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Abstract: Extended from the classic Rayleigh damping model in structural dynamics, the 

Caughey damping model allows the damping ratios to be specified in multiple modes while 

satisfying the orthogonality conditions. Despite of these desirable properties, Caughey damping 

suffers from a few major drawbacks: (1) depending on the frequency distribution of the significant 

modes, it can be difficult to choose the reference frequencies that ensure reasonable values for all 

damping ratios corresponding to the significant modes; (2) it cannot ensure all damping ratios are 

positive. This paper presents a constrained quadratic programming approach to address these 

issues. The new method minimizes the error of the structural displacement peak based on the 

response spectrum theory, while all modal damping ratios are constrained to be greater than zero. 

The proposed method is highly efficient and allows the damping ratios to be conveniently 

specified for all significant modes, producing optimal damping coefficients in practical 

applications. Several comprehensive examples are presented to demonstrate the accuracy and 

effectiveness of the proposed method, and comparisons with existing approaches are provided 

whenever possible.  

Key words:  Caughey damping; seismic response analysis; modal damping ratios; constrained 

quadratic programming 

1. Introduction 

Properly specifying the damping matrix is critical in seismic analysis 
[1]

. As many 

unquantifiable factors can cause damping, it is hard, if not impossible, to directly calculate the 

damping matrix from the dimensions and material parameters of structural members. In 

engineering practice, the damping matrix is constructed using measured or recommended damping 

values 
[2-5]

. Owing to simplicity in mathematical treatment, the Rayleigh damping model is widely 

used in real-world problems such as frames 
[6]

, bridges 
[7，8]

, dams 
[9]

 and domes 
[10]

. Some 

non-classical damping matrices have also been proposed, e.g. for structures made up of more than 

one single type of materials 
[11]

 and for passively controlled structures 
[12]

 with supplemental 

damping facilities. Mánica etc. 
[13]

 showed that the Rayleigh damping turned out to be the most 

suitable alternative to represent energy dissipation of soil elements. Hall 
[14]

 investigated the 

effects of mass-proportional damping and stiffness-proportional damping, and suggested using the 

stiffness-proportional damping for nonlinear time-history seismic analysis. Ryan and Polanco 
[15]

 

also recommended stiffness-proportional damping for the superstructure of base-isolated buildings. 

Hall 
[14]

, Zareian and Medina 
[16]

 and Jehel etc. 
[17]

 researched the updated tangent stiffness to 

calculate the Rayleigh coefficients for the effects of inelastic response. Base on shake table testing, 

Pant etc. 
[18]

 showed that the Rayleigh damping coefficients calculated with post-elastic stiffness 
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results in relatively lower errors in peak response; updating damping coefficients in each step is 

time-consuming but does not substantially improve results. Whatever initial or tangent stiffness, it 

should specify two reference frequencies to calculate the Rayleigh coefficients. 

It is well known that Rayleigh damping brings error to modal damping ratios with the 

exception of the two reference frequencies. Chopra 
[2]

 illustrated that the two reference modes 

should be carefully chosen to ensure reasonable damping ratios for all modes contributing 

significantly to the structural response. Tsai etc. 
[19]

 proposed that both the site frequency and the 

frequency characteristics should be considered to specify the two reference frequencies for the 

seismic response of soil layer. Taking the mode kinetic energy as the weight parameter, Yang etc. 
[20]

 developed a weighted least squares method to calculate Rayleigh damping coefficients. More 

recently, Pan etc.
 [21]

 proposed an optimization solution for Rayleigh damping coefficients, which 

greatly simplifies the determination of the two Rayleigh coefficients and eliminates the 

arbitrariness in the current experience-based practice.  

Rayleigh damping works well when the modes contributing significantly to the structural 

response are distributed over a narrow frequency band. However, for many structures, the 

significant modes for different responses are different and the associated frequencies can differ 

significantly. For example, the top displacement of a building structure is dominated by the first 

several lower-frequency modes, while the responses corresponding to higher modes can be 

significant for the foundation force of cantilever structures
 [22]

. In this case, Rayleigh damping 

cannot simultaneously ensure good accuracy for both displacements and forces. Hence, it is 

desirable to construct the damping matrix such that multiple modal damping ratios can be 

specified using the recommended/measured values.  

Clough
 [3]

 proposed a damping matrix which sets lower order modal damping ratios equal to 

the recommended values by combining stiffness-proportional damping with superposition of 

modal damping. Dong 
[23]

 combined the Rayleigh damping and the superposition of modal 

damping. However, these approaches result in full damping matrices, thereby increasing 

computing time for a large-scale finite element model. In principle, the Caughey damping model 
[24] 

can also set multiple modal damping ratios equal to the exact value. Moreover, for lumped 

mass matrix systems, the band width of the resulting damping matrix will only increase 

proportionally when the length of the Caughey series grows. The Caughey damping matrix c  is 

expressed as  
1

1

0

J
l

l

l

a






   c m m k                              (1) 

where m  denotes the mass matrix, k  the stiffness matrix, and la  the Caughey damping 

coefficients. The unknown coefficients la  can be evaluated by specifying J damping ratios *

l  

with reference frequencies rl   1,2, ,l J . That is  

T

r


a = Ω y                                (2) 

where  0 1 1

T

Ja a a a ,  * * *

1 2, , ,
T

J  y , and 1 2[ , , , ]r r r rJΩ Ω Ω Ω  with 

 1 2 11

2

T
J

ri ri ri ri   Ω   1,2, ,i J . However, the following problems have hindered 

the wider application of Caughey damping: (1) Eq. (2) is ill-conditioned when the entries of 

Caughey damping matrix are of great magnitude; (2) no effective guidelines are presently 

available for choosing the reference frequencies that ensure reasonable modal damping ratios for 

all significant contribution modes; (3) negative damping coefficients can occur as a result of 

arbitrarily specifying the reference modes even when an even number of terms are included in Eq. 
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(1). For the first challenge outlined above, Luco 
[25] 

proposed a factorization method to obtain the 

solution for the ill-conditioned matrix. For the choice of reference frequencies, Clough 
[3]

 used 

equally spaced points between 
1r  and 

rJ , and also suggested using an even number of terms 

in Caughey series. Here, 
1r  is the fundamental frequency and 

rJ  is the highest frequency of 

the significant modes. Choosing equally spaced points ignores the distinction of modal 

contribution, and as a result the calculation error cannot be controlled. Moreover, using an even 

number of terms in Caughey series does not avoid negative damping coefficients, especially for 

those frequencies near the endpoints. 

To address the above deficiency associated with Caughey damping, an optimization approach 

is proposed here to determine Caughey damping coefficients and ensure all damping ratios of 

significant modes to take reasonable values. Specifically, based on the response spectrum theory, 

an objective function is formulated to minimize the peak displacement error of a structure. By 

enforcing all modal damping ratios to be positive, a constrained quadratic programming scheme is 

formulated to calculate the Caughey damping coefficients. The proposed method has the following 

advantages: (1) there is no need to specify the reference frequencies, and instead the method 

directly obtains Caughey damping coefficients that ensures reasonable modal damping ratios for 

all significant modes; (2) all modal damping ratios are positive. The new method makes the 

Caughey damping model both accurate and computationally efficient, and thus suitable for time 

history analysis of large complex structures.  

2. Formulation for optimal Caughey damping coefficients 

For a multi-degree of freedom (MDOF) structure under seismic acceleration excitation, the 

equation of motion for the forced vibration can be expressed as 

( )gu t   mu cu ku mI                           (3) 

where u , u  and u  are the relative displacement, velocity and acceleration vectors, 

respectively, I  is the ground motion influence vector, ( )gu t  is the acceleration of ground 

motion, and c  is the damping matrix as defined in Eq. (1). Given the first N-order natural 

frequencies ωn (n = 1, 2, …, N) and the associated mode shapes  n, the approximate 

displacement of the structure can be expressed as a linear combination of N modal coordinates 

qn(t):  

1

( ) ( )
N

n n

n

t q t


u .                               (4) 

Then, the uncoupled equation for the n
th
 mode of vibration is 

2( ) 2 ( ) ( ) ( )n n n n n n n gq t q t q t u t                           (5) 

where /T

n n nM   mI  is the modal participation factor, and T

n n nM  m   is the modal mass. 

The approximate modal damping ratio ζn can be expressed as:  
T

n n  Ω a                                   (6) 

where  1 2 11

2

T
J

n n n n   Ω . Let knu  denote the approximate peak displacement 

responses contributed by the n
th
 mode of vibration to the k

th
 degree of freedom of the structure, 

and *

knu  the exact peak displacement response. Following the definition of the deformation 

response spectrum 
[2, 21]

, knu  and *

knu  can be expressed as  

( , )kn n kn d n nu S                                 (7) 

Page 3 of 26

http://mc.manuscriptcentral.com/engcom

Engineering Computations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Engineering Com
putations

4

* *( , )kn n kn d n nu S                                 (8) 

where    
0

max

1
( , ) ( ) sinn

t t

d n g nD

nD

S u e t d
 

     


 
     is the deformation response spectrum 

with 21nD n    . The term 
kn  is the n

th
 mode value at the k

th
 degree of freedom. When the 

exact modal damping ratio 
*

n  is used in the evaluation of spectral response, the peak response is 

*

knu  correspondingly. 

An objective function can be formulated to represent the total error Ek of the peak response at 

the k
th
 degree of freedom of the structure: 

2 2 * 2

1
[ ( , ) ( , )]

N

k n kn d n n d n nn
E S S     


  .                    (9) 

The objective function Ek is an implicit function of the damping coefficient a  through Sd(ζn, ωn) 

and ζn. To simplify this highly nonlinear relation, the deformation response spectrum Sd(ζn, ωn) is 

expanded into the first-order Taylor series:  
* * *( , ) ( , ) ( , )( )d n n d n n d n n n nS S S                           (10) 

where * *( , ) ( , ) /d n n d n n nS S        . Substituting Eq. (10) into Eq. (9) yields 

   2 ( )
T

T T

kE   a Ω a y w Ω a y                        (11) 

where  * * *

1 2, , ,
T

N  y ,  1 2diag , , ,k k kNw w ww , 2 2 2

kn n kn dw S   , and 
1 2[ , , , ]NΩ Ω Ω Ω . 

To simplify the equation, the weight coefficients are normalized as:  

1

/
N

kn kn ki

i

w w w


  .                              (12) 

 Under a given excitation, some of the weight coefficients will vanish, especially when mode 

shapes are orthogonal with the loading influence vector. Combining only those modes with weight 

coefficients exceeding a given threshold wmin, the objective function can be rewritten as 

   ( )
T

T Tf   a Ω a y w Ω a y .                       (13) 

To minimize ( )f a , the first derivatives of ( )f a  with respect to a  is set to zero, and the 

unconstrained optimal solution can be obtained as:  
1

T


  a = ΩwΩ Ωwy .                         (14) 

For Caughey series with J terms, Eq. (14) is consistent with the conventional solution shown in Eq. 

(2) when all J reference modes are included in the computation. However, like the conventional 

solution, Eq. (14) cannot avoid negative damping ratios, which are unrealistic. Thus, it is 

necessary to enforce  

0T

n n = Ω a > .                             (15) 

In order to avoid the impractical amplification of undamped modal responses, a threshold min   

representing the minimum modal damping ratio can be introduced for an optimal solution. Then, 

the constrained quadratic programming problem of a  can be expressed as:  

   minimize ( )
T

T Tf   a Ω a y w Ω a y                 (16a) 

minsubject to: T Ω a y                              (16b) 

 When the number of different natural frequency in Eq. (16) is no less than J, T
ΩwΩ  is a 

positive definite matrix. The matrix Ω  is a subset of Ω  consisting of all columns with 

different natural frequencies. Therefore, Ω  has full column rank. All entries of min
y  are set as 
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min
 . Eq. (16) defines a convex quadratic programming problem, for which the global optimal 

solution can be easily obtained 
[26]

. In this paper, the active set method 
[26]

 is adopted to solve Eq. 

(16), for which the details are explained in the next section. It can be a time-consuming task in 

real-world engineering applications to search for J reference modes that locally minimize the total 

error Ek and ensure all modal damping ratios are positive. Therefore, unless otherwise noted, this 

study always includes all vibration modes of interest in Eq. (16) to solve the optimal Caughey 

damping coefficients.  

3. The solution scheme 

3.1 Formulation based on the active set method 

Let ( )k
a  denote the feasible solution of Eq. (16) obtained in the k

th
 iteration, and the 

corresponding index set of the active constraints is: 

 ( )

min( ) 0,k T

cn sI n n J   a Ω a +                         (17) 

where  1,2, ,sJ N  is the index set of the constraints in Eq. (16b), and 

 1 2 11

2

T
J

cn cn cn cn   Ω  ( )( )kn I a . Then, we solve the following quadratic programming 

problem with equality constraints 

   minimize ( )
T

T Tf   a Ω a y w Ω a y                     (18a) 

( )

minsubject to: 0 ( )T k

cn n I  Ω a + a                     (18b) 

Eq. (18) can be solved via the standard Lagrange multiplier approach 

0

c

T

c

     
    

    

G Ω a r

Ω λ b
                             (19) 

where T
G = ΩwΩ , r Ωwy , 

1 2[ , , , ]c c c cm Ω Ω Ω Ω  and  minb = - . Denoted by ( )k
a  and 

( )k
λ , the solution of Eq. (19) has two possibilities: either ( ) ( )k ka a  or ( ) ( )k k

a = a .  

If ( ) ( )k k
a = a , the iteration can continue in two directions depending on the minimum entry of 

( )k
λ  expressed as  

 ( ) ( ) ( )min ( )k k k

q n n I   a .                        (20) 

If 
( ) 0k

q  , it means that ( )k
a  is the unique global solution and the iteration can be terminated. 

Otherwise,  ( 1)k
a  is updated with ( )k

a , and the active set ( 1)( )kI 
a  at ( 1)k

a  is formed by 

removing the index q from ( )( )kI a , after which the next iteration begins from solving Eq. (18) 

with the updated initial value ( 1)k
a  and active set ( 1)( )kI 

a .  

If ( ) ( )k ka a , the initial value for the next iteration is given by 

( 1) ( ) ( )k k k

k
  a a d                             (21) 

where ( ) ( ) ( )k k kd = a a , and k  is determined as 

 min 1,k p = , 
( )

( )

( )

min

( )
0,

( )

min
T k
n

k

T k

n

p T k

n
n I








Ω d

a

Ω a -
=

-Ω d
.                 (22) 

If 1k  , the active set ( 1)( )kI 
a  at ( 1)k

a  is formed by adding the index p into ( )( )kI a , 

otherwise ( 1)( )kI 
a = ( )( )kI a . Then, Eq. (18) is solved again with the updated ( 1)k

a  and ( 1)( )kI 
a .  
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The active set method requires an initial feasible solution (0)
a  that satisfies Eq. (16). It is 

well known that the damping ratios of Rayleigh damping are always larger than zero, therefore, 

the initial feasible solution (0)
a  can be set as 

 (0) (0) (0)

0 1 0 0
T

a aa
                          (23) 

*(0)
1 10 1

1 12 2 *(0)
111

2 NN

NN N

a

a

  

   
 

        
    

                               (24) 

where
1  and 

N  are the fundamental frequency and the highest calculated frequency 

respectively. In this work, 
min  is set as 

(0) (0)*

0 1

min min ,min ,( 1,2, , )
10 4 4

n

n

a a
n N






   
   

   
=

.              (25) 

Since (0)

min

T Ω a > y , the initial active set (0)( )I a  is a void set.  

3.2 The algorithm workflow  

End

(0) (0), ( )

0

I

k 

a a

( ) ( )Eq.(19) for ,k k
a λ

( )Eq.(20) for k

qλ

( ) ( ), ( )k kIa a

( ) ( )k k
a = a

( ) 0k

q λ

( 1) ( )k k a a
( 1) ( )( ) ( ) { }k kI I q  a a

1k k 

True

False

True

False

Eq.(22) for k
1k 

True

False

( 1) ( ) ( )k k k

k

  a a d

( 1) ( )( ) ( ) { }k kI I p  a a

1k k 

1k k 

( 1) ( )( ) ( )k kI I a a

 

Figure 1 Flowchart of optimal solution 

 

The workflow of the algorithm described above is shown in Figure 1, which is executed via 

four steps:  

 Step 1: Set k=0, compute the initial feasible solution (0)
a  from Eq. (23), and set the 
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active set (0)( )I a  as a void set.  

 Step 2: Compute ( )k
a  and ( )k

λ  from Eq. (19). If ( ) ( )k k
a = a , go to Step 3; otherwise go 

to Step 4.  

 Step 3: Find ( )k

q  using Eq. (20). If 
( ) 0k

q  , output ( )k
a  as the solution and terminate 

the computation; otherwise, remove the index q from ( )( )kI a  to construct the active set 

( 1)( )kI 
a , update ( 1)k

a  with ( )k
a , set k=k+1, and go back to Step 2.  

 Step 4: Find 
k  using Eq. (22) and set ( 1) ( ) ( )k k k

k
  a a d . If 1k  , construct the 

active set ( 1)( )kI 
a  by adding the index p to ( )( )kI a ; otherwise, let ( 1) ( )( ) ( )k kI I a a . 

Then set k=k+1 and go back to Step 2.  

4. Parametric studies  

4.1 Necessity of Caughey damping 

To illustrate the necessity of Caughey damping, a dynamic analysis is conducted on a 

seven-story frame 
[22]

, which has many significant contribution modes with large differences in 

natural frequencies of the significant contribution modes for different responses. The idealized 

computer model is shown in Figure 2. The height of each story is 3m and the span between 

neighboring columns is 4m. The density and elastic modulus of the material are 7850kg/m
3
 and 

200GPa, respectively. The details of structural components are given in Table 1. Using the 

lumped-mass, the frame has 70 possible mode shapes. The significant contribution modes for 

lateral and vertical vibration are shown in Table 2. For the lateral vibration, the first three mode 

shapes are enough to approximate the lateral vibration due to the fact that their accumulated mass 

participation percentage is more than 90%. However, to obtain the 90% mass participation factors 

in the vertical direction, it will require 24 mode shapes. The exact damping ratio is 2% for all 

modes of vibration.  

 

 

 

 

 

 

 

 

 

 

Figure 2 Model of a seven-story frame 
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Table 1 Details of structural components 

Structural 

component 

Story number Cross-sectional area  

(10-3m2) 

Area moment of 

inertia (10-5m2) 

Added mass 

(103kg/m) 

Beam 1-2 5.624 6.120 7.0 

 3-4 3.976 2.740 4.2 

 5-7 2.725 1.040 1.6 

Side-column 1-2 11.60 16.28 0 

 3-4 7.600 4.585 0 

 5-7 6.144 3.781 0 

Mid-column 1-2 24.00 36.16 0 

 3-4 16.00 10.77 0 

 5-7 16.00 10.77 0 

Table 2 Results of modal analysis of the frame 

Mode 
Frequency 

(Hz) 

Lateral mass participating factor Vertical mass participating factor 

Each (%) Accumulated (%) Each (%) Accumulated (%) 

1 0.537 55.379 55.379 0 0 

2 1.206 22.369 77.748 0 0 

3 2.252 12.847 90.596 0 0 

9 6.166 0 95.687 38.121 38.121 

11 6.473 0 95.687 2.253 40.735 

18 7.420 0 99.665 7.715 48.874 

20 7.670 0 99.930 14.640 63.514 

24 17.785 0 99.999 25.530 90.018 

32 36.897 0 99.999 2.809 92.840 

34 39.306 0 99.999 4.304 97.144 

70 157.676 0 100 0 100 

Suppose that the building is subjected to vertical harmonic ground motion excitations: 

1 2 3( ) sin sin singu t t t t                         (26) 

in which θ1=0.7ω9, θ2=1.25ω9 and θ3=2.8ω9. The peak vertical displacements of point A uyA and 

point B uyB as well as vertical foundation force FN derived by different numbers of mode are 

summarized in Table 3. It can be seen that the response errors can be very large when the 

significant modes are not included in the mode-superposition model (e.g. uyB with mode numbers 

11 and 18), and the response error is greatly reduced when all the modes contributing significantly 

to the particular response are included. It is apparent that the displacements of uyA and uyB derived 

by the first 24 modes are almost the exact, but FN is underestimated by 1.598%. The equivalent 

static forces s

nF  associated with the n
th
 mode response can be expressed as 2s

n n n nqF m , hence 

the contribution of higher modes are larger for foundation force than the displacements of point A 

and point B. The result indicates that the higher mode truncation affects the foundation force more 

than it does on the displacements. 

Table 3 Cumulative modal contributions 

Number of 

Modes 

uyA uyB FN 

Total(mm) Errors(%) Total(mm) Errors(%) Total(102kN) Errors(%) 

11 3.500 13.932 0.297 97.422 3.493 84.050 

18 2.879 6.283 0.495 95.703 5.687 74.032 

20 2.882 6.185 11.45 0.521 12.83 41.416 

24 3.073 0.033 11.51 0 21.55 1.598 

32 3.073 0.033 11.51 0 21.65 1.142 

34 3.072 0 11.51 0 21.80 0.457 

70 3.072 0 11.51 0 21.90 0 
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When Rayleigh damping is used to construct the damping matrix, two combinations were 

considered for the “reference” modes of vibration: i=9 & j=20 and i=9 & j=24. The errors of uyA, 

uyB and FN are presented in Table 4. Note that the errors of uyA are always smaller than 1%, but uyB 

is overestimated by 7.906% for i=9 & j=24 and FN is underestimated by 6.164% for i=9 & j=20. A 

closer examination indicates that θ2 is close to ω20 and θ3 is close to ω24. As shown in Table 3, for 

the uyB value, the 20
th

 mode response dominates the modal responses. Thus, shown in Table 4, the 

combination of i=9 & j=24 makes the 20
th
 modal damping ratios smaller than exact values, which 

causes the over-amplified response. For the FN, the 24
th
 mode response is significant. The 

combination of i=9 & j=20 makes the 24
th
 modal damping ratios larger than exact values, which 

causes the response smaller than the exact value. The significant contribution modes for different 

responses are different. When there are three or more significant contribution modes with large 

differences between the associated natural frequencies, Rayleigh damping will cause considerable 

errors in parts of dynamic responses whose frequencies of significant contribution modes stray far 

from the two “reference” frequencies. It is necessary to establish a damping matrix which makes 

more than two modal damping ratios equal to exact values. 

Table 4 Relative errors (%) of Rayleigh damping under harmonic excitation 

 
uyA uyB FN 

Peaks(mm) Errors(%) Peaks(mm) Errors(%) Peaks(102kN) Errors(%) 

i=9 & j=20 3.042 0.977 11.50 0.087 20.55 6.164 

i=9 & j=24 3.073 0.033 12.42 7.906 22.54 2.922 

4.2 Influences of exponent combination of Caughey series 

In Eq. (1), the integer exponent l can vary in the range l  , but in practice, two 

specific schemes are often preferred. One scheme is the direct extension of Rayleigh damping 
[2]

 

with 0,1, , 1l J   which is referred to as the extended Rayleigh exponent approach. The other 

scheme, referred to as the symmetric exponent approach, sets the l values as close to zero as 

possible 
[3]

, e.g. 1,0,1,2l    if four terms of Caughey Series are required. Clough suggested 

using equally spaced points between ωr1 and ωrJ as reference frequencies, where ωr1 and ωrJ are 

the fundamental frequency and the frequency of the highest mode that contributes significantly to 

the response. Let ωrJ be ω24 (the corresponding accumulated mass participation percentage is more 

than 90%), and set ωr2, ωr3, …, ωr(J-1) equally spaced within the frequency range. The Caughey 

damping coefficients are obtained by Eq. (2). Substituting the result into Eq. (6), the resulting 

damping ratio-frequency relation is shown in Figure 3. 

As shown in Figure 3(a), the even number of terms of the extended Rayleigh exponent 

approach makes damping ratios increase monotonically beyond the controlled range, which is 

reasonable, and is used later in the paper. But an important point to note is that negative damping 

occurs in J=8 for the extended Rayleigh exponent approach. In the viewpoint of numerical 

analysis, the Caughey series can be seen as a polynomial interpolation. Due to the Runge’s 

phenomenon 
[27]

 , i.e. higher interpolation curves are extremely steep at the endpoints, there still 

exists the risk of negative modal damping ratios even when an even number of terms are included 

in Eq. (1). It is necessary to ensure all damping ratios of natural frequencies larger than zero.  

As shown in Figure 3(b), the symmetric exponents approach has a serious defect such that the 

damping decreases monotonically with frequencies increasing above ω24 for J=4 and J=8. Modes 

with frequencies greater than the controlled range would be negative damping. This is 

unacceptable because the negative damping can lead to unpractical responses.  
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(a) The extended Rayleigh exponent approach    (b) The symmetrical exponent approach  

Figure 3 Damping ratio vs. frequency for various exponent combinations 

4.3 Optimal modal damping ratios of Caughey damping 

To investigate the characteristics of modal damping ratios obtained by Eq. (16) under the 

harmonic ground motion of Eq. (26) with 
1 90.7  , 

2 91.25   and 
3 92.8  , the term 

number J is set to 2, 4, 6 and 8, respectively. In Eq. (16), an optimal DOF, termed the reference 

DOF, should be specified to construct the weighted matrix. In the discussion, the vertical 

displacements of point A and point B in Figure 2 are both selected as reference DOFs, to examine 

the impact of different reference DOFs on the optimization results. That is, 
kn = n(Ay) or 

 n(By). For comprehensive optimal results, all significant modes should be included in Eq. (16) 

for optimization. To demonstrate the ability of finding the optimal reference frequencies using the 

proposed method, let N be 34. For comparison, two-, four-, six- and eight-term Caughey damping 

coefficients are determined by specified damping ratios, which is referred to as the conventional 

method in this paper. For this example, the reference frequencies are {ω9, ω24} for J=2, {ω9, ω18, 

ω20, ω24} for J=4, {ω9, ω11, ω18, ω20, ω24, ω34} for J=6, {ω9, ω11, ω15, ω18, ω20, ω24, ω32, ω34} for 

J=8. These reference frequencies are chosen according to their significant mass participating 

factors. At the same time, ωr1 and ωrJ are set as ω1 and ω34 for the endpoints of the equally spaced 

points, which is referred to as the equipartition method in this paper. The corresponding modal 

damping ratios are shown in Figure 4.  

For the conventional method, negative damping occurs for J=6 and J=8, which indicates 

selecting arbitrary reference frequencies to construct the Caughey damping is inappropriate. It is 

possible to avoid negative damping ratios in the conventional method, but this requires tedious 

trial and error and the accuracy of dynamic responses cannot be estimated in advance. Therefore, 

the following parametric studies do not discuss the conventional method. 

For the equipartition method, the negative modal damping appears again for J=8 due to 

Runge’s phenomenon. Another defect of the equipartition method is that the effects of modal 

contributions are neglected. In this case, the specified frequencies would deflect from the 

significant contribution modes, and will cause uncontrollable errors of responses. 

As for the optimization method, the damping curves also have negative values for J=8 due to 

the Runge phenomenon, but after applying the constraints all modal damping ratios are positive. 

Meanwhile, the optimization method makes the damping ratios of the significant contribution 

modes close to the exact values. Since the frequency content and significant modes of different 

DOFs are different, the choice of the reference DOF in kn  can affect the optimal damping 

coefficients. For example, the top displacement of uyA is controlled by the first several modes, and 

the contribution from higher modes for uyB are more significant than for uyA. Therefore the curves 
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of damping ratios based on  Bn y  move toward the side of higher frequency compared wtih 

 An y . Setting 
kn =1 means that the peak of modal coordinates qn(t) is taken as the optimal 

objective due to 
max

( ) ( , )n n d n nq t S   . It is equivalent to considering all degrees of freedom. 

Therefore, the higher frequencies effect is more significant and the curves appear to the right side 

among the three curves. Note that the modes used in optimal solution are all ortho-normalized 

relative to the mass matrix. 

(a) J=2                               (b) J=4 

(c) J=6                              (d) J=8 

Figure 4 Damping ratio vs. frequency for various methods under harmonic excitations 

4.4 The influences of mode numbers in optimal analysis 

In Figure 4, the damping ratio curves for J ≥4 are extremely steep at the endpoints and 

approaches to infinity rapidly as the frequency moves away from the interval [ωr1, ωrJ]. It implies 

that, equivalent to the truncation approach, the responses of modes with frequencies outside the 

range considered in evaluating the coefficients vanish even though all modes are included in the 

direct integration method. Therefore, the mode numbers which are used to optimal analysis in Eq. 

(16) should include all significant contribution modes. In order to analyze the source of errors, the 

relative error of response e(N) based on Caughey damping is divided into truncation error et(N) 

and convergence error ec(N). 
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in which r* is the exact solution which can be obtained by mode superposition of all mode shapes 

with the exact damping ratios, rt(N) is the response which is evaluated by the first N modes with 

the exact damping ratios, and r(N) is response when the highest reference frequency is associated 

with the Nth mode to construct Caughey damping. In the equipartition method, this indicates the 

right endpoint frequency ωrJ is set as ωN, while in the optimal method this indicates the first N 

modes are used in Eq. (16). Obviously, the following relation holds for these three errors 

( ) ( ) ( )t ce N e N e N  .                        (28) 

The truncation errors can be used to decide how many modes should be included in mode 

superposition. It is also used to determine the highest reference mode. The convergence error 

directly illustrates the validity of the reference frequencies in establishing the Caughey damping. 

Under harmonic ground motion described by Eq. (26) with θ1=0.7ω9, θ2=1.25ω9 and θ3=2.8ω9, the 

truncation errors are listed in Table 3. When N=24 and N=34, the relative errors e(N) and the 

convergence errors ec(N) are presented in Table 5. For each Caughey damping coefficients, the 

average errors e  and the coefficients of variation (COV) of peak responses are also listed in 

Tables 5.  

As for Rayleigh damping (J=2) in the equipartition method, the errors are huge. It illustrates 

that arbitrarily specifying the two reference frequencies can cause unacceptable errors. It can also 

been observed that for both methods the convergence errors decrease when the term number of 

Caughey series increases. In terms of convergence speed, the optimal method is notably faster than 

the equipartition method. Moreover, negative damping is uncontrollable in the equipartition 

method, which will invalidate the results of analysis. The errors will approach zero when 

increasing the number of terms in the optimal method. The relative error is the total effect of the 

truncation error and convergence error. The truncation error is like a system error, while the 

relative errors will oscillate around the truncation error. Therefore, the optimal solution should 

include modes contributing significantly to all responses, and control the truncation error to an 

acceptable level.  

Table 5a Errors (%) by the equipartition method for N=24 

Response ec(24) e(24) 

 J=2 J=4 J=6 J=2 J=4 J=6 

uyA 4.883 0.326 0.228 4.915 0.358 0.195 

uyB 81.842 5.908 0.869 81.842 5.908 0.869 

FN 31.142 1.233 0.228 29.543 2.831 1.370 

e  39.289 2.489 0.442 38.767 3.032 0.811 

COV 0.996 1.204 0.838 1.013 0.917 0.726 

Table 5b Errors (%) by the optimization method with kn = n(Ay) for N=24 

Response ec(24) e(24) 

 J=2 J=4 J=6 J=8 J=2 J=4 J=6 J=8 

uyA 0.684 0.033 0 0 0.651 0 0.033 0.033 

uyB 0.695 0 0 0 0.695 0 0 0 

FN 1.233 1.370 0 0 2.831 0.228 1.598 1.598 

e  0.871 0.467 0 0 1.392 0.076 0.544 0.544 

COV 0.361 1.672 0 0 0.895 1.732 1.680 1.680 
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Table 5c Errors (%) by the equipartition method for N=34 

Response ec(34) e(34) 

 J=2 J=4 J=6 J=2 J=4 J=6 

uyA 11.165 2.181 0.814 11.165 2.181 0.814 

uyB 174.196 35.882 2.954 174.196 35.882 2.954 

FN 68.128 12.283 1.735 67.671 11.826 1.279 

e  84.497 16.782 1.834 84.344 16.630 1.682 

COV 0.979 1.031 0.585 0.982 1.044 0.669 

Table 5d Errors (%) by the optimization method with 
kn = n(Ay) for N=34 

Response ec(34) e(34) 

 J=2 J=4 J=6 J=8 J=2 J=4 J=6 J=8 

uyA 0.651 0 0 0 0.651 0 0 0 

uyB 0.695 0 0 0 0.695 0 0 0 

FN 2.374 0.411 0.046 0 2.831 0.046 0.411 0.457 

e  1.240 0.137 0.015 0 1.392 0.015 0.137 0.152 

COV 0.792 1.732 1.732 0 0.895 1.732 1.732 1.732 

4.5 Influences of reference DOF 

As shown in Figure 4, the reference DOF will affect the optimal results. Table 6 lists further 

the errors e(N) and ec(N) with 
kn = n(By) and 

kn = 1 for N=34. The convergence error shows 

that the reference DOF affects significantly for J=2. For J ≥4, the difference of convergence errors 

with different reference DOFs is tiny and can be neglected. A closer examination of Figure 3 

indicates that the curves of damping ratios are different for different reference DOFs, but the 

modal damping ratios in the significant contribution modes are almost equal. The reason is that the 

total numbers of significant contribution modes are limited. The difference of damping ratios for 

the modes contributing insignificantly can be neglected. Accordingly, when the term-number of 

the series increases, the reference DOF has less effect on the optimal solution. For practical 

applications, no reference DOF is needed for kn = 1, therefore, it is an alternative choice when 

there is no special optimal DOF to be taken as the reference.  

Table 6a Errors (%) by the optimization method with 
kn = n(By) for N=34 

Response ec(34) e(34) 

 J=2 J=4 J=6 J=8 J=2 J=4 J=6 J=8 

uyA 0.684 0.065 0 0 0.684 0.065 0 0 

uyB 0.087 0 0 0 0.087 0 0 0 

FN 3.105 0.502 0.046 0 3.562 0.046 0.411 0.457 

e  1.292 0.189 0.015 0 1.444 0.037 0.137 0.152 

COV 1.237 1.444 1.732 0 1.287 0.905 1.732 1.732 

 

Table 6b Errors (%) by the optimization method with kn = 1 for N=34 

Response ec(34) e(34) 

 J=2 J=4 J=6 J=8 J=2 J=4 J=6 J=8 

uyA 0.456 0.065 0.033 0 0.456 0.065 0.033 0 

uyB 0.174 0 0 0 0.174 0 0 0 

FN 0.320 0.502 0.137 0 0.776 0.046 0.320 0.457 

e  0.316 0.189 0.057 0 0.469 0.037 0.117 0.152 

COV 0.446 1.444 1.266 0 0.643 0.905 1.498 1.732 
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5. Applications to seismic responses analysis 

5.1 Earthquake ground motions and derivative of deformation response 

spectrum 

The frequency contents of earthquake ground motion depend largely on the site classes. Four 

acceleration records from various earthquakes as shown in Figure 5 are selected to investigate the 

performance of the proposed method in seismic response analysis. Table 7 summarizes various 

ground motions, occurrence dates, and earthquake designations. The Kobe, El Centro, Parkfield 

and Tianjin waves are typical waves of very dense soil, stiff soil, medium stiff soil and soft clay 

sites, respectively. Peak accelerations are scaled to 0.35m/s
2
. The deformation spectra of various 

ground motions under 7 damping ratios (ζ = 0.005, 0.01, 0.02, 0.03, 0.05, 0.10, 0.20) are also 

presented in Figure 5. 

The curves of deformation spectra are irregular, and therefore the spectrum derivative 
*( , )d n nS    is often evaluated numerically. Following Pan et al. 

[21]
, the spectrum derivative is 

obtained from the following statistical relation 
[28]

: 

( , ) ( ) ( ) ln100d n n n n nS g h      .                    (29) 

The coefficients gn(ωn) and hn(ωn) can be determined from linear regression by seven spectral 

values Sd(ζm,ωn) (m=1,2,…,7). Then, the derivatives *( , )d n nS    can be approximated by:  

* *( , ) ( ) /d n n n n nS h                              (30) 

in which 
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Figure 5 Acceleration time histories and its deformation response spectra 

 

 
 
 
 
 

Table 7 Earthquake ground motions used in this study 

Abbreviation Ground Motion Time Earthquake 

E1 El Centro May 18, 1940 California earthquake 

E2 Kobe Jan. 17, 1995 Kobe earthquake 

E3 Parkfield Jun 27, 1966 Parkfield earthquake 

E4 Tianjin Nov 25, 1976 Tangshan aftershock 

5.2 Vertical seismic response of a seven-story frame 

The seven-story frame as shown in Figure 2 was considered. Under the four earthquake 

excitations, the truncation errors of uyA, uyB and FN are summarized in Table 8, respectively. For 

the displacements uyA and uyB, the lower natural frequencies (mainly the 9
th 

mode (6.166 Hz), 11
th
 

mode (6.473 Hz), 18
th
 mode (7.420 Hz) and 20

th
 mode (7.670Hz)) are the dominating modes, but 

higher modes until the 34
th

 mode (39.306Hz) all contribute significantly to the foundation force. 

The first 34 modes are used to compute the optimal damping coefficients. Correspondingly, the 

34
th
 mode is taken as the highest mode in the equipartition method.  
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Under the four earthquake excitations, the convergence errors and relative errors of uyA, uyB 

and FN are presented in Tables 9. Overall, Table 9 indicates that the proposed optimization method 

is significantly more accurate than the equipartition method in terms of average errors for both 

single response and three responses under all four earthquakes.  

Table 8 Accumulated mode contributions and truncation errors of seven-story frame under 

earthquake excitations 

Ground 

motion 

Number of 

modes 

uyA uyB FN 

Peaks(mm) Error(%) Peaks(mm) Error(%) Peaks(102kN) Error(%) 

E1 11 0.907 1.888 0.064 85.838 0.766 32.179 

 20 0.894 0.472 0.453 0.310 0.941 16.696 

 24 0.890 0.011 0.452 0 1.087 3.720 

 34 0.890 0 0.452 0 1.118 0.974 

 70 0.890 0 0.452 0 1.129 0 

E2 11 0.679 5.597 0.045 77.180 0.537 38.583 

 20 0.647 0.529 0.197 0.563 0.691 21.006 

 24 0.643 0 0.195 0 0.825 5.691 

 34 0.643 0.016 0.195 0 0.861 1.566 

 70 0.643 0 0.195 0 0.875 0 

E3 11 1.379 0.217 0.106 66.039 1.261 16.435 

 20 1.382 0 0.314 0.319 1.441 4.506 

 24 1.382 0 0.313 0.032 1.514 0.331 

 34 1.382 0 0.313 0 1.506 0.199 

 70 1.382 0 0.313 0 1.509 0 

E4 11 0.518 4.966 0.037 83.036 0.437 47.583 

 20 0.495 0.324 0.218 0.833 0.566 32.122 

 24 0.493 0 0.216 0.046 0.763 8.480 

 34 0.493 0 0.216 0 0.814 2.411 

 70 0.493 0 0.216 0 0.834 0 

Table 9a Errors (%) by the equipartition method subjected to earthquake excitations 

Response 
Ground 

motion 

ec(34) e(34) 

J=2 J=4 J=6 J=2 J=4 J=6 

uyA E1 23.947 14.058 5.057 23.947 14.058 5.057 

 E2 62.142 22.373 6.390 62.158 22.388 6.405 

 E3 18.813 12.012 4.269 18.813 12.012 4.269 

 E4 22.943 10.255 3.141 22.943 10.255 3.141 

 e  31.961 14.674 4.714 31.965 14.678 4.718 

 COV 0.633 0.365 0.290 0.634 0.366 0.291 

uyB E1 58.977 18.840 1.860 58.977 18.84 1.86 

 E2 34.903 12.641 1.791 34.903 12.641 1.791 

 E3 31.120 8.235 1.021 31.12 8.235 1.021 

 E4 80.287 11.985 0.278 80.287 11.985 0.278 

 e  51.322 12.925 1.237 51.322 12.925 1.237 

 COV 0.446 0.340 0.601 0.446 0.340 0.601 

FN E1 22.586 11.160 4.429 21.612 10.186 3.454 

 E2 28.309 11.874 3.257 26.743 10.309 1.691 

 E3 2.717 2.651 1.458 2.518 2.452 1.259 

 E4 3.514 2.579 1.511 1.104 0.168 0.900 

 e  14.282 7.066 2.664 12.994 5.779 1.826 

 COV 0.918 0.729 0.542 1.008 0.907 0.620 

e   32.522 11.555 2.872 32.094 11.127 2.594 

COV  0.722 0.489 0.647 0.743 0.545 0.725 
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Table 9b Errors (%) by the optimization method with 
kn = n(Ay) subjected to earthquake 

excitations 

Response 
Ground 

motion 

ec(34) e(34) 

J=2 J=4 J=6 J=8 J=2 J=4 J=6 J=8 

uyA E1 0.034 0.011 0 0 0.034 0.011 0 0 

 E2 0 0 0 0 0.016 0.016 0.016 0.016 

 E3 0 0 0 0 0 0 0 0 

 E4 0 0.020 0 0 0 0.020 0 0 

 e  0.008 0.008 0 0 0.012 0.012 0.004 0.004 

 COV 2.000 1.246 0 0 1.302 0.737 2.000 2.000 

uyB E1 0.044 0.376 0 0 0.044 0.376 0 0 

 E2 0.461 0.205 0 0 0.461 0.205 0 0 

 E3 0.287 0.160 0.032 0 0.287 0.160 0.032 0 

 E4 0.139 0 0.046 0 0.139 0 0.046 0 

 e  0.233 0.185 0.020 0 0.233 0.185 0.020 0 

 COV 0.781 0.836 1.193 0 0.781 0.836 1.193 0 

FN E1 1.949 0.620 0.266 0 2.923 0.354 0.709 0.974 

 E2 1.520 1.200 0.240 0.011 0.046 0.366 1.326 1.577 

 E3 0.199 1.193 0.133 0 0.398 0.994 0.066 0.199 

 E4 1.859 1.415 0.432 0 0.552 0.996 1.979 2.411 

 e  1.382 1.107 0.268 0.003 0.980 0.677 1.020 1.290 

 COV 0.586 0.308 0.463 2.000 1.340 0.541 0.805 0.726 

e   0.541 0.433 0.096 0.001 0.408 0.291 0.348 0.431 

COV  1.411 1.246 1.496 3.464 1.999 1.237 1.886 1.857 

 

Table 9c Errors (%) by the optimization method with kn = n(By) subjected to earthquake 

excitations 

Response 
Ground 

motion 

ec(34) e(34) 

J=2 J=4 J=6 J=8 J=2 J=4 J=6 J=8 

uyA E1 0.045 0.022 0.011 0 0.045 0.022 0.011 0 

 E2 0.016 0.016 0 0 0.031 0.031 0.016 0.016 

 E3 0 0 0 0 0 0 0 0 

 E4 0 0.020 0 0 0 0.020 0 0 

 e  0.015 0.015 0.003 0 0.019 0.018 0.007 0.004 

 COV 1.401 0.696 2.000 0 1.192 0.713 1.184 2 

uyB E1 0.022 0 0 0 0.022 0 0 0 

 E2 0 0 0 0 0 0 0 0 

 E3 0 0 0 0 0 0 0 0 

 E4 0.046 0 0 0 0.046 0 0 0 

 e  0.017 0 0 0 0.017 0 0 0 

 COV 1.290 0 0 0 1.290 0 0 0 

FN E1 1.949 0.797 0.266 0 2.923 0.177 0.709 0.974 

 E2 1.566 1.303 0.309 0 0 0.263 1.257 1.566 

 E3 0.199 0.994 0.133 0 0.398 0.795 0.066 0.199 

 E4 1.859 2.147 0.612 0 0.552 0.264 1.799 2.411 

 e  1.393 1.310 0.330 0 0.968 0.375 0.958 1.287 

 COV 0.583 0.454 0.614 0 1.367 0.756 0.775 0.726 

e   0.475 0.442 0.111 0 0.335 0.131 0.321 0.430 

COV  1.684 1.614 1.743 0 2.494 1.779 1.895 1.857 
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Table9d Errors (%) by the optimization method with 
kn = 1 subjected to earthquake excitations  

Response 
Ground 

motion 

ec(34) e(34) 

J=2 J=4 J=6 J=8 J=2 J=4 J=6 J=8 

uyA E1 0.180 0.022 0.011 0 0.180 0.022 0.011 0 

 E2 0.016 0 0 0 0.031 0.016 0.016 0.016 

 E3 0.072 0 0 0 0.072 0 0 0 

 E4 0 0.020 0 0 0 0.020 0 0 

 e  0.067 0.011 0.003 0 0.071 0.015 0.007 0.004 

 COV 1.217 1.158 2.000 0 1.108 0.696 1.184 2.000 

uyB E1 0.598 0.022 0 0 0.598 0.022 0 0 

 E2 0.102 0.051 0 0 0.102 0.051 0 0 

 E3 0.096 0 0 0 0.096 0 0 0 

 E4 0 0 0 0 0 0 0 0 

 e  0.199 0.018 0 0 0.199 0.018 0 0 

 COV 1.357 1.324 0 0 1.357 1.324 0 0 

FN E1 1.683 0.886 0.354 0.089 2.657 0.089 0.620 1.063 

 E2 1.566 1.451 0.251 0.023 0 0.114 1.314 1.589 

 E3 0.133 0.464 0.133 0 0.331 0.265 0.066 0.199 

 E4 1.859 2.519 0.672 0 0.552 0.108 1.739 2.411 

 e  1.310 1.330 0.352 0.028 0.885 0.144 0.935 1.315 

 COV 0.606 0.669 0.656 1.504 1.359 0.566 0.792 0.706 

e   0.525 0.453 0.118 0.009 0.385 0.059 0.314 0.440 

COV  1.390 1.760 1.781 2.780 1.936 1.308 1.911 1.838 

Figure 6 and Figure 7 show damping ratios by various methods. The curves of damping raitos 

obtained by the optimal method vary with the earthquake excitations since the frequency contents 

of different seismic waves change. The damping ratio curve obtained by the equipartition method 

is independent of the excitations, and the errors fluctuate strongly for the same response under 

different excitations. For example, the ec(34) of FN are 11.874% and 2.651% for J=4 under Kobe 

and Parkfield ground motions respectively. This shows that the equipartition method can easily 

lead to significantly inconsistent results among various analysts in engineering practices. The 

exact modal damping ratios are the natural characteristics and independent of the load. But 

Caughey damping is an approximate damping matrix. It is necessary to choose the load-dependent 

reference frequencies to minimize the errors of modal damping ratios of significant contribution 

mode. Therefore, the errors by the optimization method always yield a lower average and COV. 

When J=8, the three types of reference DOFs all converge to the response with exact damping 

ratios for the first 34 modes. For J=6, the errors of all three responses are always less than 1%. A 

closer examination in Table 2 indicates that there are only seven significant contribution modes. 

The convergence errors are tiny for the optimal method due to the fact that all damping ratios for 

the seven significant modes are equal to the exact values for J=8, and six damping ratios of the 

seven significant modes are exact for J=6. 
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(a) J=2                               (b) J=4 

 

(c) J=6                              (d) J=8 

Figure 6 The influences of reference DOF on the damping ratios under El Centro Earthquake 
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(c) J=6                                 (d) J=8 
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Figure 7 The influences of excitations on the optimal damping ratios for 
kn = n(Ay) 

5.3 Horizontal seismic response of a shear building 

                
                  (a)                                (b) 

Figure 8 A seven-story shear building on massive stiffness foundation 

A seven-story shear building is built on a massive foundation supported on stiff piles as 

shown in Figure 8a and its idealized computer model 
[22]

 is shown in Figure 8b. The parameters of 

the structure are listed in Table 10. Only eight modes can be used because the model has only 

eight masses. The natural frequency, mass participation factor and accumulated mass participation 

factor are shown in Table 11. It is apparent that the 8
th
 mode is associated with the vibration of 

foundation mass and the natural frequency is far higher than the 7
th
 natural frequency. The exact 

damping ratios are 5% for all modes of vibration. Peaks of the top displacement u7, the first story 

displacement u1 and the foundation force F0 using different numbers of modes are summarized in 

Table 12. The corresponding truncation errors are also listed in Table 12.  

Table 10 Model Parameters of seven-story shear building 

m m0 m1 m2 m3 m4 m5 m6 m7 

(×100kg) 26 8 6 2 6 2 1 1 

k k0 k1 k2 k3 k4 k5 k6 k7 

(×20kN/m) 2760 12 8 4 4 2 1 1 

 

 

 

 

Table 11 Results of modal analysis of the frame 

Mode 
Frequency 

(Hz) 

Lateral mass participating factor 

Each (%) Accumulated (%) 

1 0.719 30.767 30.767 

2 1.404 6.452 37.218 

3 2.165 10.348 47.566 

4 2.848 0.478 48.044 

5 3.835 0.115 48.159 

6 4.000 2.221 50.38 

7 4.989 0.061 50.441 

8 23.241 49.559 100 

Table 12 Accumulated mode contributions and truncation errors of seven-story shear building 
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under earthquake excitations 

Ground 

motion 

Number of 

modes 

u7 u1 F0 

Peaks(mm) Error(%) Peaks(mm) Error(%) Peaks(kN) Error(%) 

E1 2 21.83 2.392 1.545 26.985 0.370 67.835 

 3 21.41 0.422 2.160 2.079 0.519 54.843 

 6 21.32 0 2.121 0.236 0.510 55.670 

 7 21.32 0 2.116 0 0.509 55.757 

 8 21.32 0 2.116 0 1.150 0 

E2 2 37.59 6.699 3.069 27.24 0.735 46.129 

 3 35.63 1.135 4.298 1.897 1.031 24.413 

 6 35.23 0 4.221 0.071 1.012 25.806 

 7 35.23 0 4.218 0 1.012 25.806 

 8 35.23 0 4.218 0 1.364 0 

E3 2 10.25 0.582 0.922 17.513 0.221 73.540 

 3 10.25 0.582 1.108 0.894 0.267 68.013 

 6 10.31 0 1.119 0.089 0.270 67.69 

 7 10.31 0 1.118 0 0.269 67.714 

 8 10.31 0 1.118 0 0.834 0 

E4 2 65.06 0.046 4.421 16.11 1.058 33.165 

 3 65.05 0.031 5.107 3.093 1.223 22.742 

 6 65.03 0 5.270 0 1.263 20.215 

 7 65.03 0 5.270 0 1.263 20.215 

 8 65.03 0 5.270 0 1.583 0 

For the case of u7 and u1, using only the first three modes is enough to estimate these 

responses. But the accumulated mass participation factor of the first 7 modes is only 50.441%. It 

will cause a significant error for the estimation of the foundation force if only the first 7 modes 

were used. Therefore, all modes are used in the optimization method and the equipartition method.  

Under the four earthquake excitations, the relative errors of u7, u1 and F0 are presented in 

Table 13. Once again, the proposed optimization method is significantly more accurate than the 

equipartition method for kn =1. But the results of foundation force for J=4 and J=6 with 

kn = n(u7) as well as J=4 with kn = n(u1) are less favorable to the proposed method for the 

determination of Caughey damping coefficients. To investigate the reason of significant errors in 

these cases, the normalized weighted coefficients are listed in Table 14. Associated curves of 

damping ratios are shown in Figure 9 and Figure 10. If u7 is used as the reference DOF, the 

normalized weighted coefficient associated with the 8
th
 mode is far less than other modes. The 

main reason is that the normalized mode displacement of u7 is trivial in the 8
th

 mode just like a 

node of mode. Therefore, the effect of the 8
th

 mode is neglected in the optimal solution. It 

indicates that the reference DOF should bypass nodes of modes. Setting kn =1 will eliminate this 

problem, achieving excellent results even under extreme conditions.  

When J=8, the desired damping ratio is obtained exactly at the eight specified frequencies. 

Therefore, the Caughey damping coefficients solved in Eq. (16) are independent of the reference 

DOF and ground motions.  

Table 13a Relative errors (%) subjected to earthquake excitations 

Response 
Ground 

motion 

Equipartition method Optimal method with kn =1 

J=2 J=4 J=6 J=8 J=2 J=4 J=6 J=8 

u7 E1 8.161 5.675 4.128 3.049 1.970 1.079 0 0 

 E2 3.775 1.079 1.135 1.022 0.908 0.397 0 0 

 E3 3.783 2.619 1.843 1.261 0.097 0 0 0 

 E4 1.184 0.846 0.600 0.431 0.138 0.062 0 0 
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 e  4.226 2.555 1.926 1.441 0.778 0.384 0 0 

 COV 0.685 0.871 0.806 0.783 1.127 1.287 0 0 

u1 E1 53.403 33.885 20.747 12.476 1.938 1.087 0.047 0 

 E2 33.239 20.081 12.162 7.421 1.778 0.569 0.119 0 

 E3 38.819 23.256 12.791 7.871 3.399 1.252 0.179 0 

 E4 7.799 5.237 3.435 2.201 0.171 0.171 0.019 0 

 e  33.315 20.615 12.284 7.492 1.821 0.770 0.091 0 

 COV 0.571 0.574 0.576 0.561 0.725 0.642 0.793 0 

F0 E1 3.217 1.826 1.043 0.522 2.087 0.174 0 0 

 E2 11.657 5.572 2.493 0.806 0.220 2.126 0.073 0 

 E3 6.642 2.877 1.115 0.348 4.340 5.371 0.036 0 

 E4 6.317 4.169 2.653 1.706 0.569 0.379 0 0 

 e  6.958 3.611 1.826 0.845 1.804 2.013 0.027 0 

 COV 0.502 0.449 0.474 0.714 1.039 1.195 1.282 0 

e   14.833 8.927 5.345 3.259 1.468 1.056 0.039 0 

COV  1.152 1.201 1.195 1.192 0.940 1.417 1.465 0 

Table13b Relative errors (%) subjected to earthquake excitations 

Response 
Ground 

motion 

Optimal method with 
kn = n(u7) Optimal method with 

kn = n(u1) 

J=2 J=4 J=6 J=8 J=2 J=4 J=6 J=8 

u7 E1 1.313 0 0 0 1.923 1.407 0 0 

 E2 0.852 0 0 0 0.397 0 0.028 0 

 E3 0.388 0 0 0 0.097 0.097 0 0 

 E4 0.015 0.015 0 0 0.231 0.108 0 0 

 e  0.642 0.004 0 0 0.662 0.403 0.007 0 

 COV 0.877 2.000 0 0 1.283 1.666 2.000 0 

u1 E1 3.214 0.425 0.142 0 3.828 0.898 0.047 0 

 E2 4.433 0.735 0.024 0 0.403 0.545 0 0 

 E3 7.245 0.626 0.089 0 1.073 0.447 0.089 0 

 E4 1.271 0.038 0.019 0 0.683 0.247 0 0 

 e  4.041 0.456 0.068 0 1.497 0.534 0.034 0 

 COV 0.619 0.673 0.854 0 1.054 0.510 1.260 0 

F0 E1 2.783 55.461 55.704 0 1.652 2.000 0 0 

 E2 0.880 26.173 25.806 0 0.293 24.487 0 0 

 E3 5.923 68.013 67.690 0 2.362 67.774 0.060 0 

 E4 1.579 19.962 20.152 0 0.190 18.320 0 0 

 e  2.791 42.402 42.338 0 1.124 28.145 0.015 0 

 COV 0.799 0.544 0.543 0 0.943 0.997 2.000 0 

e   2.491 14.287 14.136 0 1.094 9.694 0.019 0 

COV  0.924 1.680 1.701 0 1.046 2.065 1.641 0 

 

Table 14 Normalized weighted coefficients  

kn  
Ground 

motion 

Mode 

1 2 3 4 5 6 7 8 

 n(u7) E1 7.44E-1 1.97E-1 5.78E-2 4.81E-4 9.76E-5 3.75E-5 8.54E-10 2.47E-32 

 E2 7.39E-1 2.47E-1 1.28E-2 9.21E-4 1.74E-5 7.99E-7 1.35E-11 3.06E-35 

 E3 7.27E-1 2.62E-1 9.90E-3 2.65E-4 2.48E-4 8.65E-6 9.72E-10 3.85E-35 

 E4 9.88E-1 1.11E-2 8.11E-4 2.30E-5 2.79E-6 7.53E-7 3.37E-11 4.17E-36 

 n(u1) E1 1.11E-1 4.38E-2 8.25E-1 3.16E-4 4.93E-5 1.97E-2 1.09E-5 2.03E-9 

 E2 3.16E-1 1.57E-1 5.24E-1 1.73E-3 2.51E-5 1.20E-3 4.92E-7 7.18E-12 
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 E3 3.47E-1 1.86E-1 4.51E-1 5.56E-4 4.00E-4 1.45E-2 3.95E-5 1.01E-11 

 E4 9.11E-1 1.52E-2 7.14E-2 9.30E-5 8.67E-6 2.43E-3 2.64E-6 2.11E-12 

1 E1 7.11E-1 9.24E-2 1.94E-1 5.44E-4 1.10E-4 1.93E-3 1.65E-5 1.89E-6 

 E2 8.15E-1 1.34E-1 4.98E-2 1.20E-3 2.26E-5 4.74E-5 3.03E-7 2.71E-9 

 E3 8.15E-1 1.44E-1 3.91E-2 3.52E-4 3.27E-4 5.22E-4 2.21E-5 3.46E-9 

 E4 9.92E-1 5.46E-3 2.86E-3 2.73E-5 3.29E-6 4.06E-5 6.86E-7 3.36E-10 

 
(a) J=2                                (b) J=4 

 

(c) J=6                                (d) J=8 

Figure 9 The influences of reference DOF on the damping ratios under El Centro earthquake 

 

 

(a) J=2                                (b) J=4 
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(c) J=6                                 (d) J=8 

Figure 10 The influences of excitations on the optimal damping ratios for 
kn =  n(u1) 

6. Conclusion 

Caughey damping is suitable when damping ratios of more than two modes are desired to be 

equal to recommended/measured values. In this paper, a constrained optimization method is 

proposed for evaluation of Caughey damping coefficients. The objective function can be defined 

as any error term of peak structural displacements of engineering interests subject to that all modal 

damping ratios are positive. Based on extensive analyses and numerical results, the following 

conclusions can be drawn:  

(1) The main advantage of the proposed method is that the Caughey damping coefficients are 

automatically determined which eliminates the arbitrariness in current experience-based practices. 

Moreover, the optimal Caughey coefficients can ensure reasonable damping ratios for all modes 

contributing significantly to the response. As a comparison, it is noted that the widely used 

equipartition method can cause inconsistent accuracies when a structure is subject to different 

excitations and suffer the risk of negative damping due to Runge’s phenomenon. 

(2) To choose the exponent combination of Caughey series, the extended Rayleigh exponents 

approach is recommended, while the symmetrical exponent combination can cause impractical 

negative damping.  

(3) The choice of the reference DOF is important for the lower order Caughey series. Because the 

limited significant contribution modes, the effects of the reference DOF on errors will decrease 

with the increase of term number. Therefore, using kn =1 is a simplified method for practical 

applications. 

(4) The proposed optimization method can be viewed as a generalization of the conventional 

Caughey method. For more than 4 order Caughey series, the dynamic response will cause 

truncation errors due to the Runge phenomenon. By including all important modes of vibration in 

the objective function, the results will converge to the exact cumulative mode response when the 

term-number increases.  

(5) The exact modal damping ratios are the natural characteristics and independent of the load. But 

Caughey damping is an approximate damping matrix. It is necessary to choose the load-dependent 

reference frequencies to minimize the errors of modal damping ratios of significant contribution 

modes. Thus, the damping matrix should be recomputed each time when the loading condition 

changes. Compared to the conventional method and the equipartition method, the Caughey 

damping coefficients obtained by the proposed method includes the effects of both the dynamic 

characteristics of the structure and frequency content of excitations. The new method improves the 

accuracy significantly while being convenient to apply in engineering practice.  

0 5 10 15 20 25 30
-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

D
am

p
in

g
 r

at
io

s

Frequency/Hz

0 5 10 15 20 25 30

0

20

40

60

80

100

120

   E1, E2, E3, E4  

Y
 A

x
is

 T
it
le

X Axis Title

0 5 10 15 20 25 30
-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

D
am

p
in

g
 r

at
io

s

Frequency/Hz

-20 0 20 40 60 80 100 120 140 160 180

-20

0

20

40

60

80

100

120

140

160

180

Y
 A

x
is

 T
it
le

X Axis Title

   E1  

   E2

   E3

   E4

Page 24 of 26

http://mc.manuscriptcentral.com/engcom

Engineering Computations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Engineering Com
putations

25

Acknowledgements 

  The research work was supported by the Open Foundation of State Key Laboratory for Disaster 

Reduction in Civil Engineering (SLDRCE15-01). The authors would also like to thank European 

Community's Seventh Framework Programme (Marie Curie International Research Staff 

Exchange Scheme, Grant No. 612607) and the Sêr Cymru National Research Network in 

Advanced Engineering and Materials.  

References 

[1] FEMA356. Prestandard and commentary for seismic rehabilitation of buildings [S]. Prepared 

by American Society of Civil Engineers for the Federal Emergency Management Agency, 

Washington DC, 2000. 

[2] Chopra AK. Dynamics of Structures: Theory and Applications to Earthquake Engineering 

[M]. New Jersey: Englewood Cliffs, Prentice-Hall, 1995. 

[3] Clough R, Penzien J. Dynamics of Structures (Third edition) [M]. Computers and structures 

Inc, 2003. 

[4] Wilson EL, Penzien J. Evaluation of orthogonal damping matrices [J]. International Journal 

for Numerical Methods in Engineering, 1972, 4: 5–10. 

[5] Adhikari S. Damping Modeling Using Generalized Proportional Damping [J]. Journal of 

sound and vibration, 2006, 293(1-2): 156-170. 

[6] Prishati R. Seismic response of low-rise steel moment-resisting frame (SMRF) buildings 

incorporating nonlinear soil–structure interaction (SSI) [J]. Engineering Structures, 2011, 

33:958-967. 

[7] Chiara C, Rui P. Seismic response of continuous span bridges through fiber-based finite 

element analysis [J]. Earthquake Engineering and Engineering Vibration, 2006, 5(1): 

119-131. 

[8] Khan E, Sullivan T J, Kowalsky M J. Direct displacement-based seismic design of reinforced 

concrete arch bridges[J]. Journal of Bridge Engineering, 2013, 19(1): 44-58. 

[9] Zhang CH, Pan JW, Wang JT. Influence of seismic input mechanisms and radiation damping 

on arch dam response [J]. Soil Dynamic and Earthquake Engineering, 2009, 29: 1282-1293. 

[10] Chen ZH, Qiao Wt, Wang XD. Seismic response analysis of long-span suspen-dome under 

multi-support excitations [J]. Transactions of Tianjin University, 2010, 16(6): 424-432. 

[11] Xu J. A synthesis formulation of explicit damping matrix for non-classically damped systems 

[J]. Nuclear Engineering and Design, 2004, 227 (2): 125-132. 

[12] Bilbao A, Aviles R, Agirrebeitia J and Ajuria D. Proportional damping approximation for 

structures with added viscoelastic dampers [J]. Finite Elements in Analysis and Design, 2006, 

42 (6): 492-502. 

[13] Mánica M, Ovando E, Botero E. Assessment of damping models in FLAC [J]. Computers 

and Geotechnics, 2014, 59: 12-20. 

[14] Hall JF. Problems encountered from the use (or misuse) of Rayleigh damping [J]. Earthquake 

Engineering and Structural Dynamics, 2006, 35: 525 –545. 

[15] Ryan KL, Polanco J. Problems with Rayleigh damping in base-isolated buildings [J]. Journal 

of Structural Engineering, ASCE, 2008, 134(11):1780 – 1784. 

[16] Zareian F, Medina RA. A practical method for proper modeling of structural damping in 

inelastic plane structural systems [J]. Computers and structures, 2010, 88, 45-53. 

[17] Jehel P, Léger P, Ibrahimbegovic A. Initial versus tangent stiffness-based Rayleigh damping 

in inelastic time history seismic analysis [J]. Earthquake Engineering and Structural 

Dynamics, 2014, 43(3):467-484. 

Page 25 of 26

http://mc.manuscriptcentral.com/engcom

Engineering Computations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Engineering Com
putations

26

[18] Pant DR, Wijeyewickrema AC, Elgawady MA. Appropriate viscous damping for nonlinear 

time-history analysis of base-isolated reinforced concrete buildings [J]. Earthquake 

Engineering and Structural Dynamics, 2013, 42: 2321-2339. 

[19] Tsai CC, Park D, Chen CW. Selection of the optimal frequencies of viscous damping 

formulation in nonlinear time-domain site response analysis [J]. Soil Dynamics and 

Earthquake Engineering, 2014, 67: 353-358. 

[20] Yang DB, Zhang YG, Wu JZ. Computation of Rayleigh Damping Coefficients in Seismic 

Time- History Analysis of Spatial Structures [J]. Journal of the International Association for 

Shell and Spatial Structures, 2010, 51(2): 125-135.  

[21] Pan Danguang, Chen Genda, Wang Zuocai. Optimal Rayleigh damping coefficients in 

seismic analysis of viscously-damped structures [J]. Earthquake engineering and engineering 

vibration, 2014, 13(4):653-670. 

[22] Wilson E L. Three-dimensional static and dynamic analysis of structures (Third edition) [M]. 

California: Computers and structures Inc, 2002. 

[23] Dong Jun, Deng Hongzhou, Wang Zhaomin. Studies on the Damping Models for Structural 

Dynamic Time History Analysis [J]. World Information on Earthquake Engineering, 2000, 

16(4): 63-69. (in Chinese) 

[24] Caughey T K, O’Kelly M E J. Classical normal modes in damped linear dynamic systems [J]. 

Transactions of ASME, Journal of Applied Mechanics, 1965, 32: 583–588. 

[25] Luco JE. A Note on Classical Damping Matrices [J]. Earthquake Engineering and Structural 

Dynamics, 2008, 37(4): 615-626. 

[26] Andreas Antoniou, Wu-Sheng Lu. Practical optimization algorithms and engineering 

applications [M]. Spinger, 2007. 

[27] Walter Gautschi. Numerical analysis: an introduction [M]. Birkhauser Boston, 1997. 

[28] Newmark N M, Hall W J. Earthquake spectra and design, Earthquake engineering research 

institute [R]. California: Berkeley, 1982, 29-37. 

 

 

Page 26 of 26

http://mc.manuscriptcentral.com/engcom

Engineering Computations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


