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Abstract 

The relations among structural integrity, functional connectivity, and cognitive performance in 

the ageing brain are still understudied. Here we used multimodal and multivariate approaches to 

specifically examine age-related changes in task-related functional connectivity, gray matter 

volumetrics, white matter integrity, and performance. Our results are twofold, showing (i) age-

related differences in functional connectivity of the working memory network and (ii) age-

related recruitment of a compensatory network associated with better accuracy on the task. 

Increased connectivity in the compensatory network correlates positively with preserved white 

matter integrity in bilateral frontoparietal tracks and with larger gray matter volume of right 

inferior parietal lobule. These findings demonstrate the importance of structural integrity and 

functional connectivity in working memory performance associated with healthy ageing. 
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The relation of structural integrity and task-related functional connectivity in the ageing 

brain 

  Healthy ageing is associated with structural and functional changes in the brain, as well 

as a decline in behavioural performance on a variety of cognitive tasks. Efficiency of cognitive 

functioning necessarily depends on the integrity of cerebral gray and white matter (GM and 

WM); yet, little is known about the relation among age-related changes in structure, behaviour, 

and task-related functional connectivity (FC). Despite widespread anatomical variability, 

converging evidence demonstrates age-related cortical thinning and reduction in GM volume 

(Tisserand et al., 2002), as well as a loss of integrity in WM microstructure (Guttmann et al., 

1998). Functionally, theories of cognitive ageing concur that two distinct phenomena take place 

in the ageing brain: dedifferentiation, i.e., reduced distinctiveness of neural representations in 

domain-specific areas (Li et al., 2001), and compensation, i.e., over-recruitment of alternate 

brain circuits to compensate for age-related processing deficiencies in the existing circuitry that 

subserves a specific cognitive function (Cabeza et al., 2002; Grady, 2012; Reuter-Lorenz et al., 

2000).  Increased engagement of prefrontal and other brain areas is interpreted as compensatory 

when associated with maintained performance in older adults (Davis et al., 2008; Grady, 2002; 

Grady et al., 2002; Madden et al., 2004), or when activity in these over-recruited areas is 

positively correlated with behaviour in older adults (Burianová et al., 2013; Davis et al., 2008; 

Grady et al., 2002). It is argued that the strongest evidence for compensation is the recruitment 

of additional neural resources in older adults, i.e., higher levels of mean activity or stronger 

functional connectivity, and that this recruitment is related to better performance in older adults 

(Cabeza and Dennis, 2013; Grady 2008). Whilst compensation links functional activity and 

behaviour, the interplay between compensation and structural integrity is still unclear.  It is of 
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importance to note that albeit two distinct phenomena, the dedifferentiation and compensation 

processes have been shown not to be mutually exclusive (Burianová et al., 2013). Thus, the brain 

may show reduced neural selectivity in the domain-specific regions as well as utilize a different 

network of areas to compensate for this deficiency in neural distinctiveness. 

Concurrent investigations of age-related alterations in structure and function are 

necessary because the mechanisms underlying changes in structural integrity may likely mediate 

changes in FC and performance on cognitive tasks. Recent studies have reported an association 

between age-related changes in WM microstructure and cognitive performance (Burzynska et 

al., 2013), as well as between age-related decline in GM volume and performance (Steffener et 

al., 2012), thereby demonstrating significant covariance between better structural integrity and 

higher cognitive functioning in aged adults. Although standard in vivo imaging methods preclude 

drawing of direct causal inferences regarding structure-function-behaviour relations, multimodal 

imaging approaches may provide convergent evidence for complex macroscopic principles that 

facilitate age-related plasticity. 

The objective of the current study was to use multimodal imaging and multivariate 

analysis methods to investigate the relation among changes in FC of a task-related network, 

behavioural performance, and structural integrity in an ageing population. Specifically, we 

utilized a validated cognitive task (n-back) to delineate the working memory network, which 

engages essential load-dependent frontoparietal (FP) nodes (Honey et al., 2002), and examined 

the relation between the strength of FC in this network and task performance. Older adults often 

compensate for deficits in posterior brain regions by increasing frontal activity (Grady et al., 

2002); thus, we examined GM volumetrics of the network’s FP nodes and WM microstructure of 

their connecting WM tract, the superior longitudinal fasciculus (SLF; Petrides & Pandya, 2002). 
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We hypothesized that, in contrast to young adults, (i) older adults would show stronger FC to the 

frontal regions under low load, as ageing has been associated with increased recruitment of 

available frontal resources at lower levels of cognitive load (Reuter-Lorenz & Cappell, 2008); 

and (ii) older adults who perform better on the working memory task would recruit brain regions 

outside of the working memory network to aid their performance under high cognitive load, 

when available resources would have reached their limit. In addition to its association with more 

accurate performance, this compensatory recruitment would relate to greater structural integrity, 

as we propose that intact brain structure may play a biologically permissive role in functional 

compensation (Murphy & Corbett, 2009). 

Methods  

Participants.  

Twenty three healthy older adults (mean age = 66 years, SD = 5 years, 13 females) and 

22 healthy young adults (mean age = 29 years, SD = 6 years, 10 females) participated in the 

study. All participants were right-handed, had normal or corrected-to-normal vision, no history 

of neurological impairment or psychiatric illness. The two groups of participants were education-

matched. Older adults were cognitively intact and achieved an average score of 28.9 (SD 1.1; 

range 27-30), on the Mini-Mental State Examination (MMSE; Folstein et al., 1975). All 

participants provided written informed consent approved by the University of Queensland 

Human Research Ethics Committee. 

Experimental Design. 

Participants underwent a 45-minute experimental session, which consisted of 3 
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components: structural magnetic resonance imaging (sMRI), diffusion weighted imaging (DWI), 

and functional MRI (fMRI). During fMRI, participants were presented with a continuous series 

of letters and performed an n-back task with three experimental conditions: 0-back, 1-back, and 

2-back. During the 0-back condition, participants were required to press ‘1’ if the letter ‘A’ was 

presented, or ‘2’ if any other letter was presented. During the 1-back and 2-back conditions, 

participants were required to press ‘1’ if the current letter matched the letter one or two letters 

earlier, respectively, or ‘2’ if it did not match. Letters were presented in a blocked-design, with 

four blocks of each experimental condition, 20 letters per block, and 4-6 targets per block. Each 

block consisted of a 3s instruction, 500ms stimulus presentation, and 1s inter-stimulus-interval. 

Three 20s fixation blocks were presented at the beginning, middle, and end of each of the 

functional runs. Prior to the experimental session, the task was verbally and visually explained to 

the participants who subsequently took part in a short practice session, which ensured a proper 

familiarization with the task’s instructions and timing.  

MRI Acquisition and Analysis. 

T1-weighted volumetric structural MRIs were acquired using a 3D MP-RAGE sequence 

(192 sagittal slices, TR = 1900ms, TE = 2.32ms, TI = 900ms, FOV = 230mm, voxel size = 

0.9mm3, flip angle = 9º). Estimates of cortical volume were obtained using the default 

preprocessing steps of FreeSurfer software (http://surfer.nmr.mgh.harvard.edu). For each 

participant, brains were extracted and intensities normalized. Then, gray matter, white matter, 

and non-cortical structures were segmented and a triangular mesh was utilized to generate the 

pial and cortical surfaces, which was followed by a manual quality control check of gross 

structural abnormalities, occurrence of artefacts, and accuracy of registration (Dale et al., 1999; 
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Toro et al., 2008). For each participant, average values of cortical volume were extracted for 

inferior parietal lobule (IPL) and the rostral division of the middle frontal gyrus (MFG) in each 

hemisphere, using the Desikan-Killiany atlas (Desikan et al., 2006). Volume measures were 

normalized as percentage of total intracranial volume, to correct for difference in head size. All 

statistical analyses were conducted using the Statistical Package for Social Sciences (SPSS; 

version 21; Chicago, IL, USA). Individual values of cortical volume of the ROIs were used as 

covariates in task-related functional connectivity analysis (see below).  

DWI Acquisition and Analysis. 

High angular resolution diffusion-weighted images (HARDI) were acquired along 85 

gradient directions using spiral acquisition (55 slices, TR = 9400ms, TE = 112ms, b-value = 

3000s/mm2, voxel size = 2.5mm3) and processed using Dipy software (Garyfallidis et al., 2014; 

http://nipy.org/dipy/). DWIs were first corrected for motion and residual eddy current induced 

distortions using ExploreDTI software with B-matrix adjustments (Leemans & Jones, 2009; 

http://www.exploredti.com/). Then, after skull and non-brain tissue were removed from the 

image using median Otsu segmentation (Garyfallidis et al., 2014), the tensor model was fitted to 

each voxel using nonlinear regression, and, finally, fractional anisotropy (FA) maps were 

calculated (Basser et al., 1994). FA is considered a general marker of WM integrity, reflecting 

coherence within a voxel and fiber density (Beaulieu, 2002), yet in the absence of other 

diffusivity measures it is generally accepted as a nonspecific marker of microstructural change 

(Alexander et al., 2007). To maximize specificity, we obtained additional maps of different 

diffusivity measures from the tensor; namely, radial diffusivity (RD), a marker of demyelination 
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(Song et al., 2005), and axial diffusivity (AD), a marker of axonal damage or loss (Sun et al., 

2006). 

Group differences for these diffusivity measures were assessed for the whole white 

matter skeleton using tract-based spatial statistics (TBSS; Smith et al., 2006) included in 

FMRIB’s Software Library (FSL; http://fsl.fmrib.ox.ac.uk/). All diffusivity maps, including a 

common white matter skeleton for all participants, were linearly co-registered to the avgMNI152 

template using FSL’s FLIRT (Jenkinson & Smith, 2001). The aligned individual diffusivity maps 

were masked with the common white matter skeleton and submitted to FSL’s voxelwise 

permutation tool ‘randomise’, which conducted an unpaired t-test between the groups’ maps 

(Nichols & Holmes, 2002). Five thousand random permutations for each diffusivity measure and 

threshold-free cluster enhancement (TFCE) were used for statistical assessment (Smith & 

Nichols, 2009). The resulting statistical maps were thresholded at p < 0.05 and corrected for 

multiple comparisons using family-wise error correction. Finally, average white matter values 

(FA, AD, RD) for bilateral SLF, the primary WM pathway connecting the frontal and parietal 

nodes of the working memory network (Petrides & Pandya, 1984), were derived and used as 

covariates in task-related functional connectivity analysis (see below). First, a tract-of-interest 

(TOI) mask of left and right SLF was created using John Hopkins University ICBM-DTI-81 

white matter labels atlas (Mori et al., 2008; http://cmrm.med.jhmi.edu/) and further masked with 

the group WM skeleton. To minimize any effects due to distortion of diffusivity measures 

through nonlinear registration of individual WM maps to the common WM skeleton in TBSS, 

the TOI masks were back-projected into each subject’s native space and used to extract mean 

values for each diffusivity measure. 

fMRI Acquisition and Analysis. 
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Functional images were obtained using a whole head T2*-weighted echo-planar image 

(EPI) sequence (93 axial slices, TR = 3000ms, TE = 30ms, flip angle = 90º, FOV = 192mm, 

voxel size = 2.5mm3, matrix = 76 x 76). Brain activation was assessed using the blood 

oxygenation level dependent (BOLD) effect (Ogawa et al., 1990) with optimal contrast. For 

functional analysis, T2*-weighted images were preprocessed with Statistical Parametric 

Mapping software (SPM8; http://www.fil.ion.ucl.ac.uk/spm); specifically, they were realigned to 

a mean image for head-motion correction, spatially normalized into a standard stereotaxic space 

with voxel size of 2 mm3, using the Montreal Neurological Institute (MNI) template, and 

spatially smoothed with a 6-mm full width half maximum Gaussian kernel. 

 The procedure of the fMRI analysis was threefold. First, we conducted a seed-based FC-

behaviour analysis in which we delineated the working memory network by determining areas of 

the brain in which the BOLD response was correlated with that of the seed regions (i.e., its 

functional connectivity) and examined whether activity in this network correlates with two 

behavioural variables: accuracy scores (hits – false alarms) and reaction times (hits) on each of 

the n-back condition. Here we tested the hypothesis that the relation between FC in the working 

memory network and behavioural performance would differ between the two groups and that 

older adults would recruit a compensatory network. Second, we examined the relation between 

age-related changes in FC of the task-related network and structural changes in gray matter. For 

this purpose, we conducted a seed-based FC-GM analysis in which the BOLD response of the 

seed regions was correlated with the BOLD response of the rest of the brain and with individual 

values of cortical volume of bilateral IPL and MFG. Here we tested the hypothesis that age-

related compensatory recruitment would be associated with greater GM volume in key working 

memory areas. Finally, we investigated the relation between age-related changes in FC of the 
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task-related network and parameters of WM integrity using a seed-based FC-WM analysis in 

which the BOLD response of the seed regions was correlated with the BOLD response of the rest 

of the brain and with individual measures of white matter integrity (FA, AD, and RD) from 

bilateral SLF. Here we tested the hypothesis that age-related compensatory recruitment would be 

associated with greater WM integrity in frontoparietal WM pathways.  

 All covariance maps were statistically analyzed using a multivariate analytical technique 

called Partial Least Squares (PLS; McIntosh, Chau, & Protzner, 2004; McIntosh et al., 1996; for 

a detailed tutorial and review of PLS, see Krishnan et al., 2011), as implemented in PLS software 

(http://research.baycrest.org/pls_software) running on MATLAB Version 2013A (The 

MathWorks Inc.). PLS is designed to identify significant whole-brain activity patterns related to 

task demands, measures of behavioural or anatomical covariates, or activity in a given “seed” 

region. Activity patterns are assessed across all brain voxels together, which is in contrast to 

mass-univariate analyses that consider each voxel separately. PLS analysis uses singular value 

decomposition (SVD) of a single matrix that contains all participants’ data to find a set of latent 

variables (LVs), which are mutually orthogonal dimensions that reduce the complexity of the 

data set. In other words, PLS does not force contrasts but rather decomposes the data to 

maximize the amount of covariance of an LV with respect to the experimental conditions. Thus, 

akin to Principal Component Analysis (PCA; e.g., Friston, Frith, & Frackowiak, 1993), PLS 

enables one to differentiate the degree of contribution of different brain regions associated with 

task demands, behavioural or anatomical covariates, or functional seed activity. Each LV 

consists of a singular image of voxel saliences (i.e., a spatiotemporal pattern of brain activity), a 

singular profile of task saliences (i.e., a set of weights that indicate how brain activity in the 

singular image is related to the experimental conditions, functional seeds, or 
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behavioural/anatomical covariates), and a singular value (i.e., the amount of covariance 

accounted for by the LV).  

 The significance of each LV is assessed by a permutation test, which determines the 

probability that a singular value from 500 random resamplings of the data is larger than the 

initially obtained value (McIntosh et al., 1996). In addition to the permutation test, a second and 

independent step is to determine the reliability of the saliences (or weights) for each brain voxel 

that characterizes a given spatiotemporal pattern identified by the LVs. To do so, the standard 

error of each voxel’s salience on each LV is estimated by 100 bootstrap resampling steps (Efron 

& Tibshirani, 1985). Peak voxels with a bootstrap ratio (BSR; i.e., salience/standard error) > 3.0 

were considered to be reliable, as these approximate p < 0.01 (Sampson et al., 1989). Because 

extraction of the LVs and corresponding brain images is done in a single analytic step, no 

correction for multiple comparisons is required.  

Results 

Behavioural Performance. 

Both the mean accuracy (hits – false alarms) and mean reaction time (RT) for hits 

differed significantly between the two groups, with young adults being significantly more 

accurate (1-back: M = 0.97, SD = 0.04; t23 = 4.04, p < 0.001; 2-back: M = 0.86, SD = 0.08; t23 = 

2.06, p = 0.04) than older adults (1-back: M = 0.87, SD = 0.11; 2-back: M = 0.78, SD = 0.13), as 

well as faster (1-back: M = 558, SD = 138; t23 = 5.44, p < 0.001; 2-back: M = 628, SD = 209; t23 

= 4.91, p < 0.001) than older adults (1-back: M = 729, SD = 183; 2-back: 803, SD = 266). 

Functional Connectivity & Behaviour Analysis. 
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The FC-behaviour analysis assessed age-related changes in FC of the task-related 

network and their relation to behavioural performance on the n-back task. This analysis yielded 

two significant LVs. The first LV accounted for 64% of covariance in the data and delineated a 

bilateral but strongly left-lateralized working memory network (Fig 1 and Table 1). In older 

adults, this network was functionally connected to both FP nodes during both n-back conditions 

and did not show modulation of FP activity with increased load. In young adults, however, 

during the low-load condition, this network was strongly functionally connected to IPL but not to 

MFG, suggesting a lack of necessity for frontal recruitment under low cognitive load. Young 

adults engaged MFG strongly only during the high-load condition, in conjunction with a 

significant decrease in connectivity to IPL (as confirmed by the Fisher r-to-z transformation that 

yielded a significant difference in IPL connectivity between 1-back and 2-back at p < 0.05). 

These results demonstrate dedifferentiation on the network level: young adults show differences 

in FC that are dependent on the degree of cognitive load, whereas older adults show no 

differences in load-related connectivity. 

The behavioural covariates revealed differences in how FC in the working memory 

network related to performance. In young adults, accuracy scores positively correlated with 

activity in the working memory network during the high-load condition only, showing that more 

accurate young adults engaged this FP network more strongly than less accurate young adults 

when cognitive load was increased. Older adults did not show any significant correlation 

between activity in the working memory network and accuracy. However, older adults showed a 

positive correlation between RT and activity in the working memory network under the low-load 

condition, showing that slower older adults recruited the FP network more strongly than faster 

older adults did. Young adults, on the other hand, showed a negative correlation with RT during 
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the low-load condition, suggesting that the faster the young adults were, the stronger was the FC 

to IPL under low cognitive load. Thus, unlike in their older counterparts, increased cognitive 

load was associated with increased FC to frontal areas and better performance in young adults1. 

 [Insert Figure 1 & Table 1 here] 

The second LV accounted for 9% of covariance in the data and delineated a network of 

bilateral frontal and right FP areas, which were functionally connected to left MFG but not left 

IPL (Fig 2 and Table 2). This network was exclusively recruited by older adults during the high 

load condition. Activity in this network correlated positively with accuracy and RT (i.e., the 

more accurate, but slower older adults recruited this network more strongly), suggesting a 

compensatory recruitment of alternate brain circuitry under a high cognitive load. 

[Insert Figure 2 & Table 2 here] 

Functional Connectivity & WM Analysis. 

The FC-WM analysis assessed the relation of age-related alterations in FC of the task-

related network and the integrity of WM microstructure in bilateral SLF. The analysis revealed 

two significant LVs, one related to correlations between FA values and activity in the working 

memory network (Fig 3), and the other to correlations between FA and AD values, and activity 

in the compensatory network (Fig 4, lower left graph). No significant correlations were found for 

RD values. Both LVs reflected significant covariance patterns only during the high load 

condition. In young adults, activity in the working memory network correlated positively with 

FA values, reflecting the importance of more intact WM microstructure in bilateral SLF for 

                                                           
1 The pattern of functional connectivity remained the same (i.e., a lack of parietofrontal modulation with increased 
cognitive load in old adults) when the two groups were equated behaviourally (n = 13 per group; young: 1-back: M 
= 0.95, SD = 0.04; 2-back: M = 0.85, SD = 0.07; old: 1-back: M = 0.95, SD = 0.04; 2-back: M = 0.86, SD = 0.09; ps 
> 0.1). 
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frontoparietal coordination during an increased working memory load. In older adults, activity in 

the compensatory network correlated positively with FA values and negatively with AD values, 

suggesting that those older adults who have more intact WM microstructure and less axonal 

damage recruit the compensatory network more strongly. 

Functional Connectivity & GM Analysis. 

The FC-GM analysis assessed the relation of age-related alterations in FC of the task-

related network and GM volume of bilateral MFG and IPL. The analysis revealed one significant 

LV, related to correlations between GM volume and activity in the compensatory network shown 

only by older adults during the high load condition. Activity in the compensatory network 

correlated positively with GM volume in right IPL and negatively with GM volume in bilateral 

MFG (Fig 4, upper left graph). These results suggest that the structural integrity of the right IPL 

may play a critical role in the ability to recruit the compensatory functional network. 

[Insert Figures 3 & 4 here] 

Discussion  

The current study examined the relations among age-related changes in FC of the 

working memory network, structural integrity, and performance. Our results demonstrate that 

with increased cognitive load (i) unlike young adults, older adults fail to modulate the strength of 

FC in the working memory network with increased cognitive load but (ii) recruit a compensatory 

network to improve performance. Furthermore, our findings demonstrate an association among 

structural integrity, functional activity, and behaviour in both young and older adults. Young 

adults showed an association between FC in the working memory network and WM 
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microstructure in bilateral SLF, whereas older adults showed an association among FC in the 

compensatory network, more intact WM microstructure, less axonal damage in bilateral SLF, 

and larger IPL volume in the right hemisphere. 

Absence of Load-Dependent Modulation/Dedifferentiation  

Our first finding provides evidence for dedifferentiation at the network level. Unlike young 

adults who modulated frontoparietal connectivity during working memory processing and 

strengthened FC to anterior areas with increased cognitive load, older adults failed to show such 

load-dependent frontoparietal modulation. Instead, FC between the frontoparietal nodes of the 

working memory network of older adults was equally strong, regardless of task demands. These 

findings align with the idea that older adults recruit more processing resources at lower levels of 

cognitive load, and show relative decreases in neural activity at high levels of cognitive load, as 

their available resources have reached their limit (Reuter-Lorenz & Cappell, 2008). Although 

increases in activity in existing functional networks relative to young adults have been 

interpreted as compensatory recruitment (Cabeza et al., 2002; Persson et al., 2004), the absence 

of behavioural improvement in our data does not support this interpretation. Rather, our findings 

are consistent with the idea of dedifferentiation, and show that the neural signature of the 

different load-dependent processes becomes less distinct (Grady, 2008; Li et al., 2001). Previous 

studies found similar age-related reductions in neural sensitivity to different stimulus categories 

in visual perception (Burianová et al., 2013; Carp et al., 2010a, 2010b; Park et al., 2004; 

Schiavetto et al., 2002), memory processing (Carp et al., 2010a, 2010b; St-Laurent et al., 2011), 

and auditory processing (Grady et al., 2011), as well as in amplitude differences between young 

and older adults that suggest age-related dysregulation of frontal executive functions that may 

lead to greater exertion of executive control than needed (Dirnberger et al., 2010). Together with 
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these studies, our results demonstrate that age-related dedifferentiation of load-dependent 

working memory processes takes place in both frontal and parietal cortices, and that rather than 

being a strictly regional phenomenon, dedifferentiation in older adults can also occur at the 

network level. 

Compensatory Recruitment  

In young adults, behavioural performance under high cognitive load covaried with the 

strength of FC in the working memory network, meaning that young adults who performed more 

accurately engaged the network more strongly. Older adults, on the other hand, did not show 

such a relation. Instead, older adults’ accurate performance was related to the recruitment of an 

additional brain network, functionally connected to left MFG. This network consisted 

predominantly of right prefrontal regions and the right IPL. The specificity of this functional 

network and its relation to accuracy in only the older adults provides evidence for compensation, 

which is defined as the recruitment of additional neural resources, which are directly related to 

improved performance (Grady et al., 1994). In addition, whilst connectivity between left MFG 

and right IPL of the compensatory network strengthened, the functional connection between left 

MFG and left IPL disappeared. This finding aligns with the argument that age-related 

compensatory recruitment may be utilized to counteract altered processing in domain-specific 

areas  (Burianová et al., 2013; Davis et al., 2008; Grady et al., 2002; Schiavetto et al., 2002), i.e., 

the working memory network, and extends this notion to suggest that compensation may also 

involve functional rerouting to homologous anterior and posterior regions (i.e., right prefrontal 

cortex and right IPL).  

Interestingly, whilst the compensatory recruitment of the right hemispheric brain regions 

related to improved accuracy on the working memory task, it also correlated with slower reaction 
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time, suggesting a behavioural trade-off. One plausible explanation for this phenomenon is 

provided by the partial compensation hypothesis (de Chasteine et al., 2011), which argues that 

additional brain regions are recruited to aid older adults in accomplishing the task because the 

existing neural structures that subserve a cognitive process are less efficiently used. In our study, 

the lack of efficiency in the working memory network is evidenced by the age-related 

dedifferentiation of load-dependent conditions. However, whilst the additional recruitment may 

lead to more accurate performance on the task and hence be compensatory, it does not improve 

the efficiency of the existing neural structures, potentially yielding a more distributed network, at 

the cost of reaction time (Garrett et al., 2011).  

Relations Among Structure, Function, and Behaviour  

Our findings revealed that under high cognitive load the strength of FC in the working 

memory network of young but not older adults was associated with higher FA in bilateral SLF. 

In older adults, a similar structure-function-behaviour relation was identified in the 

compensatory network, where higher FA and lower AD in bilateral SLF were associated with 

stronger FC under high cognitive load. FA is considered to be a general marker of WM integrity 

and nonspecific marker of microstructural change, most likely reflecting coherence within a 

voxel and fiber density (Alexander et al., 2007; Beaulieu, 2002), whereas AD is considered to be 

a more specific marker of axonal damage or loss (Sun et al., 2006). Conjoint analysis of multiple 

measures of white matter integrity has been argued to yield a more comprehensive picture of 

different elements of WM microstructure (Assaf & Pasternak, 2008); however, the interpretation 

of the neurobiological mechanisms reflected in the interaction of FA and AD is complicated by 

many variables. Different diffusivity patterns of age-related differences have been reported and 

shown to be region-specific (Bennett et al., 2010; Burzynska et al., 2010), but the general trend 
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of age-related decline in WM integrity is reflected by a decrease in FA and an increase in the 

specific measures of diffusivity (e.g., Sullivan et al., 2006, 2008; Zahr et al., 2009). Although a 

decrease in FA accompanied by a decrease in AD have been reported in secondary Wallerian 

degeneration (Pierpaoli et al., 2001), decreases in FA accompanied by increases in AD have 

been interpreted as reflecting higher extracellular volume fraction, lower membrane density, and 

an increase in axonal spacing as a result of axonal loss (Sen & Basser, 2005). Together with the 

brain-behaviour findings, which show that activity in the working memory and compensatory 

networks predicts performance in young and older adults, respectively, our results provide 

evidence that both cognitive performance and cortical connectivity depend on the microstructural 

integrity of white matter. Our results further suggest that the compensatory mechanism utilized 

by older adults is influenced by greater structural integrity and, more specifically, less axonal 

damage in bilateral SLF. These findings contribute to the limited, yet growing body of evidence 

that shows an association between better WM integrity, brain activation, and cognitive 

performance in older adults (Burzynska et al., 2013; Chen et al., 2009; Davis et al., 2009; 

Lockhart et al., 2012). 

In addition to white matter integrity, our results show that the strength of FC in the 

compensatory network was associated with lower MFG volume bilaterally, but with higher IPL 

volume in the right hemisphere, suggesting that the structural integrity of the right posterior 

parietal region may be critical in the ageing brain’s ability to recruit additional prefrontal regions 

for compensation. Recent studies show a relation between gray matter thinning and reductions in 

functional activation (Thomsen et al., 2004), as well as a more specific negative correlation 

between MFG volume and frontoparietal activation during memory retrieval in older adults 

(Rajah et al., 2011). Together with the results of our study, the findings of the aforementioned 
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studies demonstrate a complex interplay between brain structure and function, suggesting that 

age-related differences in brain structure may mediate changes in task-related functional 

connectivity and cognitive performance. Specifically, we propose that intact brain structure may 

play a biologically permissive role in functional compensation (Murphy & Corbett, 2009). 

In conclusion, our findings show that whilst ageing is associated with dedifferentiation at 

the network level, greater structural integrity of both white and gray matter in and between 

relevant cortical regions are critical for the functional recruitment of a compensatory network, 

leading to improved accuracy on the working memory task. These results imply that task-related 

changes in functional networks in general rely on the properties of structural connections and 

that the underlying changes in structural integrity are related to changes in FC and performance 

on cognitive tasks. Future investigations of neural plasticity – age-related or otherwise – should 

continue to explore the interconnectedness of structure, function, and behaviour further, as many 

outstanding issues of how age-related differences in brain activation are related to other factors, 

e.g., brain structure, remain.  
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Figure Captions 

FIG 1. FC-Behaviour Results: LV1. Right – a pattern of whole brain activity in the working 

memory network; Left – correlations between activity in left MFG, left IPL, reaction times and 

accuracy during 1-back (Top) and 2-back (Bottom) conditions, as well as activity in the regions 

of the working memory network. Error bars denote 95% confidence intervals for the correlations 

calculated from the bootstrap procedure. All reported regions have BSR ≥ 3.0 and cluster size ≥ 

100 voxels. MFG = middle frontal gyrus; IPL = inferior parietal lobule; RT = reaction time; 

ACC = accuracy. 

FIG 2. FC-Behaviour Results: LV2. Top – a pattern of whole brain activity in the 

compensatory network; Bottom – correlations between activity in left MFG, left IPL, reaction 

times, and accuracy during the 2-back condition, as well as activity in the regions of the 

compensatory network. Error bars denote 95% confidence intervals for the correlations 

calculated from the bootstrap procedure. All reported regions have BSR ≥ 3.0 and cluster size ≥ 

100 voxels. MFG = middle frontal gyrus; IPL = inferior parietal lobule; RT = reaction time; 

ACC = accuracy. 

FIG 3. Structure-Function Relations in the Working Memory Network. Right – a pattern of 

whole brain activity in the working memory network; Left – correlations between fractional 

anisotropy in bilateral SLF and activity in the regions of the working memory network during the 

2-back condition. Error bars denote 95% confidence intervals for the correlations calculated from 

the bootstrap procedure. All reported regions have BSR ≥ 3.0 and cluster size ≥ 100 voxels. SLF 

= superior longitudinal fasciculus. 

FIG 4. Structure-Function Relations in the Compensatory Network. Right – a pattern of 
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whole brain activity in the compensatory network of older adults; Left – correlations between 

GM volume of bilateral MFG and IPL and activity in the regions of the compensatory network 

during the 2-back condition (Top); and between AD and FA in bilateral SLF and activity in the 

regions of the compensatory network during the 2-back condition (Bottom). Error bars denote 

95% confidence intervals for the correlations calculated from the bootstrap procedure. All 

reported regions have BSR ≥ 3.0 and cluster size ≥ 100 voxels. GM = gray matter; WM = white 

matter; MFG = middle frontal gyrus; IPL = inferior parietal lobule; HEM = hemisphere; L = left; 

R = right; AD = axial diffusivity; FA = fractional anisotropy. 
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TABLE 1 

 

Abbreviations:  Hem = hemisphere; BA = Brodmann’s Area; R = right; L  = left; Ratio = 

salience/SE ratio from the bootstrap analysis; x coordinate = right/left; y coordinate = 

anterior/posterior; z coordinate = superior/inferior.  

 

 

 

 

 

Working Memory Network

Region Hem BA               MNI Coordinates Ratio

x y z

Middle Frontal Gyrus L 9/46 -48 18 30 16.75

R 9/46 52 28 30 8.26

Middle Frontal Gyrus L 10 -40 44 18 13.53

R 10 46 46 20 12.47

Premotor Frontal Gyrus L 6 -30 14 56 12.78

R 6 38 14 54 9.07

Medial Frontal Gyrus 8 -4 24 44 14.60

Inferior Parietal Lobule L 40 -48 -42 46 12.89

R 40 46 -42 48 9.53

Superior Parietal Lobule L 7 -30 -62 50 13.81

R 7 38 -60 46 8.06

Precuneus L 7 -6 -64 56 9.41

R 7 32 -70 44 10.19

Posterior Cingulate Gyrus 31 4 -36 28 8.09

Thalamus L -10 -8 10 9.48

R 12 -10 10 6.80

Fusiform Gyrus L 37 -46 -56 -6 12.23

R 37 46 -58 -8 6.15

Cerebellum L -24 -60 -24 9.18

R 30 -68 -24 9.28
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TABLE 2 

 

Abbreviations:  Hem = hemisphere; BA = Brodmann’s Area; R = right; L  = left; Ratio = 
salience/SE ratio from the bootstrap analysis; x coordinate = right/left; y coordinate = 
anterior/posterior; z coordinate = superior/inferior.  

 

 

 

 

 

 

 

 

 

Compensatory Network

Region Hem BA               MNI Coordinates Ratio

x y z

Inferior Frontal Gyrus L 47 -32 20 -12 5.81

R 47 26 24 -12 4.45

Frontal Pole L 10 -34 60 -4 4.81

R 10 44 56 0 7.29

Medial Frontal Gyrus 10 10 54 12 7.39

Superior Frontal Gyrus R 10 20 50 24 6.52

Medial Frontal Gyrus 8 6 30 44 6.29

Middle Frontal Gyrus L 9/46 -48 18 30 5.10

R 8 40 18 50 6.05

Inferior Parietal Lobule R 40 52 -56 44 5.63
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HIGHLIGHTS 
 
> We examined the impact of ageing on functional connectivity, structural 
integrity, and cognitive performance. > We report age-related differences in 
functional modulation due to cognitive load. > We report age-related 
dedifferentiation and compensation related to both brain function and 
structure. > These findings suggest a biologically permissive role of intact 
brain structure in functional compensation. 


