also
define like this.

Definition 2.3 Let a € M(X) with f(a,z) € LY(X) and ug € LY(D). A function u of
LY(Q; LY(Q) is said to be a renormalized stochastic entropy solution of conservation law (1.1)-(1.3)
if for all k,1 € R, for any & € DT([0,T) x RN), the functionals

(6 = — /Q (WAl—k)*E + /Q sgnd (uAL— B)[f(uAT) — F(R)]- V€

—/ sgng (u A1 — k)h(u A l)édzdw(t) — . / [1 —sgng (k —u AR (k)€
Q 2 Jq

—/D(uo/\l—kﬁ&—/Esgng(aAl—k)ﬁer(x,k,aAl) dP — a.s.,

a(6) = - /Q (k—uvI)e + /Q sgnd (k — u v DI (F) — fuv D) - VE

—/ sgng (k —u V Dh(u V1) édzdw(t) — 1 / (1 —sgng (uV 1 —k)h*(k)E
Q 2Jq

—/ (k—ug AN)TE—~ / sgng (k —aV )éw™ (z,k,aV1) dP —a.s.
D P
are random measure on [0,T] x D satisfying
lim Eu;f (50,7 x D) =0 and lim Ey;([0,7] x D) =0 Vk € R,
l—+o00 ) l——o00 )

where ,uZ'l denotes the positive part of the random measure fuy ;.

It is not difficult to prove that Definition 2.2 is equivalent to Definition 2.3 by using the following
decomposition

ea(€) = ) ~ 7€) — | soni oSz ) 5 [ 1= gm0~ )i Ok

- / [wh(z, k,aANl) —wh (z,k,a) +wh(2,1,0)]¢, dP—a.s., (2.1)
)

where we used the facts that for | > k, (uAl—k)" = (u—k)* —(u—1)" and sgn (uAl—k)[f(uA
1) — f(k)] = sgng (u— k)[f(u) — f(k)] — sgng (u — 1)[f(u) — £(1)]. In other words, j in Definition
2.2 1s ,uz'l of Definition 2.3.

Nextl we consider the equivalence between the renormalized stochastic entropy solutions and
stochastic entropy solutions.



Proposition 2.1 If u is a stochastic entropy solution in sense of Definition 2.1, then u is a

renormalized stochastic entropy solution in Definition 2.2.

Proof. Let u be the stochastic entropy solution in sense of Definition 2.1. Notice that
wh(z, kyanl) —wh (2, k,a) +wh (2,1, a)
(jamx o+ max ) 170) = £(0) o)

{O, if aNl = a,

(Mmaxp<, s<1 — MAXp<y s<q + MaAXj<p 5<q) > 0, f a Nl =1

(2.2)

and the decomposition (2.1) yield
€)= () ~ 7€) — | somi(u = Dh()Edzdu(t) ~ 5 [ 1= sgnf @ w0t
Q Q
— / [wh(z, k,aNl) —wh(z,k,a) +wh (2,1, a)]¢
)
< =€) —/ sgng (u — Dh()édzdw(t), dP —a.s.,
Q

where we used the fact that fix(€) < 0 almost surely, which is obtained from the definition of

stochastic entropy solution.
Set

<%@f—wa—4w@w—mmwmmw

It remains to prove that Euy(w;[0,T] x D) — 0, as [ — +oc. For any [ > 0, for all o € D*([0,7)),
we get

0 < —E/Qa(t)dﬂl
= IE/Q(U—l)+0t+E/ngn0+(u—l)h(u)o(t)da:dw(t)
+E /D (o~ 1) 0(0)dz + S /Q (1 = sgni (1 — u)|h2(1)dadt
+E/2)a(t)w+(m,l,a)
— 0, asl— oc.

Therefore, gy (w; [0, T] x D) — 0, as | — +oco. In a similar way, we one can prove the corresponding
properties of v; and thus u is a renormalized entropy solution of (1.1)-(1.3). The proof is complete.
O

Remark 2.1 In the Definitions 2.2 and 2.3, we consider the convergence of Epy(w; [0, T] x D).
The reason is as followings: from the proof of Proposition 2.1, one can prove that by using Ito
isometry (u is a stochastic entropy solution),

E {/Q sgng (u— l)h(u)dxdw(t)} 2 < /OTE/D [sgng (u — l)]z R (u)dxdt
— 0

as | — oo,



which implies that there exists a subsequence {l,}, such that
/ sgng (u —ly)h(u)drdw(t) — 0, asn — oo, dP —a.s..
Q

Therefore, we can not assume in the Definition 2.2 that
w(Qt,x) =0, vy (Qt,x) =0, as | — 400, dP —a.s.,

Remark 2.2 Let u be a stochastic renormalized entropy solution and f(u) € LY(Q)N. Then
it is not hard to get that p, 1(p) > 0 almost surely forn € O C E*. More precisely, we have the
decomposition

(€)= Fl€) — (€ - /Q sgn(u — Dh(@)edwdu(t) — /Q 11— sgnif (1 — w) K2 () dadt
- /Z[w(m, kanl) —wh(z k,a) +wh(z,1,a)]é, dP - a.s..
As a consequence, for any € € DH([0,T) x RY)
€) < {n€)+ ule) + /Q sgng (u — Dh()edrdu(t) + 3 /Q 11— sgng (1 — Wk (1)dedt
+ /Z[uﬁ(x, kyanl) —wt(x, k,a) +wh(z,1,a))¢, dP —a.s..

But the Definition 2.2 shows that E{u;,§) — 0, as l — +oo. We take {l,,},, such that l,, — oo as
n — oo, and thus we have E{u;, ,&) — 0, as n — +00, which implies that there exists a subsequence
(still denoted {ln}n) such that (u;,,&) — 0, as n — 400 almost surely. By using (2.2), it is easy
to see that when | > ||a||fe~,

wh(z,k,anl) —wt(z,k,a) +w(2,1,a) = 0.

Similarly, one can prove that there exists a subsequence (still denoted {1y} ) such that fQ sgng (u—
Dh(D)édxdw(t) — 0 as n — oo almost surely. Now, we prove fi;, (§) — 0 as n — oo almost surely.
Notice that

e = - /Q (w—1)+ /Q sani (u=Df(w) - V¢ = [ (w=1)7¢
= [ o= f) Ve~ [ sgn (u - Dh(wdadu(t
Q Q

+% /Q[l — sgngd (k — u)|h? (k)¢ — /z sgnd (a — Déw (2,1, a).

Asu € LYQ), f(u) € LYQ)N, ugp € LY(D) and |h(u)| < L|u| (L is the Lipschitz constant), the
first three integrals on the right-hand side tend to 0 as | — oo almost surely. When 1 > ||a||fe,
wt(z,l,a) = 0 and thus the last integral also tends to 0 as | — oo almost surely. Moreover,
either {|f(ln)|}n is bounded for some sequence l,, — oo, and then nhﬁngo fu>ln |f(1n)||VE|dzdt = 0 or

llim ()] = +o0. In this case, there exists a sequence {ly}n such that, for anyn € N, |f(l,)| =
—00

MiNen,o0) [f(1)|. For this choice of the sequence l,,, we have

/ F ()€ | dadt < / F(w)|[VE|dzdt — 0, asn — 0o, dP —a.s.
{U>ln} {U>ln}



as f(u) € LYQ)N. Therefore, jir.(€) < 0 for all (k,&) € R x DH([0,T) x RY) almost surely. That
18

P(we Qjip(w;€) <0)=1, Y(k,&) eRxD([0,T) x RV).

Since }iH(l) pn k(&) = —fu (), using the properties of limit, there exists a familyn € O C ET such
—
that

P (w € Qs iy (w;€) 2 0) =1, V(k,€) € R x DF([0,T) x RY).
The main result of this paper is:

Theorem 2.1 Let a € M(X) with f(a,x) € LYX) and ug € LY(D). Under assumptions
Hy — Hy there exists a unique renormalized stochastic entropy solution in sense of Definition 2.2.

In order to obtain the uniqueness of the renormalized stochastic entropy solution in sense of
Definition 2.2, we need the following proposition.

Proposition 2.2 (/21]) Under assumptions Hy — Hg there exists a unique stochastic entropy
solution in sense of Definition 2.1.

Moreover, if uy,us are entropy solutions of (1.1) corresponding to initial data ug1, w2 € LP(D)
and the boundary data ay, as € L*™(X), respectively, then for any t € (0,T)

E [ el < [ oo~ + [ (£ = £() e

<r,s<max(ai,a2)

3 Existence

In this section, we prove the first part of Theorem 2.1. That is the following Theorem.

Theorem 3.1 Let a € M(X) with f(a,x) € LY (X) and ug € LY(D). Under assumptions
Hy — Hs there exists a renormalized stochastic entropy solution in sense of Definition 2.2.

Proof. Let a, = (a An)V (—n), uj = (up An)V (—n), and u, be the entropy solution of
(1.1)-(1.3) with (ug,an). Then by Proposition 2.2, we have

E /D i = u| < / max (F(r) = f(s)) - 7i(z)]

min(an 1a1n,)§7‘75§maz(an 7am.)

+/ luf — ug'|dz, Yt e 0,T],
D

which yields that {u,} is a Cauchy sequence in L'(2;C([0,T]; L*(D))) and converges to some
function w in L' (Q; C ([0, T); L*(D))). Moreover, by Proposition 2.1, we have for any ¢ € D ([0, T') x
RY), 1 >k,

[ =k~ [ sgnf £ 0= B A1) = 0] - VE
Q Q

+ / sgng (un AL — k)h(up A l)édzdw(t) + L / [1 — sgng (k —un A)R*(K)E
Q 2Jq

+/ (uf N1 —k)TE —l—/ sgng (an N1 — k)éw™ (2, k,an A1)
D P

> (', &), dP-—a.s., (3.1)
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and for all k € R, for all I < k, for any £ € DT([0,T) x RV),
/ (k—u, VI)1TE — / sgng (k —un VO[f(k) — flun V)] - VE
Q Q
1
+/ sgng (k — up V Dh(u, V1) édzdw(t) + 3 / [1— sgng (un V1 — k)|h* (k)¢
Q Q
+/ (k—uf ND)TE+ / sgng (k — an V D)éw™ (2, k,an V1)
D 2
> —("§), dP—a.s.. (3.2)
It is well-known that convergence in r-th order mean implies convergence in probability, where

r > 1. Note that u, — u in L*(Q;C([0,T]; L}(D))) as n — oo, and thus we have u, converges in
probability towards w, that is, for all € > 0,

lim P(|lup, —u|l >¢) =0,

n—oo

which implies that there exists a subsequence of {uy, }, (still denoted {u,, },) such that u,, converges
towards u almost surely. Therefore, we can assume that, u,, and u stay in the same interval. More
precisely, u, < k <landu <k <l k<u, <landk<u<l, k<l<u, and k <[ < u hold at
the same time. It is easy to see that

0, wu,<k<l,
sgng (un AL = E)h(un A1) = h(un), k <uy, <1,
h(l), k<l< up;

and

0, uwu<k<l,
sgnt (WAL —k)h(uAl) = hluy), k<u<l,
h(l), k<l<u.

By using It6 isometry, we have

E {/ € (sgng (un ANL—E)h(un A1) — sgng (u Al — k)h(u Al)) d;vdw(t)}
Q

IN

T 2
/ E [/ € (sgng (un ANL—E)h(un A1) — sgng (u AL —k)h(u A1) dx] dt
0 D

T
/ E/ €2 (h(uy) — h(u))?* dzdt
0 rEDk<un,u<l

T
C/ IE/ &luy, — uldzdt — 0, asn — oo, (3.3)
0 D

IN

IA

where C' depends on k,[, & and the Lipschitz constant of h.
From the discussion of section 2, we know that if denote

e = - /Q (un — F) "6+ /Q sgng (un — B[ un) — ()] - VE
= | somit(n — Wb un)gdodu(®) — 5 [ (1= sgnd (k — wn)2(0)¢
Q Q
- / (uf) — ky+e / sgni (an — k)ew™t (@, b, an),
D >
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then we have

pea) = /Q(un/\lk)*ﬁt/ngng(unﬂk)[f(un/\l)f(k)]‘Vf

1
+ /Q sgng (un AL —k)h(up A D)&dzdw(t) + 5 /Q[l — sgng (k — up AR (K)E

+ /D(ug AN —k)TeE+ /E sgng (an ANl —k)éw™ (z,k,an A1)
=~ (&) + ') + /Q sgng (u — Dh(D)&dzdw(t) + % /Q [1— sgnd (I — w)]h*(1)dzdt

+ /E[w"’(x, kyanl) —wh(z, k,a) +wh(z,l,a)¢, dP —a.s..

Due to if(§) < 0 almost surely, we have
W) = i (E) + /Q sgnif (u — Dh()¢daduw (D)
where we have used the similar analysis to the proof of Proposition 2.1. Actually, we can take
6 1= =) [ som (— Dh()edad ()

Hence, we have

Eu(Q x [0,T) x D) < wh(z,l.ay,)

wh(z, l.a). (3.4)

Similarly, we have

Ev'(Q2x [0,T] x D) <

S—

(l—u8)++/zw_(x,l.an)
< /D(l—uo)Jr—l—/Ew_(x,l.a). (3.5)

By Lebesgue’s theorem of dominated convergences, we can pass to the limit with n in the right-
hand side of inequalities (3.1) and (3.2). Moreover, from (3.4) and (3.5) it follows that p}* and
vt are bounded independently on n. Therefore, there exists a subsequence still denoted p;' and a
random measure /; on x [0, 7] x D such that ;' converges to p; with respect to the weak-topology
on LY(Q;C([0,T); LY(D))). Then, passing to the limit in the right-hand side of (3.1), we conclude
that u satisfies the renormalized entropy inequality of Definition 2.2. Moreover, since u,, — u in
LY(Q;C([0,T); LY(D))) as n — oo, we have thanks to (3.4)

Eu(Q x [0,7] x D) <lim inf Eul'(Q x [0,T] x D) < /
n—oo D

(up — )" + / wh(z,l.a).
b
Furthermore,

lim By (2 x [0,7] x D) < lim lim inf Euf(Q x [0,7] x D)
[—o0 =00 n—00

< lim (/D(uol)JrJr/Eer(x,l.a))

=00

= 0.

Arguing similarly, we prove that ;' has the similar properties to p;'. That is, we obtain the
existence of renormalized entropy solution to problem (1.1)-(1.3). The proof is complete. [
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4 Uniqueness

In present section, we complete the proof of Theorem 2.1. As said in Introduction, there are three
methods to deal with the stochastic term. The method we used here is similar to that of [4].
In order to use the method of [4], we first consider the following problem

du® — [eAu + div(f(u®))]dt = h(u®)dw(t) in Q,
ue(0, ) = uf(x) in D, (4.1)

u® = a® on X,

where we assume that a° € C°(X), [[a°||c1 < ||la||z~ and a® — a in L>°(X). Moreover, a° is the
trace on ¥ of a function U € C([0,T] x D) such that 6;U € C7°([0,T] x D), AU € C"9(]0,T] x D),
U(t,-) € W2P(D) for some v € (0,1) and for any p > 1. Following [21], problem (4.1) admits a
unique solution u® € L*([0,T], LP(2 x D)) N N2(0,T, HY(D)) satisfying

T
E sup Hue(t)H’ip(D) —I-E/ / \Vuf |2dzds < C, (4.2)
0<t<T o Jp

where p > 2 and C' does not depend on . By using Young measure theory, we prove u® converges
an ”entropy process” denoted by w in [21].
The following comparison result plays a crucial role in proof of Theorem 2.1.

Lemma 4.1 Let ug; € LY(D), a1 € M(X), f(a1,-) € L*(2) and upg € LP(D), a1 € L®(X).
Let uy be the stochastic renormalized entropy solution of problem (1.1); ug be the stochastic entropy
solution of (1.1). Then for any € € DY([0,T x RN), for any | > llazll oo (5

—E — | wh(z,a9,a1 N1
.6) = [ (az,an A D
< E/Q(ul/\lu2)+§t+/D(u01/\lU02)+f(0)
—]E/ sgna'(ul/\l—uQ)(f(ul/\l)—f(uQ))-Vﬁ.
Q

Proof. As usual we use Kruzhkov’s technique of doubling variables [17, 18] in order to prove the
comparison result. We choose two pairs of variables (¢, z) and (s,y) and consider u; as a function
of (t,z) € @Q and uy as a function of (s,y) € Q. For any r > 0, let {B] }i— ... m, be a covering of
D satisfying Bf N 0D = (), and such that, for each ¢ > 1, B! is a ball of diameter < r, contained
in some larger ball EZT with BZT NOD is part of the graph of a Lipschitz function. Let {¢] }i—o,... m,.
denote a partition of unity subordinate to the covering {B!};. Let » € D*((0,7) x RY).

Now, let i € {1,-+- ,m,} be fixed in the following. For simplicity, we omit the dependence on
r and ¢ and simply set ¢ = ¢! and B = B]. We choose a sequence of mollifiers (p,),, in RY such
that = = pp(z —y) € D for all y € B. on(x) = [ pu(z — y)dy is an increasing sequence for all
x € B and o,(z) = 1 for all € B with dist(z,RY \ D) > £ for some ¢ = c(i,r) depending on
B = B]. Let (0m)m denote a sequence of mollifiers in R with suppo,, C (—%, 0).

Define the test function

Cmn(t,2,5,y) = @(8,5)0(Y)pn(y — z)om(t — s)
Note that, for m,n sufficiently large

(t,2) = Gua(t, 2, 5,y) € D((0,T) x RY),  for any (s,y) € Q,
(5,9) = Cmn(t,z,s,9) € D(Q), for any (t,z) € Q.
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Let u§(s,y) be the solution of (4.1) with initial data u§, and boundary data a§, and ns € £+
satisfying n5(-) — ()T and n}(-) — sgng (-) as § — 0. Here we assume that the limit of u§(s,y) is
the stochastic entropy solution us(s,y) of (1.1). Then taking ¢ = (mopn(t, 2, s,y) in Definition 2.2,
for a. e. (t,z) € @, we have

bty G — / sgni (ar A = k)G (2, ky a1 A1)
>
< / (s A L= K)* (G )t — / sgni (uy AL — k)[f(ur AD) = F(B)] - VaCoum
Q Q
+/ sgng (u1 AL —k)h(ur A1) ndadw(t) + l/ (1 — sgng (k —uy A DR (k)G
Q 2 Jq

—|—/ (uor Al — k) ¢nn(0,2,8,y), dP—a.s.,
D

In order to keep pace with the Definition of stochastic entropy solution, we need to rewrite the
above inequality. By using the facts lim ns(x) = 27, lim n§(z) = sgng () and lim 0} (z —k) = 6, (k)
0—0 6—0 6—0

again, we can rewrite the above inequality as

— (i, Cmn) — lim/ ns(ar Al — k)Cmnw™ (2, kya1 A)
0—0 »

IN

lim {/Qn[;(ul AL —=E)(Cmn)t — /Qng(ul AL=E)[f(ur A1) — f(k)] - VaCmn

6—0
1
+/ ns(ur AL — Kk)h(uy A L) ndzdw(t) + 517('5'(111 A — BB (k)G
Q
+/ ns(uor A1 — k)Cm,n(O,CU,S,y)} , dP—a.s.,
D

Since w7 is a renormalized stochastic entropy solution, it is easy to see that Fibula’s theorem can
be applied to the above inequality. In other words, the above inequality is bounded uniformly with

respect to 4.
Multiplying the above inequality by o,(k — u3) and integrating in k and (¢,z) over R and @,
respectively, and taking expectation, we have

0 < lim {E/// ns(uor Al — k)Cmn(0, 2, s, y)dzo,(k — u3)dkdyds
6—0 QJRJD
A8 [ [ [ astur A= R)pp,010m(t 90k~ u)dhdodedyds
QJQJr
_E/ / /F% (ur AL k)ppom - Vapn(y — z)or(k — u3)dkdrdtdyds
QJQ/r
1
+E/://ﬁ%mAU%mﬂw—M@m@®—uﬂmwﬁ@®
2 JoJoJr 7

—HE/ / / ns(ur AL —k)h(ur AL)Cmndzdw(t)or(k — u3)dkdyds
QJQJR

+E/ / / n5(ar Al — k) mnw™ (2, ka1 Al)dSdto,(k — ub)dkdyds
QJrJx

+/ /<,ula Cm,n>9r(k - U;)dk‘dyds}
QJR
= lim{L + L+ + I}

6—0

As u§ is a viscous solution, the Ito formula applied to | p N5(k — u5)Gn ndy yields that for a.e.
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(t,z) €Q
0 < /na(k—U§)Cm,n(t,:c70,y)dy+/na( — u3)(Cm,n) sdyds
D Q

75/ ns(k — u3) AusCm ndyds f/ F (kus) - VyCmndyds
Q Q
1
g O~ ) s — | 3k~ S G (s)

where we used the fact that for any fixed (¢,z) € Q, (mn(t, z,s,y) € D(Q). Meanwhile, using (4.2),
it is easy to verify the above inequality is bounded uniformly with respect to €. And thus Fubini’s
theorem can be applied to the above inequality.

Multiplying the above inequality by o,(u1 Al — k) and integrating in k& over R and in (¢, ) over
@, respectively, and taking expectation, we have

0 < ]E/ // ns(k — u3)Cmn(t, z,0,y)o0r (w1 Al — k)dkdydxdt
QJ/rJD
+E/ / / ns(k — u3)(0spom + ¢0s0m)Ppndydsor(ur Al — k)dkdzdt
QJ/RJQ
—EIE/ / / 05 (k — u3) AyusCm ndydso, (ur A1 — k)dkdzdt
—IE/ // F7’5 (ug, k) - VyGnndydsop(ur Al — k)dkdxdt
+= ]E/ // k — ud)h?(u$)Cmndydsor(uy Al — k)dkdxdt

—E/ / / ns(k — u5)h(u5)Cmndydw(s) o (ur Al — k)dkdzdt
QJIRJIQ
= S+t + Je.

Noting that g,,(t) =0, ¢t € [0,T], we have

1
L+J = E//// Ns(ur ANl — k) (0,2, 5,9) 0r (k — ui)dadkdydzds
QJrRJDJo

1
= E//// Ns(u1 Al — k)odprom(—s)or(k — us)dadkdydxds.
QJRJIDJO

And thus we have

lim (L +J1) = /D(u01 AL —ug2) T (0, 2)¢(x)d.

m,n,e,r,0

Due to u; € L'(; L'Q), uo1, ug2 € L*(D) and the compact support of (., we know that the
convergences in above inequality hold, see [3] for the similar proof.
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By using the fact Opom(t — s) + Osom(t — s) = 0 and changing variable technique, we get

Iy + Jo E:/ / / ns(ur Al — k)oppnOrom(t — s)or(k — us)dkdxdtdyds
QJQJR
E/ / / Ns(k — u5)(0spom + ©Isom)dpndydso,(ur A1l — k)dkdxdt
QJRJIQ
E/ / / Ns(k — u5)0s00mPpndydsor(uy A1 — k)dkdxdt
QJRJIQ
E/ / / ns(ur Al —u§ — 7)edpndiom(t — s)or(T)drdrdtdyds
QJQJR
E/ / / Ns(ur Al —us — 7)pdpndsom (t — s)dydso, (T)drdzdt
QJRJIQ

- E/ / / 15k — u5)Dspombpndydsor(ur AL — k)dkdzdt.
QJ/RJQ

Therefore,

r,m,d,e

lim (Iy + Jo) = E/Q(ul (t,2) AN —ua(t, ) Torp(t, z)p(z)dxdt.

By using again the fact that for any fixed (¢,z) € Q, Gun(t, x,s,y) € D(Q) and Hélder inequal-
ity, we obtain

1
Js = —EE//// n5(k — u3) AyusGmndydso(ur — k)dadkdzdt
QJrJQJo
1
= eE//// (Ayns(k — ug) — n5(k — u§)|Vus|?) Cmndydso(ur — k)dadkdzdt
QJrJQJo
1
< eE//// Ayns(k = u3)Gnndydso (v — k)dadkdzdt
QJ/rJQJo
1
= EE//// ns(k — u3)AyGnndydso(uy — k)dadkdzdt
QJrJQJo

1
=15 dE///(ul—ug)"'AyCmmdydsdxdt
QJQJO

1
< 5IE/// [u1|AyCmmndydsdzdt + eE sup |[|u3|z2(p)
QJ/QJ0 0<t<T

x /Q /0 ' /0 1 [ [ et noonty - )Py ondadsdade
0,

e

where we used E supy<;<7 [[u5]|12(p) is uniformly bounded for e > 0, see (4.2).
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Noting that Vapm(y — ) + Vypm(y — x) = 0, we have
13 + J4 = *E/ / / F%(ul A la k)‘:oﬁb@m : vzpn(y - x)@r(k - u;)dkdxdtdyds
R
-E / / / F5(u$, k) - (pnVy(00) + 0V ypn) omdydsor(ur AL — k)dkdzdt
Q
—p —E/ / F(up AL, u5)pdom - Vepn(y — x)dzdtdyds
Q
7E/ / F (uy A1 us)pdom - Vypn(?/ — x)dzdtdyds
QJIQ
B [ [ P AL u3) - paY (06 ondydsdai
Q

Smgen —E /Q F+(ug AL ug) V(p(t, 7)) drdt.

ot = ‘E/ / / (ur A D (ur A= k)Gmnor (k — u5)dkdadtdyds
2 E/ / / / = u5)1* (u5)Gm ndydser (ur N1 — k)dadkdrdt
rrm §E /Q /D 0§ (ur A= us) (B (ur AL) + h?(u5)) 9(t, y)6(y)pn(y — x)dydd.

Now, we come to the estimate of most interesting part, the stochastic integrals. Since a(t) =
or(ui(t,x) ANl — k) is predictable and if one denotes

B(s) = /D 7 (ke — 15) (1) Gl

we have that

[t [ Tﬂ(s)du«s)} ~&[alt) Tﬁ(s)dw(sﬂ ~&a() [ se)iu(s)] =0

because that

[at) [ seiute)] <& [ae ([ seiautsz)] =&[aw [ o).

Similarly, let o (s S %) = or(k —u3) and

B(t) = /D ns(ur AL —k)h(ug Al)Cmndz,

then we get that

]E/Q/Ra (5 B %) /OTﬁ(t)dw(t)dkdyds - /Q/REa <5 - %) /(:,if B(t)dw(t)dkdyds = 0.
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Thus, we have
Is+Jg = E/ / / ns(ur AL — k)h(uy A1) Cmndrdw(t)o(k — us)dkdyds
QJQJR
T
_E/ / / / 05 (k = u5)h(u5) G ndydw(s) o (ur A1 — k)dkdzdt
QJRJID Jt
= E/ / / / ns(ur AL — k)h(uy A1) ndadw(t) o) (k — u3)dkdyds
QJR (37%)+ D
- E/ // / 15 (ur AL = k)h(ur A1) Gmpndrdw(t)
o Je )2yt Jo
x [Qr(k —u5(s,y)) — or (k —u§ (s _2 y))] dkdyds
m

As du§ = [eAu§ + div(f(uF))]dt + h(uf)dw(t) == A.dt + h(uj)dw(t), by Itd formula, we arrive

that
0r(k — u5(5.9)) — o <k o ( . %y»
_ /(S_;)* o.(k — u (0, y))Ac(o, y)do
_ /(52)+ 0l.(k — u§(a,y))h(us (o, y))dw(o)
+% /(:zl)+ Q;/(k o ug(a, y))hQ(ug(U7 y))da
0 s E
= _% {/(si)+ Qr(k — UQ(O" y))AE(m y)dO'
+ /(:%)+ or(k — u5(0,y))h(u5(a,y))dw(o)
_% /(:W 0y (k — u3(0,y))h? (u5 (o, y))do}
Therefore,

I+ J; = _]E/Q/R/(s 2)+/Dng(u1/\l—k:)h(ul/\l)cm,ndxdw(t)
x{--- }dkdydsm

= L1+ Ly+ Ls.

Let us evaluate the limits of Ly, Ly and Lsz. Following [12, 13], we know that the solution
of (3.1) will belong to LP(D) if uj, € LP(D). We assume that uj, € C*°(D) and uf, converges to
ugz in L?(D). Thus the solution u§ € LP(D), Vp > 2. By using the properties of the heat kernel,
one can prove that u§ € W2P(D), see [8, 10, 26]. That is, A. € LP(D). The proof of this part is



similar to that of [4]. We first consider Ly:

=

2] 2
L] < /// { (/ ng(ul/\l—k)h(ul/\l)cm,ndw(t)> ]
. 27 2
X {E (/( " or(k — u5(o, y))AE(U,y)dU> ] dkdxdyds
1
S 5
< /Q/R/Dpncpgb E/( . (ng(ul/\l—k)gm(t—s)h(ul/\l))th}
1
2 ° € 2 ’
X T E (o2)* (or(k —u3(0,y))Ac(0,y)) do | dkdudyds
2
1
S 2
< cr\/E/Q/R/Dpn IE/( " (ng(ul/\l—k)h(ul/\l))zdt]
3
X E/( ) 1{77<,€ uz(ay)<0}A (0,y)do } dkdxdyds
Cr s
< O L LI szt noa
xSy J(s—+
2
x /( e Y2 () <0y A2 (0, 9) dod Py dPy} dkdydzds
S—
Cr
YR AT et
X [|u§|2 +6% 4 %} 1{—§§k—u§(a,y)§0}f4§(aa y)dadthdey} dkdydaxds
1
CT 2 2 2 ’
< pn 2y [us|* + 6% + — | AZ(0,y)dodtdP, v dydxds
(s—2
1
s 2 3
< ¢ E |u‘€\2—i—52—|—i do 3 dyds
5 Jo (s—2)" 2 r2
Cr 5 4 2
+T 0 E ( 2)+A€(O',y)d0' dyds
1
< o E su |us (t )|2—|-(52—|-i 2 2d ds
> 5\/% 0 (Sil)}?gtgs o\, Y 7"2 Y
1
cr sup Ax(t,y) 2dyds
5\/_ ( )+St$s e
—m 0,

where we have used the facts EX = [ X (w,z)dP, and

4
h%(uy A1) = [h(ug A1) — h(0)]* < L?|ug A1|* < L2 [|u§|2 + 6% + 72] :
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thanks to the condition (Hj).
Similarly, by using (4.3), we get

TR 2‘1@/// / AL — k(s A D)o ndadu(t)

<[ 406 0 0o )b

27 3
< ///[ (/ 775(“1 /\l—k)h(m/\l)@m,ndw(t))]
. 27 2
X {E (/( i , 0n(k —u5(0,y))h*(u5(0, y))do ) ] dkdzdyds
< /Q/D/R ]E/(sif (ng(ulAl—k)h(ul/\Z)gm,n)th]
C s 2
7 E /(m (¢1(k = (0. ))” h'(us(o y))d] dkdzdyds
S S 1
< o[ f Lo L oy s
xh?(uy Al)r?1 (-2 <h-u (o) <oy (u5(o, y))dtdaddePy}% dkdzdyds
C s 4 2
< 5—;/@{/21/<82>+ [|u§|2+52+r—2] h4(u§(o,y))dadPy} dyds
Cr ) . 9 5 4 2] ?
< 5 /m Q{]E(s—gl)lfgtgs [I%(ty)l +9 +T—2] } dyds
Cr :
4 E Re(t, dyd
"o { o ias ‘”} w
*>m 07

where we used the facts that u5 € LP(D), p > 2. Thanks to Fibula’s theorem and the properties of
1t6 integral, we have

lim(Ly + Lo+ L3) = -— hm]E/ / / / (ur Al —k)h(ur A1) Gn ndzdw(t)

x /( ok - <o )h(u5 (0, y))dw (o) dkdyds

= hmE///_z)/ f(ug AL — k)h(ug Ao

X or(k —u5(t,y))h(us(t, y))dtdedkdyds

—r —E// f(ur AL —u5(t,y))h(ur AD)p(t,y)dpnh(us)dadtdedy
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Therefore, we get
1
(L + s + 15 + Jg) = —]E/ / nl (s AL — ) (B2(uy A1) — 2h(uy ADh(u5) + h2(u5)
x(t, y)d(y) pn(y — z)dydxdt

= —]E// U/l/\l_UZ)

x (h(uy A1) = h(u5))? @t ¥)d(y) pu(y — x)dydadadt
-5 07

and thus
limlim Iy + Js + Is + Jg < 0.
5 m,r

Lastly, we consider I and I7. By the assumptions of a5, we have
Ig = E/Q /]R /2 ns(ar Al — k)Cmnw™ (2, k, a1 Al)dSdte,(k — u3)dkdyds
—monred /Esgng(al Al — ag)ppw™ (z,a2,a1 A1)dSdt.
It is easy to see that
lim lim Iy = (i, 99).

Combining all estimates yield

Elud) < B [ (un AL )00, 2)0(0)do
HE/Q(ul Al — )T 0p(t, x)p(x)dadt

—IE/ Ft(ur Al ua)V(p(t, z)é(z))dzdt
Q

+/ sgng (a1 Al — a2)ppw™ (z, az, a1 A 1)dSdt.
b

Similar to the above discussion, for any k£ € R, one can prove exactly that uy,us satisfy the
following local comparison principle: for any ¢ € D1(Q),

“Elu,¢) < E /Q (ur AL — us) & + / (uon A1 — uga) F£(0)

D
—E/ sgnit (uy A —ug) (flus AL) — f(us)) - VE.
Q
In particular, the above inequality holds with £ = pgy.
Summing over ¢ = 0,1,--- ,m,, taking into account the local inequality for ¢ = 0, we find, for
any &£ € D([0,T) x RY),
—E(w,§) < E/ (uor A1 — ug2)T€(0, z)dx
D
—HE/ (ug A1 — ug)TOE(t, x)dwdt
Q
HE/ sgng (ur Al —u2)(f(ur Al) — f(ug)) - VE
Q

+/ Esgng (a1 Al — az)w™ (2, a2,a1 A1)dSdt.
p
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The proof of Lemma 4.1 is complete. [

Next, we consider the second half. Similarly, as u; is a renormalized stochastic entropy solution,
using the other half of Definition 2.2, and applying the 1t6 formula to fD ns(u§ — k), we have for
any | < —|laz| L,

—E<Vl,§> < E/D(UQQ—uOl \/l)+§(0,l‘)d$

—HE/ (ug —uy V)T 0£(t, x)dxdt
Q
+]E/ngn8r(uz —up V1) (f(ug) — f(ur V1)) - V¢

+/ Esgng (a2 — a1 V D)w™ (2, az, a1 V 1)dSdt. (4.4)
p

Proof of Theorem 2.1. Now we complete the proof of Theorem 2.1. Let v be a renormalized
stochastic entropy solution of (1.1)-(1.3) and u, be defined as in Theorem 3.1. Then by Lemma
4.1, we have for any & € DT([0,T) x RY) and for any | > —||as| e,

B8 < E [ (00 A= o) e,
+E/ (v Al —uy) "0 (t, x)dxdt
Q
4B [ sgnf (0 Al=un)(F(0 A D) = fun) - ¢
Q
+/ Esgng (a Nl = ap)w™ (2, an,a A 1)dSdt. (4.5)
b
And by (4.4), we have £ € DH([0,T) x RY) and for any | < —||as]|z,
-E(u, &) < IE/ (uon — vo V1)TE(0, x)dz
D
—HE/ (U — v V1) TO&(t, x)dxdt
Q
—!—E/ngna'(un — oV (f(un) — fo Vi) V¢

+/ Esgng (an —aV Dwh (z,an,a V 1)dSdt. (4.6)
b

Summing (4.5) and (4.6), letting n — oo, similar to the proof of [21, Theorem 3.1], we get v =
lim w, = u. This completes the proof of Theorem 2.1. [J

n—oo

Remark 4.1 (A good example) In the proofs of Theorem 8.1 and Lemma 4.1, we use the
Lipschitz condition of h(u), see (3.3) and the estimates of L1 and Ls. A good example can make
the proofs simpler. Let h(u) = sinu or cosu, then h satisfies the condition (Ha). What’s more,
h(u) is bounded uniformly with respect to u, that is,

|h(un) = h(u)|* < 2fun — ul.

In other words, the proofs of (3.3), L1 and Ls will be simpler.
In addition, it is not difficult to find our method is also suitable to the whole space, that is,
D =RN.
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