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Highlights 

 The Wilshire equation was modified to predict batch to batch creep properties. 

 A new two step procedure was used estimate the constants of this modified equation. 

 The activation energy varied between batches within the limits of 273–331 kJmol
-1

. 

 P,Mn,Cu, hardness and heat treatment were identified as determinants of creep life. 

 The modified equation yielded safe lives more realistic to specific batches in use. 
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high temperature applications: An application to 12Cr stainless steel bars for 
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ABSTRACT 

A modified version of the Wilshire equation was proposed to incorporate specific batch 

characteristics such as chemistry, heat treatment, hardness and grain size into the analysis of 

times to failure at high temperatures. A new two stage estimation procedure was proposed for 

obtaining values for the parameters of this modified Wilshire equation. This procedure 

overcomes the degrees of freedom obstacle present in extending the Wilshire equation is this 

direction: namely the small number of batches available in many creep data sets with which 

to investigate a large number of variables defining specific batch characteristics. Just a few 

batch characteristics were shown to be good predictors of the unknown parameters of the 

Wilshire equations – namely the P, Mn and Cu content of  the batch, the batches hardness and 

some types of heat treatment. Incorporating these characteristics into the Wilshire equation 

produced safe life predictions which were more meaningful to specific batches of a 12Cr 

stainless steel alloy in that the median predictions were more representative of a particular 

batch data and the 0.5 - 99.5 percentile bands were much narrower and so the lower bound 

provided a more economically feasible safe life.  The modification should allow for the more 

reliable safe life determination of specific batches actually being used by, for example, power 

generating companies. 

Keywords 

Wilshire equation, Time to failure, Batch characteristics, Creep 
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1. Introduction 

The structural integrity of many high temperature components needs to be assessed at 

long lifetimes. In order to perform such assessments, it is necessary to have confidence in the 

relevant material property predictions which may involve significant extrapolation beyond 

the range of the available data on a given material. This can prove particularly problematic 

when equations are based upon polynomial expressions (such as the methods proposed by 

Larson-Miller [1], Orr-Dorn-Shepherd [2] and Manson-Haferd [3]), since at low stresses the 

equations of these models are often subject to turn-back and hence it is not possible to 

extrapolate to long durations.  It is therefore of little surprise to note that a reduction in this 

12 - 15 year materials development cycle has therefore been defined as the No.1 priority in 

the 2007 UK Energy Materials – Strategic Research Agenda [4].  

 

In numerous studies on copper and various steel and titanium alloys, the Wilshire 

methodology [5-12] has proved remarkably successful in avoiding these extrapolation issues. 

However, this methodology is as yet unable to deliver accurate life time predictions for 

specific batches of a material because in all studies made to date using this methodology, the 

batch to batch variation present in large multi heat creep data sets is not modelled. That is, the 

methodology produces only an average or typical life time prediction for all batches of a 

material. As batch to batch variation is quite large, it is therefore impossible to say how long 

a particular batch, used within a specific power plant for example, will actually last at 

specified operating conditions. This would be invaluable information for power plant 

operators and addressing this issue forms the main content of this paper. 

 

Batch to batch variation will contain both a systematic and a random component, 

especially if it is not possible to quantify all the variables that characterise in full a particular 

batch. Evans [13] has proposed a solution to the random nature of this batch to batch 

variation (within the theta methodology) and this paper extends this analysis to also include a 

systematic component (within the Wilshire equation). This systematic component originates 

from the fact that creep life is well known to depend on batch characteristics such as grain 

size, chemical composition, hardness and heat treatment. Alloying elements and heat 

treatments play a role in the formation of closely spaced precipitates that obstruct the 

movement of dislocations  and so increase creep strength. Alloying elements play an 

additional role through solution strengthening, although the relative importance of all the 

different alloying elements is not so well understood. Details of the role played by particular 

alloying elements is discussed below in section 6.3.  

 

 It is also well known that grain size is important in controlling diffusional creep but not 

the diffusion controlled generation and movement of dislocations. Thus Burton and 

Greenwood [14] that in polycrystalline copper,  

 
m

m (1/d)ε   

 

where d is the grain diameter and mε is the minimum creep rate. Burton and Greenwood 

found that the parameter m varied between 2 and 3 depending on the absolute temperature. 

There have also been a number of studies showing the importance of hardness in determining 

creep rupture life.  Many of these studies have used the Larson-Miller equation. Thus 

Furtardo et. al. [15] found a strong correlation between the Larson Miller parameter and the 
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hardness at failure in 9Cr-1Mo ferretic steel, whilst  Fujibayashi et. al. [16] found that for 

2.25Cr-1Mo steel the Larson Miller parameter was a quadratic function of the log of the pre 

service Vickers hardness measurement, so allowing life times to be predicted from the initial 

hardness and stress/temperature conditions.  

 

In principal it is possible to incorporate into the Wilshire equation specific batch 

characteristics such as its chemical composition, the heat treatment it has been subjected to, 

the grain size, the frequency of inclusions and its hardness to predict the creep properties of 

that particular batch. The main problem with doing this is one of estimation, in that the 

number of variables that define a particular batch vastly exceeds the sample size available to 

estimate the parameters of the Wilshire equation. As a result, standard estimation procedures, 

such as least squares or maximum likelihood, are inappropriate. This paper describes a two-

step estimation procedure for overcoming this problem that is flexible enough in nature to 

deal with other life time prediction issues such as the uncertainty about the form of the failure 

time distribution, uncertainty about how to characterise a specific batch of a material and 

creep data sets that contained censored or un-failed test specimens. This new approach is 

illustrated using 12Cr stainless steel bar data as published by the National Institute for 

Materials Science (NIMS) in its creep data sheet No.13B [17]. 

 

2. The Wilshire equation  

The Wilshire equation for predicting times to failure takes the form: 
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where T is the absolute temperature,  is the stress, TS is the tensile strength, R is the 

universal gas constant, Q
*
c is the activation for self-diffusion and  k1 and u are parameters 

requiring estimation. This can rearranged to express the log time to failure as a linear function 

of transformations of the normalised stress and temperature 
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where b0 = -ln(k1)/u, b1 = 1/u and b2 = Q
*
c/R. Applications of Eqs. (1a,b) to numerous steel 

and titanium alloys has revealed that the values Q
*
c, k1 and u change is a step like fashion at 

some critical value for the normalised stress. One way to formulize this behavior is through 

the use of a spline function  
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where * = ln(-ln(TS)), 
* is

 
the value for * 

at which b0 , b1 and b4 change and D = 0 when 

(
*
-

*
)   0 and D = 1 otherwise. This gives a two regime model where 
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3.    The Wilshire equation modified for batch to batch variation 

A potentially useful way to analyse multi batch data is to allow the parameters of Eq. 

(2a) to differ from batch to batch in a partly random and partly deterministic fashion. Within 

the lifetime statistical literature, random effects models (see Hougaard [18] for a detailed 

review) have been developed to account for any dependence within clusters, such as different 

batches of material. A hierarchical version of Eq. (2a) takes the form 

(j)e(ij)
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D(ij)
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32
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            (3) 

  i = 1 to n(j) specimens for batch j and with  j = 1 to m  batches. 

The letters in round brackets refer to the ith specimen cut from the jth batch of 

materials. Thus tf(ij) is the failure time obtained by subjecting the ith specimen cut from the 

jth batch of material to a stress (ij) and temperature T(ij). In this formulation the parameters 

of the Wilshire equation differ from batch to batch as highlighted by the letter j after each 

such parameter. e(ij) is a standardised error term added to pick up the stochastic nature of the 

time at which specimens fail, i.e. the tendency for failure times to differ under identical 

settings of the test variables stress and temperature. The standardised error is found by 

dividing the actual error by the parameter (j), which if these errors are normally distributed 

would by the standard deviation of the error associated with batch j (the mean error is by 

definition zero). 

4. A two-step estimation procedure 

 

4.1.  Step 1 

 In step 1, the parameters if Eq. (3) are estimated separately using maximum likelihood 

techniques for each batch of material. This will yield m estimates for the parameters b0 

through to b4 and parameters 
*
1 and . Let these estimates be denoted by the hat symbol as 

follows 

    )(ˆ;)();(ˆ;)(ˆ;)(ˆ;)(ˆ;)(ˆ *

143210 jjjbjbjbjbjb   ;     j = 1, m                   (4) 

 One way to obtain these estimates is to apply ordinary least squares to Eq. (3) on a 

batch by batch basis, i.e. chose values for these parameters to as to minimise 

 


n(j)

1i

2 (i)eRSS(j)  for j = 1 to m (where 

(j) is further estimated as RSS(j)/n(j) - 7 ) that are 
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put on test. However this imposes some severe limitations on what can be achieved using 

Eqs. (3). First, because least squares does not require any specification to made about how 

failure times are distributed, predictions from the Wilshire equation typically come without 

any confidence limits placed around then. Further, least squares cannot deal with the 

existence of un failed or censored times, i.e. specimens within the experimental test program 

that have not yet failed by the time an analysis of the data is required. They must either be 

ignored or treated as failure times and in either approach this can lead to biased or inaccurate 

parameter estimates.  

Using maximum likelihood is a neat alternative to least squares because not only are 

censored times a natural part of the estimation procedure, the need to specify a failure time 

distribution results in predictions being made with levels of confidence. The only concern is 

that the nature of the creep failure time distribution is unknown so that the best approach is to 

use a very general specification for the distribution. Only then is it possible to see which 

distribution, contained as a special case within this general specification, is actually supported 

by the data. One such general distribution, suggested by Bartlett and Kendall’s [19], is the log 

gamma distribution. More recently, this distribution has been modified by Prentice [20] 

because in its original form the distribution had no limits. In this modification, the random 

variable e(ij) for each batch  is taken to have the probability density function (PDF’s) given 

by  

 ]))()((exp[e(ij)/))((e(ij)/)(exp
))(Γ(

)(
f(e(ij))

0.5)(

jjjj
j

j j




 




  ;     j = 1, m          (5a) 

 is the gamma function and  is a further parameter that standardises the random 

variable error. These parameters can be different for each of the j = 1, m batches and so are 

written as ((j), (j). Prentice has shown that when the parameter (j) = 1, e(ij) for batch j has 

an standard extreme value distributions (and so failure times are Weibull distributed). But 

when (j) = , e(ij) for batch j has a standard normal distributions (and so failure times are 

log normally distributed). In this special case,  is the standard deviation for the natural 

log of times to failure for batch j. Further, when(j) = 1 and (j) = 1 e(ij) has an standard 

exponential distribution. The gamma distribution is also a special case. This specification 

allows for the possibility that the failure times associated with each batch can be different in 

nature. 

 

Any percentile (p) of this distribution is then given by 
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j = 1, m 
 

where 
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                  (5c) 

 

with 
2
 having a value that corresponds to the p

th
 percentile of the chi square distribution with 

2(j) degrees of freedom. 
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In maximum likelihood estimation, the parameters of Eq. (5a) are chosen so as to 

maximise the joint probability of observing all the observed failure times and all the observed 

censored times recorded for batch j (where there are n(j) such observation in each batch). 

Such a maximisation is carried out for each batch. This is typically done by maximising the 

log likelihood function, which given Eq. (5a), has the form 
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j=1, m  (5d) 

 

where Q() is the incomplete gamma integral and gives the probability of specimen surviving 

a given length of time (natural log of time) and n1(j) are the number of failed specimens in the 

jth batch of data and n2(j) the number of censored or un failed specimens in the jth batch. 

Step 1 then involves maximising Eq.(5d) for each of the j batches of material to give the 

parameter estimates shown in Eqs. (3,4). This yields m separate estimates of the parameters 

b0 to b4 as well as  (one for each batch). During this procedure L(j) may differ between the 

batches in which case the failure times associated with each batch are distributed differently. 

 

4.2. Step 2 

The estimated batch to batch variation in the Wilshire parameters can next be related 

to all the variables that define the nature of the batches and which distinguish one batch of the 

same material from another 
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                                                                                       (6)                      

where xk(j) are the k =1 to p variables that describe the jth batch, e.g. x1(j)  may the carbon 

content and x2(j) may be the chrome content of batch j. These batch specific variables can be 

used to predict the parameters of the Wilshire equation for each specific batch. Part of the 

variation in the Wilshire parameters between batches may also be random in nature, i.e. not 

dependent on these batch variables, and this is picked up in the error terms u0(j) to u6(j). This 

is likely to be the case as it is not possible to quantify all the variables that distinguish one 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

batch from another and these missing variables can be captured by these random error terms. 

Varying degrees of generality can then be achieved by specifying different properties for all 

these random error terms – to be discussed further below. 

Eq. (5d) reveals the degrees f freedom problem involved in estimating all the 

parameters in Eq. (6). Typically a creep data set will be made up of no more than around m = 

10 batches, so for example there will only be 10 values for say b0. Typically, p will exceed 

this number of batches (for example at least 10 chemical elements are typically listed for a 

particular batch and then there will be further distinguishing features such as hardness, heat 

treatments etc.). With p exceeding the number of batches m, it becomes impossible to 

estimate all the c parameters in Eq. (6) as there are insufficient degrees of freedom. The 

solution is to use partial least squares (pls) within this second step of the estimation 

procedure. 

In seeking dimensionality reduction useful for predictive purposes, the obvious 

objective criteria to use is to choose components that are linear combinations of the x’s that 

maximise the covariance between the dependent variable and all the explanatory variables. 

This essentially is what partial least squares does. These pls components are typically labelled 

T1q, T2q,....Thq , (q = 0, 6 and h is less than m),  and there are some intuitively straightforward  

ways to implement pls and these details are contained in Appendix A to this paper. Once the 

pls components are calculated, the PLS regression equations then take the form  

(j).uTδ...(j)Tδδ(j)ˆ

(j),uTδ...(j)Tδδ(j)ˆ

(j),uTδ...(j)Tδδ(j)b̂

(j),uTδ...(j)Tδδ(j)b̂

(j),uTδ...(j)Tδδ(j)b̂

(j),uTδ...(j)Tδδ(j)b̂

(j),uTδ...(j)Tδδ(j)b̂
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                   (7) 

There are two ways to estimate the delta parameters in Eq. (7). The error terms u0 to 

u6 can be assumed to be normally and independently distributed in which case ordinary least 

squares can be applied separately to each of the equations in Eq. (7). Again the hat symbol 

will be used to denote these estimates  

 aq ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ
6543210           ;                              q = 0, 6 and a  = 1,  h                                   (8) 

Alternatively, if the errors terms u0 to u6 are normally distributed with zero mean, but 

also correlated with each other, then in this the case values for these seven error variables are 

generated by a joint normal distribution with zero mean which is given by 

/1 )(j)()(j)(5.05.05/2)2()]([ uΣuΣu
 ej 

 
                                                       

 

          (9a) 
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In Eq. (10a) the vector u(j)contains the jth observation on the q = 0, 6 random error 

variables defined by Eq. (7) . In Eq. (9a) the matrix  is the associated covariance matrix 

(symmetric) containing the variances for each of the uq errors terms down the diagonal and 

the covariance’s between the errors off this diagonal  
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u0 is the variance of the u0(j), 


u1 is the variance of the u1(j) and so on. u01 is the 

covariance between the u0(j)  and the u1(j) values and u02 is the covariance between the u0(j)  

and the u2(j) values and so on.  is a symmetric matrix with elements above the diagonal (left 

blank) equalling those elements below the diagonal. 

 

Such dependence comes under the heading of seemingly unrelated regressions (SUR) 

and estimation of the delta parameters in such circumstances is described in appendix B of 

this paper. If the errors are dependent then SUR estimation is more efficient than the separate 

application of ordinary least squares to each equation  - i.e. it will result in smaller standard 

errors for the estimated delta parameters. The tilde symbol will be used to denote these SUR 

estimates  

 aq
~

,
~

,
~

,
~

,
~

,
~

,
~

,
~

6543210                            q = 0, 6     and      a  = 1, h                                    (10)            

Also, this paper will restrict its analysis to h = 1. 

4.3.      Percentiles 

A simulation approach can also be used to obtain percentiles for this hierarchical 

model. This approach requires first simulating values for uq, using qq Λ̂vu  , where /ΛΛ̂ = Σ̂

and vq is a vector of seven observation chosen at random from the standard normal 

distribution. This yields the vector uq containing seven randomly selected values for u0 to u6. 

The hat refers to estimated values obtained in the way described above. These simulate 

values for u0 to u6 are then inserted into Eq. (8), together with a particular batch characteristic 

(i.e. values for Thq) to simulate values for all the bq(j), 
*
1(j) and (j) for that particular batch. 

All these values are then inserted into Eqs. (5b,c) together with a particular stress and 

temperature to obtain any desired percentile life time prediction for that batch operating at 

that chosen stress/temperature combination. This process is repeated many times from which 

it is possible to calculate the average of all these percentile predictions. Finally, repeating this 

process for other stress and temperatures yields a predicted relationship between time to 

failure and any stress/temperature combination. 
. 
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5. The data 

The above techniques are illustrated using 12Cr stainless steel bars for turbine blades. 

For m = 9 batches of this product (coded alphabetically RBA to RBJ), both the creep and 

creep fracture properties have been published in creep data sheet No.13b by the National 

Institute for Materials Science [17], Japan. Each batch has a slightly different chemical 

composition as shown in Table 1a and underwent different heat treatments as shown in the 

final column of Table 1b. Table 1b also shows some other material properties of these 

batches, such as Rockwell hardness and grain size, that further help characterize and describe 

the differences between all these batches.  A total of 241 specimens were tested at constant 

load over a wide range of conditions: 373 MPa - 41MPa and 723K – 873K. (Recordings were 

also made of minimum creep rate (
me ) and the times to attain various strains (te) at 0.005, 

0.01, 0.02 and 0.05 over this range of test conditions). At the time of publication some ten of 

these specimens remained unfailed and so the published times are actually censored times as 

these tests are still ongoing. Batches RBC, REE, RBF and RBG had no such unfailed 

specimens.  

 

 

 

 

Table 1a 

Chemical composition of each batch of 12Cr stainless steel (wt%). 

 

Table 1b 

 Other batch characteristics of 12Cr stainless steel. 

  

6. Results 

6.1.  Ignoring batch to batch variation 

Fig. 1a shows all the batches in this data set within the typical Wilshire presentation 

for times to failure. Also shown is the Wilshire fit to this data obtained by ignoring the batch 

to batch differences described in Tables 1 and which can be visualised in Fig. 1a. The 

censored data points are shown as solid elongated bars and these were treated as actual failure 

times when estimating the parameters of Eq. (2a) using ordinary least squares and a grid 

search for 
*
1. In obtaining the resulting estimates shown in Fig.1a all the batches were 

treated as homogenous, i.e. as a single sample of data, and assuming that the log failure times 

are normally distributed so that the standard deviation in such log failure times is estimated at 

 = 0.767. Although not reported here, the t statistic associated with parameter b4 in Eq. (2a) 

suggest that the values for u and k1 are statistically significantly different from each other (at 

the 1% significance level) above and below the kink point occurring at 
*
1

 
= -0.8125  (or at a 

normalised stress of 0.642). Whilst the t statistic on parameter b5 also suggest a significantly 

different activation energy either side of this kink point, the magnitude of this difference is 

very small (around 6 kJ mol
-1

)
. 
This suggests that for this materials the activation energy for 

lattice self-diffusion is around 375 kJ mol-1. Also shown are the 0.5 and 99.5 percentiles 

obtained using Eqs. (5b,c) assuming that failure times are log normally distributed. This 

interval should contain 99% of all the data and is very wide because the batch to batch 
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variation is ignored or treated as homogenous. This 0.5 percentile can be used to life any 

batch (as it gives a replacement time such that there is only a 0.5% chance of failure before 

that time) and this will be compared to the results below that make use of particular batch 

characteristics. 

Fig.1a. Plot of ln[-ln(TS)] against tFexp[Q
*
c/RT] for each batch of 12Cr stainless steel. 

Fig. 1b shows the Wilshire fit in Fig.1a but within the normalized stress v time to 

failure space for two temperatures – 773K (the lowest temperature in the data set)  and 823K 

(the highest temperatures). Again the 0.5 and 99.5 percentiles are shown. So at 823K and a 

normalized stress of 0.17, there is a 50% chance of failure at or before 326 hours (the median 

prediction), but a 0.5% chance of failure at or before only 45 hours. Again at 723K and a 

normalized stress of 0.42, there is a 50% chance of failure at or before 117,329 hours (the 

median prediction), but a 0.5% chance of failure at or before only 16,273 hours. So if these 

were the operating conditions, replacement would have to be made after only 16,273 hours if 

the risk of failure was to be as low as 0.5%. This would be true no matter what batch was 

being considered. However, as shown in Fig. 1b, batch RBF has failure times consistently 

above the median life time prediction at both temperatures, suggesting this batch of material 

may be more creep resistant that the others on average. If the characteristics of this batch 

could be used to make prediction it would be possible to obtain more accurate median life 

time predictions and possibly also narrow down this 99 percentile interval and obtain safe life 

times that are more realistic and suitable to the batch of material being used at a specific 

power plant. The following sub sections show the results of trying to do just his using the 

methods discussed in sections 3 and 4. 

Fig.1b. Plot of times to failure against the normalised stress at 873K and 723K for 12 Cr 

stainless steel, together with the percentile predictions obtained by ignoring batch differences. 

6.2. Results of step 1 estimation 

Table 2 shows the results of maximizing Eq. (5d) separately for each batch of 

material. The one but last column of this table shows that for most batches the log likelihood 

is maximized when k = ∞, suggesting that for most batches failure times follow a log normal 

distribution. The exceptions are batches RBB, RBG and RBH. However, for these batches, 

Fig.2 plots the difference between  the log likelihood shown in Table 2 and the maximized 

log likelihoods for the other k values shown on the horizontal axis (actually k
-0.5

 is shown on 

the horizontal axis to rescale the range 1 to ∞ to the narrower 0 to 1). This difference when 

multiplied by -2 has a chi square distribution with 1 degree of freedom under the null 

hypothesis that k equals the specified value shown on the horizontal axis. The 5% critical 

value for this chi square distribution is shown as the horizontal line in Fig.2. Only for batch 

RBH is this critical value exceeded, so that for batches RBB and RBG the null hypothesis of 

a log normal distribution cannot be rejected at the 5% significance level even though this 

distribution does not give the largest log likelihood. At odds with all the other batches, the log 

likelihood for batch RBH is maximized when k = 1 (corresponding to failure times being 

Weibull distributed). Further, batch RBH appears not to have a log normal failure time 
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distribution at the 5% significance level (but does so at the 1% significance level and so this 

batch to may have the same distribution as the others). 

Fig. 2. Plot of k against the likelihood ratio statistic testing the null hypothesis that k takes on 

the values shown on the horizontal axis. 

Reading down the fourth column of Table 2 shows that the activation energy varies 

considerably between the batches, varying from a low of 273 kJmol
-1

 for RBH to a high of 

331 kJmol
-1

 for batch RBF. Reading down column eight of Table 2 reveals that the 

breakpoint in the Wilshire equation occurs at very different normalized stresses so that for 

batch RBB this discontinuity occurs at a normalized stress of exp(-exp(0.22)) = 0.29, whilst 

for batch RBJ this occurs at a normalized stress of 0.56. The average of all these varying 

break points is very similar to the break point estimated when ignoring batch differences, i.e. 

the value shown in Fig.1a. Further, column five reveals that at least the 5% significance level, 

the values for bo(j) and b1(j) are significantly different above and below these points of 

discontinuity. However, column 6 reveals that for batches RBA, RBB, RBC and RBG, the 

activation energy is not different above and below these points of discontinuity. For the 

remaining batches the activation energy does vary either side of the points of discontinuity at 

least the 10% significance level. But for these batches the change in the activation energy 

above and below the points of discontinuity are quite small – no more than 11.79 kJmol
-1

. 

The results down column 7 of Table 1 are informative when looking at probabilities 

of failure. When k = ∞, so that times to failure are log normally distributed, (j) is the 

standard deviation in log times to failure for batch j. For other values of k, and so other 

failure time distributions, (j)  is a multiple of the standard deviation in log failure times. 

What column 7 reveals therefore is that the spread or scatter present in times to failure varies 

quite considerably between al the batches with batch RBH having the smallest scatter in the 

measured failure times and batch RBD the largest. This suggests that the predictions shown 

in Fig.1b from the Wilshire equation that ignores the differences between batches are 

meaningless because these differing (j) values suggest the time such that there is only a 

0.5% change of failure will be much further below the median predictions for batch RBD 

compared to batch RBH. It makes little sense to have a predicted time corresponding to a 

0.5% probability of failure that is the same for all batches – and this is also true for any 

percentile failure prediction. Users of 12Cr stainless steel can obtain more sensible failure 

time predictions based on the characteristics of the batches of material that they use. 

The effect of ignoring censored data points or treating them as actual failure times can 

be seen by looking at, for example, Batch RBA which has three censored observations (which 

makes up 12% of the sample observations on this batch). Table 1 gives the estimates when 

these observations are treated correctly by amending the log likelihood to include the 

cumulative density function for such data points. If the censored data points are treated as 

actual failure times the maximum likelihood estimates of the parameters of the Wilshire 

equation change to: 
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with  = 0.290. 

Thus incorrectly dealing with censored data leads to an underestimation of  and 

thus any percentile bands for times to failure. It also leads to an overestimation of the 

activation energy (inflating it by around 6 kJmol
-1

), and also the values for bo and b1. 

Table 2 

Maximum likelihood estimates of Wilshire parameters: batch by batch. 

  

6.3. Results of step 2 estimation 

In this section equations are estimated to relate the b values in Table 2 to the batch 

characteristics summarized in Tables 1. Table 3 shows the results of regressing the estimated 

Wilshire parameters for each batch (as shown in Table 2) on the batch variables shown in 

Tables 1 – one at a time. The differences in these parameters between the batches is one way 

of visualizing the effect of batch characteristics on creep properties such as the time to 

failure. This was done separately for each batch variable  to give the loading values shown in 

Table 3 – which are the 1kq1kdw  values defined by Eq. (A2). Thus each loading is the best fit 

slope of a line within a plot of bq(j) on each xk.  The coefficient of determination, or R
2
 value, 

of such a fit reveals how important that batch variable is in explaining the Wilshire 

parameters. So in Fig.3, this R
2
 value is square rooted to reveal the correlation coefficient and 

then standardized by diving it by the standard deviation for a correlation coefficient to give a 

t value  

t = [r(n-2)/1-r
2
]

0.5                                                                                                                                                                             
(11) 

where r is the square root of the coefficient of determination. Any standardized correlation 

coefficient in excess of approximately 2 is then significant at the 5% significance level so 

revealing the important batch variables.  This t value is shown on the vertical axis of the 

graphs in Fig,3 – one such t value for each batch variable shown on the horizontal axis. 

Fig. 3 shows that the value for b0 and the activation energy (b2) is predominantly 

determined by x7 and x17 which are the P content of the batch and whether that batch went 

through heat treatment 3. The results indicate that an increase in P will shorten the time to 

failure through its influence on b0 and the activation energy. Phosphorous is an impurity that 

has been shown by Takamatsu et. al. [21] to reduce creep strength in Grade 92 steel.  These 

authors have shown that this effect occurs because Phosphorous decreases the interfacial 

energy at the grain boundary.  

Unsurprisingly, b3 is determined by the same variables as this parameter measure the 

change in b1 either side of the point of discontinuity. The value for b1 is predominantly 

determined by x2, x6 and x15 which are the Rockwell hardness, Mn content of the batch and 

whether that batch went through heat treatment 1. The results indicate that an increase in Mn 
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will lengthen the time to failure through its influence on b1. The effect of Mn on creep life is 

similar to that  for Carbon, in that it plays a role in the elimination of thermally unstable M23 

C6 carbides thereby increasing the time taken to reach failure. This, for example, was 

demonstrated  by Taneike et. al. [22] in heat resistant steels for power plants.  

The breakpoint does not seem to be determined by any of the batch characteristics so 

the variation in this breakpoint between the batch must be just random in nature.  or the 

variation in failure times for each batch, is predominantly determined by x2, x7 x12 and x16 

which are the Rockwell hardness of the batch, the P content of the batch, the Cu content of 

the batch  and whether that batch went through heat treatment 2. 

Fig. 3. Plot of the standardised correlation coefficients (given by Eq. (11)) between each 

Wilshire parameter and each batch variable. 

These loading were then used to form the q partial least squares components 1qT given 

by Eq. (A2). Fig. 4 plots these components against all the Wilshire parameters and it can be 

seen that these components are very strong predictors of the batch to batch variations in these 

Wilshire parameters. The best fit lines shown in Fig. 4 were obtained by applying least 

squares separately to each Wilshire parameter and the standard errors associated with the 

intercept and slope of these best fit lines are shown in round brackets.. Thus T10 can explain 

85.6% of the batch to batch variation in b0, so the remaining variation is random in nature and 

quantified by the variance of the residuals in this plot, i.e. 

uo = 2.34. b1 has a slightly 

weaker systematic component with 72.7% of the batch to batch variation in b1 being 

explained by T11, with the remaining random variation quantified by 


u1 = 0.512. The 

activation energy (b2) has a very strong systematic component with 84.6% of the batch to 

batch variation in b2 being explained by T12 with the remaining random variation measured 

by 


u2 = 109.5. The scale parameter also has a very strong systematic component with 

83.0% of the batch to batch variation in s being explained by T16 with the remaining random 

variation measured by 


u6 = 0.01. Even the break point seems to be well predicted by the 

partial least squares component T15. 

 

     Table 3 

     The loadings in partial least squares components for each Wilshire parameter.  

Fig. 4. Plot of the parameters of the Wilshire equation for each batch against their partial least 

squares components. 

The SUR estimates of the best fit lines through the data points shown in Fig. 4 are 

shown in Eq. (12a). In comparison to the least squares estimates in Fig.4, it is apparent that 

the intercepts are unchanged, but the slope estimates are slightly different. The slopes are 

slightly lower for b0 and b1, but slightly higher for b2, b3 and b4, but almost identical for the 

breakpoint and . The main difference comes however in the standard deviation from the 

random component terms u0 to u6. The estimated variance covariance matrix for these error 

terms is shown in Eq. (12b). In Eq. (12b) the values above the diagonal, shown in bold, are 
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actually the correlation coefficients between the various random error terms. It is clear that 

some of these correlations are quite large. For example, the correlation coefficient between 

the random components uo and u2 is -0.98, whilst the correlation coefficient between u2 and u6 

is 0.71. As a consequence of this it is unsurprising to see the substantial reduction in the 

standard errors of the parameters that comes from account for this cross equation correlation 

using SUR estimation. For example, the SUR estimate for the standard error of the slope 

coefficient in front of component T12 is 0.123 (see Eq. (12a)) compared to the least squares 

estimate of 3.49 shown in Fig. 4. This improved efficiency holds for all the slope parameters. 

Thus the SUR estimates are more efficient and the parameters estimated more reliably and so 

these will be used in the next sub section to derive the failure time predictions for specific 

batches. 

(0.076).  (0.030)           

(j)u(j)T007.4376.0(j)ˆ

(0.158),  (0.046)             
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                                                                                   (12a) 

 Notice also that the estimated variance of the random error terms u0 to u6 are also 

lower using the SUR estimation procedure. For example, using ordinary least squares, the 

variance of u0 is estimated at 2.34, but using SUR it is estimated as 1.82. As another 

illustration, , the variance of u2 is estimated at 109.476, but using SUR it is estimated as 

85.239. This reduction will have big implication for the estimated percentile time to failure 

predictions, with least squares estimates resulting in an overestimate of the range of failure 

times making up say the percentile interval 0.5% to 99.5% 
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6.4. Comparison of prediction intervals 

Figs. 5 show the application of the above technique to batches RBF (j = 6) and RBH 

(j = 8) using the SUR and maximum likelihood estimates shown in the previous two sub 

sections. The solid curves in both these figures correspond to those shown in Fig. 1b and so 

correspond to predictions obtained using the Wilshire equation ignoring batch specific 

characteristics. In Fig. 5a the failure times for batch RBH are shown for two separate 

temperatures. Notice that at temperature 723K the median failure time prediction obtained 

when ignoring the batch specifics of RBH underestimates the actual failure times for 

specimens cut from this batch.  However, when the batch characteristics of RBH are 

combined with the loading values in Table 3, specific values for T11 to T16 are obtained, 

which yield predictions of the Wilshire parameters for that batch: 
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                                                                            (13) 

where for example T11 = 0.6709 = 1.2580*(4.8-5.98)+……..-0.6254*(0-0.11) and where 5.98 

is the average C content over all nine batches, 4.8 is the C content for batch RBH, 1.2580 the 

loading in front of C shown in the top row of the second column of Table 3, 0 is the dummy 

variable for heat treatment 5 for batch RBH and 0.11 the average value for this dummy 

variable over the nine batches. 
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Using the procedure described in sub section 4.4, random values are obtained for 

u0(6) to u6(6) which are substituted into Eq. (13) to yield values for b0(6) to (6). These are 

then inserted into Eq. (5b), to obtain a median, 0.5 and 99.5 percentile failure time predictions 

at a specified normalised stress and temperature. Then this process of simulating values for 

u0(6) to u6(6) is repeated 2,000 times to obtain 2000 median, 0.5 and 99.5 percentile failure 

time predictions. These are then averaged out to obtain the median, 0.5 and 99.5 percentile 

failure time predictions. The dashed curves in Fig. 5a show these median and percentile 

predictions when this process is repeated over a range of normalised stresses and two 

temperatures.  

Fig.5a. Plot of times to failure against the normalised stress at 873K and 723K for batch RBH 

of 12Cr stainless steel, together with the percentile predictions obtained by a. ignoring batch 

differences (solid curves) and b. accounting for batch differences (dashed curves). 

 

It can be seen that by taking into account the batch characteristics of RBH, the median 

prediction is now much more representative of this batches actual failure times than is the 

median prediction obtained by ignoring these characteristics. Notice also that the 0.5 

percentile prediction is also associated with much higher failure times than that obtained by 

ignoring the batch characteristics of RBH. This suggest that for companies operating with a 

0.5% risk of failure, the materials could stay in operation much longer than that suggested 

from the use of the Wilshire equation that ignores batch specific characteristics. This in turn 

would have significant financial benefits. The 99.5 – 0.5 percentile prediction band is much 

narrower when considering the batch characteristics for RBH compared to ignoring batch 

variation, because as shown in Table 2 (6) = 0.1449, which is substantially lower than 

= 

0.767 shown in Fig. 1a where batch to batch variation is ignored (which can be considered an 

weighted average of all the  values shown in Table 2). This band is also much narrower at 

873K as well and interestingly the point of discontinuity occurs at a much lower normalised 

stress in comparison to when batch characteristics are ignored. 

Fig. 5b repeats this analysis for batch RBF. Again notice that taking into account the 

characteristics of this batch produces much more realistic median time predictions than 

simply ignoring such characteristics. The 99.5 – 0.5 percentile prediction band is again a little 

narrower than that obtained when ignoring batch to batch variation. However this band is not 

as narrow as for batch RBH because (8) = 0.5339 which is higher than (6) but now much 

closer to 

= 0.767 shown in Fig. 1a - where batch to batch variation is ignored. The point of 

discontinuity occurs at a slightly lower normalised stress and breaks in the opposite direction 

in comparison to when batch characteristics are ignored. 

It is clear that to have predictions of safe life (e.g. a time such that there is a small 

chance of failure before then – such as 0.5%) that are suitable for a batch of material actually 

being used at say a power planet, the batch to batch variation cannot be ignored. It is more 

realistic to take into account the characteristics of that batch when making such predictions. 
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Fig.5b. Plot of times to failure against the normalised stress at 873K and 723K for batch RBF 

of 12Cr stainless steel, together with the percentile predictions obtained by a. ignoring batch 

differences (solid curves) and b. accounting for batch differences (dashed curves). 

7. Conclusions 

Specific batch characteristics were incorporated into the Wilshire equation for times to failure 

using a new twostep estimation procedure that made use of maximum likelihood at 

Seemingly unrelated regression (SUR) techniques. These specific batch characteristics 

included the batches chemical composition, the heat treatment it had been subjected to, the 

grain size, the frequency of inclusions and its hardness. Applying this modified Wilshire 

equation to 12Cr stainless steel lead to the following results: 

(1) For all but one batch of material, the null hypothesis that failure times were log 

normally distributed could not be rejected at the 5% significance level. However, for 

batch RBH the log likelihood function was maximised when failure times were 

Weibull distributed (although at the 1% significance level the null hypothesis that 

failure times were log normally distributed could not be rejected). 

(2) There was considerable variation in the values for the Wilshire parameters between all 

the batches, with the point of discontinuity also varying from batch to batch. For 

example, the estimated activation energy varied between the limits of 273 kJmol
-1

 for 

RBH to a high of 331 kJmol
-1

 for batch RBF. 

(3) The batches had very different standard deviations in the log failure times with  

being largest for batch RBD and smallest for batch RBH 

(4) The variation in the Wilshire parameters between the batches had both a systematic 

and a random component. For the systematic component only a few batch 

characteristics seemed to be important in explaining this variation – namely the P, Mn 

and Cu content of the batch, the batches hardness and some types of heat treatment. 

The random component was modelled as a multivariate normal distribution with the 

SUR estimates producing more efficient parameters estimates and smaller estimates 

for the size of the random component. 

(5) Result 3 meant that failure time prediction obtained from the Wilshire equation that 

ignored individual batch characteristics were irrelevant for a specific batch of material. 

Using the Wilshire equation modified to account for batch characteristics produced 

median predictions that were more representative of particular batches of data and the 

0.5 - 99.5 percentile bands were much narrower and so the lower bound provided a 

more economically feasible safe life.  The modification Wilshire equation should 

therefore allow for the more reliable safe life determination of specific batches actually 

being used by, for example, power generating companies.  
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Appendix 

A. Partial least squares (pls) 

In the second step of the estimation procedure there are q = 0, 6 dependent variables – 

b0(j) to b4(j), 
*
1(j) and (j) with j = 1 to m observations on each.  If b5(j) = 

*
1(j) and b6(j) = 

(j) then there is a sample of size m from which to estimate a linear relationship between 

each bq and the explanatory variables x1, x2, ... , xp which distinguish the m batches from one 

another.  For j = 1, ..., m, and q  = 0,…., 6, the jth datum in the sample is denoted by {x1(j), . . 

., xp(j), bq(j)}.  Denote their sample means by qb  = jbq(j)/m and kx  = j xk(j)/m, for  k = 

1,….,p. To simplify notation, each bq and all the xk are next centred to give variables u1q(j) 

and v1k(j), where u1q(j) = bq(j) - qb  and, v1k(j) = xk(j) - kx . The sample means of u1q and u1k 

are therefore by construction zero.  

 The partial least squares components can now be determined sequentially [23]. The 

first and most important components, T1q, are intended to be useful for predicting the u1q and 

are constructed as a linear combination of the v1k's. During its construction, sample 

correlations between the v1k's are ignored. To obtain T1q for each q, u1q is first regressed 

against v11, then against v12, and so on for each v1k in turn. Sample means are zero, so for q = 

0,…,6, and k = 1, . .. , p the resulting least squares regression equations are  

(j)η(j)vd(j)u 1q1k1kq1q            with        










m

1j

2

1k

m

1j

1k1q

1kq

(j)v

(j)(j)vu

d              (A1) 
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where 1q(j) are a random error terms. Given q and values of the v1k(j), each of the p 

equations in Eq. (A1) provides a prediction for ulq(j). To reconcile these predictions, while 

ignoring interrelationships between the v1k(j), a simple average, kd1kv1k(j)/p or, more 

generally, a weighted average can be used 

(j)vdw(j)T
p

1k

1k1kq1k1q 


                              (A2) 

where w1k are the weights, In the true spirit of pls these weights will be inversely proportional 

to the variances of the d1kq's , namely w1k = (m-1)var(v1k), where var(v1k) stands for variance 

of v1k. An obvious alternative weighting policy is to set each w1k equal to 1/p, so that each 

predictor of u1q(j) is given equal weight. This seems a natural choice and is also in the spirit 

of pls, which aims to spread the load among the xk variables in making predictions. This 

equal weighting policy is the one adopted in this paper. 

The procedure extends iteratively in a natural way to give components T2q, . . ., Thq, 

where h < m to preserve degrees of freedom and where each component is determined from 

the residuals of regressions on the preceding component, with residual variability in bq being 

related to residual information in the x's. Specifically, suppose that Ta(j) (a = 1) has just been 

constructed from variables ulq(j) and v1k(j), (k = 1., ..., p).  To obtain T(a+1)q(j), first the 

v(a+l)k(j)'s and ua+1q(j) are determined. For k = 1, ... . p, vak(j) is regressed against Taq(j), giving  




m

1j

2

ak

m

1j

akaq (j)v(j)(j)vT  

as the regression coefficient, and V(a+l)k(j) is defined by  

(j)(j)v(j)(j)vT(j)v(j)v aq

m

1j

2

ak

m

1j

akaqak1)k(a T








 


                           (A3) 

Its sample values, v(a+1)k(j), are the residuals from the regression. Similarly, u(a+1)q(j) is 

defined by  

(j)(j)T(j)(j)uT(j)uu aq

m

1j

2

aq

m

1j

aqaqaq1)q(a T








 


  

where u(a+1)q(j), are the residuals from the regression of uaq(j) on Taq(j).  

The "residual variability" in bq is u(a+1)q(j) and the "residual information" in xk is 

v(a+l)k(j), so the next stage is to regress u(a+1)q(j) against each v(a+l)k(j) in turn. The pth 

regression yields d(a+1)kqv(a+1)k as a predictor of ua+1q(j), where  








 
m

1j

2

1)k(a

m

1j

1)k(a1)q(a1)kq(a (j)v(j)(j)vud                            (A4) 
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Forming a linear combination of these predictors, as in Eq. (A2), gives the next 

component  

(j)vdw(j)T
p

1k

1)k(a1)kq(a1)k(a1)q( 


 a                                                                                  (A5) 

The PLS regression equation is then of the form  

(j)u(j)Tδ....(j)Tδ(j)Tδδ(j)b qhqh2q21q10q                             (A6) 

where each of the components Taq(j) are a linear combination of all the xk.  

B. SUR estimation 

SUR estimation is a feasible generalised least squares procedure that is iterated to 

convergence [24]. First, ordinary least squares is applied separately to the 7 equations in Eq. 

(7). This yields the least squares estimates for all the delta parameters (denoted with a hat 

above each delta) from which least squares estimates of the uq variables can be obtained – 

again denoted with a hat 

(j).û]Tδ̂...(j)Tδ̂δ̂[(j)ˆ

(j),û]Tδ̂...(j)Tδ̂δ̂[(j)ˆ

(j),û]Tδ̂...(j)Tδ̂δ̂[(j)b̂

(j),û]Tδ̂...(j)Tδ̂δ̂[(j)b̂

(j),û]Tδ̂...(j)Tδ̂δ̂[(j)b̂

(j),û]Tδ̂...(j)Tδ̂δ̂[(j)b̂

(j),û]Tδ̂...(j)Tδ̂δ̂[(j)b̂

6h6h616166

5h5h515155

*

1

4h4h4141444

3h3h3131333

2h2h2121222

1h1h1111111

0hoho101000



















                                                                        (B1) 

Next, these estimated values for uq can be used to estimate the elements of  in Eq. 

(9b) using the standard formulas for the sample variance and covariance 

1m

(j)u

σ̂

m

1j

2

q

2

uq







  and  
1m

(j)(j)uu

σ̂

m

1j

vq

uqv







     q = 0, 6 and v = q + 1                                     (B2) 

given that uq are zero mean variables. Eq. (B2) can be used to estimate   

























2

u

2
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u

636261606
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0
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............

σ̂σ̂σ̂

σ̂σ̂

σ̂

Σ̂                                                                                                   (B3) 

The generalised regression model then applies to the stacked model 
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1

6

1                 (B4) 

Each term in Eq. (B4) is itself a matrix hence the name stacked model. So, q is a 7x1 

vector containing all the delta parameters in the q+1th row of Eq. (7).  For example, 

 /0100 .... h0δ .  qb̂ is a m x 1 vector containing the j = 1, m values for the first step 

estimated b parameters shown in the q+1th row of  Eq. (6) – left hand side. For example, 

 /000 (m)b̂....(2)b̂(1)b̂ˆ 0b . qT is a m x (h+1) matrix containing the j = 1, m values for 

all the a=1, h partial least squares components that are shown in the q+1th row of  Eq. (7) – 

right hand side. For example,  





















(m)T...(m)T1

............

(2)T...(2)T1

(1)T...(1)T1

h010

h010

h010

0T        ;    





















(m)T...(m)T1

............

(2)T...(2)T1

(1)T...(1)T1

h111

h111

h111

1T    etc. 

̂ can now be used to form the SUR estimate for the delta parameters in Eq. (7) 

  bTTTδ 1 ˆˆˆ /
1

/ 


                                                                                                                           

(B5) 

These delta estimates given by Eq. (B5) can then be used to re-estimate the uq and 

thus ̂  in Eq. (B3). In turn this can be inserted into Eq. (B5) to provide a further update of 

the delta parameters. This iterative process is then be repeated until convergence. 
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Fig.1a. Plot of ln[-ln(TS)] against tFexp[Q
*
c/RT] for each batch of 12Cr stainless steel. 
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Fig.1b. Plot of times to failure against the normalised stress at 873K and 723K for 12 Cr 

stainless steel, together with the percentile predictions obtained by ignoring batch differences. 
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Fig. 2. Plot of k against the likelihood ratio statistic testing the null hypothesis that k takes on 

the values shown on the horizontal axis. 
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Fig. 3. Plot of the standardised correlation coefficients (given by Eq. (11)) between each 

Wilshire parameter and each batch variable. 
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Fig. 4. Plot of the parameters of the Wilshire equation for each batch against their partial least 

squares components. 
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Fig.5a. Plot of times to failure against the normalised stress at 873K and 723K for batch RBH 

of 12Cr stainless steel, together with the percentile predictions obtained by a. ignoring batch 

differences (solid curves) and b. accounting for batch differences (dashed curves). 
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Fig.5b. Plot of times to failure against the normalised stress at 873K and 723K for batch RBF 

of 12Cr stainless steel, together with the percentile predictions obtained by a. ignoring batch 

differences (solid curves) and b. accounting for batch differences (dashed curves). 
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Table 1a 

Chemical composition of each batch of 12Cr stainless steel (wt%). 

Batch C Si Mn P S Ni Cr Mo Cu Al N 

RBA 0.12 0.43 0.42 0.022 0.004 0.19 11.8 0.05 0.05 0.023 0.0149 

RBB 0.12 0.41 0.46 0.02 0.004 0.23 12.1 0.04 0.06 0.032 0.0137 

RBC 0.14 0.31 0.46 0.019 0.008 0.15 12 0.04 0.05 0.008 0.0167 

RBD 0.14 0.5 0.67 0.027 0.01 0.32 11.78 0.18 0.21 0.036 0.0175 

RBE 0.12 0.48 0.71 0.026 0.007 0.31 12.38 0.09 0.09 0.038 0.0194 

RBF 0.12 0.21 0.66 0.028 0.003 0.41 11.8 0.13 0.1 0.002 0.0393 

RBG 0.13 0.5 0.61 0.016 0.014 0.43 11.64 0.18 0.08 0.044 0.0264 

RBH 0.13 0.36 0.65 0.015 0.011 0.38 11.69 0.19 0.03 0.016 0.027 

RBJ 0.14 0.28 0.59 0.018 0.017 0.45 11.92 0.21 0.04 0.007 0.0303 

 

 

 

 

 

 

 

Table 1b 

 Other batch characteristics of 12Cr stainless steel. 

Batch Austenite grain size Rockwell Hardness % non metallic inclusion Heat treatment 

RBA 5.8 98 0.02 1 

RBB 5.6 99 0.02 1 

RBC 5.2 98 0.02 1 

RBD 6.9 94 0.03 2 

RBE 7 90 0.04 2 

RBF 5.6 93 0.04 2 

RBG 7.8 99 0.04 3 

RBH 4.8 99 0.05 4 

RBJ 5.1 98 0.06 5 

OC – Oil cooled. AC = Air cooled. 

1 - Forged. 950
0
C for 1 hour then OC. 650

0
C for 2 hours then AC. 

2 - Hot rolled. 970
0
C for 0.5 hours then OC. 650

0
C for 2 hours then AC. 

3 - Forged. 980
0
C for 0.5 hours then OC. 650

0
C for 2 hours then AC. 630

0
C for 2 hours then AC. 

4 - Forged. 980
0
C for 0.5 hours then OC. 640

0
C for 2 hours then AC. 630

0
C for 2 hours then AC. 

5 - Forged. 980
0
C for 0.5 hours then OC. 630

0
C for 2 hours then AC. 610

0
C for 2 hours then AC. 
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Table 2 

Maximum likelihood estimates of Wilshire parameters: batch by batch.
 

Parameter/

Batch 
(j)b̂o  (j)b̂1  (j)b̂2  (j)b̂3  (j)b̂4  (j)σ̂  

*
(j) K ln[L(j)] 

RBA: j=1 -25.4474 

[-15.30]
*
 

9.7443 

[16.30]
*
 

284.938 

[27.00]
*
 

-2.6049 

[3.95]
*
 

-2.2728 

[-1.31] 

0.3164 

[6.53]
*
 

-0.220 

[-] 
  -8.1714 

RBB: j=2 -29.2104 

[-18.00]
*
 

8.4526 

[22.40]
*
 

304.453 

[28.00]
*
 

-5.2704 

[-5.60]
*
 

2.3344 

[-1.03] 

0.3790 

[7.64]
*
 

0.220 

[-] 

12 -14.8987 

RBC: j=3 -30.2921 

[-27.00]
*
 

8.2671 

[23.50]
*
 

308.714 

[41.50]
*
 

-1.1760 

[-3.1]
*
 

1.4576 

[1.38] 

0.2328 

[7.22]
*
 

-0.200 

[-] 
  1.0193 

RBD: j=4 -28.5751 

[-6.47]
*
 

7.7055 

[7.53]
*
 

311.727 

[11.1]
*
 

-0.7452 

[-0.61]
*
 

-11.794 

[-2.8]
#
 

0.8757 

[7.14]
*
 

-0.526 

[-] 
  -34.6494 

RBE: j=5 -29.3016 

[-13.70]
*
 

5.9901 

[21.60]
*
 

296.935 

[21.60]
*
 

2.1905 

[3.95]
*
 

-3.0257 

[-1.65]
&
 

0.4861 

[7.51]
*
 

-0.140 

[-] 
  -19.4692 

RBF: j=6 -33.0998 

[-11.50]
*
 

6.6944 

[10.30]
*
 

331.079 

[18.30]
*
 

2.2468 

[32.8]
*
 

-8.7463 

[-3.47]
*
 

0.5339 

[7.08]
*
 

-0.591 

[-] 
  -19.7668 

RBG: j=7 -20.5856 

[-17.50]
*
 

7.6208 

[22.70]
*
 

244.690 

[31.80]
*
 

-2.1534 

[-5.48]
*
 

0.1626 

[0.16] 

0.2285 

[7.46]
*
 

0.051 

[-] 

4 0.4768 

RBH: j=8 -23.7031 

[-25.70]
*
 

9.1229 

[26.10]
*
 

273.542 

[43.90]
*
 

-1.6707 

[-4.64]
*
 

2.1863 

[2.57]
#
 

0.1449 

[6.06]
*
 

-0.325 

[-] 

1 6.8436 

RBJ: j=9 -28.1523 

[-28.20]
*
 

6.2439 

[10.70]
*
 

289.846 

[44.10]
*
 

1.2373 

[2.13]
#
 

3.2766 

[2.70]
#
 

0.1876 

[6.64]
*
 

-0.530 

[-] 
  3.6243 

*
 Rejects the null hypothesis that the parameter equals zero at the 1% significance level. 

#
 Rejects the null hypothesis that the parameter equals zero at the 5% significance level. 

&
 Rejects the null hypothesis that the parameter equals zero at the 10% significance level 

Student t test statistic for the above null hypothesis is shown in parenthesis. [-] means t value not available due 

to a grid search optimization used to identify 
*
1. 

Ln[L(j)] is the log likelihood for batch j as defined by Eq.(5d) 
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     Table 3 

     The loadings in partial least squares components for each Wilshire parameter. 
Batch 

variables/

Wilshire 

parameters 

(j)b̂o  (j)b̂1  (j)b̂2  (j)b̂3  (j)b̂4  



(j) (j)σ̂  

x1 1.2580 -0.3609 -8.5050 0.1241 -2.1013 0.0781 0.0968 

x2 0.6305 0.2508 -3.9342 -0.5478 1.0931 0.0302 -0.0469 

x3 49.819 -49.2047 -485.364 99.3708 62.8566 -9.0240 -4.3619 

x4 35.4676 -13.1331 -190.545 27.1627 41.0227 -11.2677 -0.6271 

x5 19.9344 2.2065 -117.957 -8.7688 -7.1979 1.3214 0.6630 

x6 -1.0842 -7.6955 4.5847 15.5683 -22.2161 -1.1346 0.8266 

x7 -541.691 -103.967 3844.799 248.2894 -941.769 -22.8802 40.7797 

x8 401.4471 -76.6911 -3005.49 81.9938 385.2947 -10.2645 -16.0234 

x9 8.2209 -6.4985 -64.9286 10.6465 -3.8289 -0.9958 -0.1019 

x10 -8.4554 -2.4034 40.0002 2.2238 2.9513 0.3465 0.1229 

x11 19.9715 -6.3173 -123.632 12.9327 -8.6641 -2.0444 0.0428 

x12 -15.9610 -6.0024 164.0345 9.0344 -85.2408 -1.6236 3.9829 

x13 122.9791 2.9370 -771.993 -57.2438 -43.4733 10.6142 4.5261 

X14 -48.6007 -73.1194 172.0446 178.598 -84.9226 -18.3903 -3.4670 

X15 -1.0804 1.5917 8.0652 -3.2013 3.4965 0.2768 0.1001 

X16 -4.0937 -1.4453 28.8832 3.1704 -9.0461 -0.2517 0.3837 

X17 7.8871 -0.1568 -55.4643 -1.4293 2.2356 0.34 -0.1661 

X18 4.3799 1.5331 -23.0058 -0.8863 4.5123 -0.083 0.2601 

X19 -0.6254 -1.7058 -4.6638 2.3852 5.7388 -0.3136 -0.2121 

x1 = Austenitic grain size; x2 = Rockwell hardness; x3 = % non metallic inclusions; x4 = C; x5 = Si; 

x6 = Mn; x7 = P; X8 = S; x9 = Ni, x10 = Cr; x11 = Mo; x12= Cu; x13 = Al; x14 = N; x15 = Heat treatment 

1; x16 = Heat treatment 2; x17 = Heat treatment 3; x18 = Heat treatment 4; x19 = Heat treatment 5. 

All chemical elements measured in % weight.  

Heat treatment variables are dummy variables taking on a value of 1 when that treatment applies and 

zero otherwise. 

All shown loading are the d1kq values of Eq. (A1) 

 

 

 

 

 


